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1. Introduction

The study of string theory in non-trivial NS-NS B-field backgrounds has of late become one

of the most pursued directions of research. Ever since the landmark papers [1], where it was

shown that in the presence of such non-trivial B-fields along the world-volume directions

of the D-brane, the gauge theory living thereupon assumes a non-commutative guise in

the large-B-limit, most works were done in this direction of space-time non-commutativity.

However, there is an alternative approach in the investigation of the effects of the B-field,

namely discrete torsion, which is of great interest in this respect. On the other hand,

as discrete torsion presents itself to be a natural generalisation to the study of orbifold

projections of D-brane probes at space-time singularities, a topic under much research over

the past few years, it is also mathematically and physically worthy of pursuit under this

light.

A brief review of the development of the matter from a historical perspective shall

serve to guide the reader. Discrete torsion first appeared in [2] in the study of the closed

string partition function Z(q, q̄) on the orbifold G. And shortly thereafter, it effects on the

geometry of space-time were pointed out [3]. In particular, [2] noticed that Z(q, q̄) could

contain therein, phases ǫ(g, h) ∈ U(1) for g, h ∈ G, coming from the twisted sectors of the

theory, as long as

ǫ(g1g2, g3) = ǫ(g1, g3)ǫ(g2, g3)

ǫ(g, h) = 1/ǫ(h, g)

ǫ(g, g) = 1,

(1.1)

so as to ensure modular invariance.

Reviving interests along this line, Douglas and Fiol [4, 5] extended discrete torsion to

the open string sector by showing that the usual procedure of projection by orbifolds on D-

brane probes [6, 7], applied to projective representations instead of the ordinary linear

representations of the orbifold group G, gives exactly the gauge theory with discrete torsion

turned on. In other words, for the invariant matter fields which survive the orbifold, Φ such

that γ−1(g)Φγ(g) = r(g)Φ, ∀ g ∈ G, we now need the representation

γ(g)γ(h) = α(g, h)γ(gh), g, h ∈ G with

α(x, y)α(xy, z) = α(x, yz)α(y, z), α(x, IIG) = 1 = α(IIG, x) ∀x, y, z ∈ G,
(1.2)

where α(g, h) is known as a cocycle. These cocycles constitute, up to the equivalence

α(g, h) ∼
c(g)c(h)

c(gh)
α(g, h), (1.3)

the so-called second cohomology group H2(G, U(1)) of G, where c is any function (not neces-

sarily a homomorphism) mapping G to U(1); this is what we usually mean by discrete torsion



being classified by H2(G, U(1)). We shall formalise all these definitions in the subsequent

sections.

In fact, one can show [2], that the choice

ǫ(g, h) =
α(g, h)

α(h, g)
,

for α obeying (1.2) actually satisfies (1.1), whereby linking the concepts of discrete torsion

in the closed and open string sectors. We point this out as one could be easily confused as

to the precise parametre called discrete torsion and which is actually classified by the second

group cohomology.

Along the line of [4, 5], a series of papers by Berenstein, Leigh and Jejjala [8, 9] developed

the technique to study the non-commutative moduli space of the N = 1 gauge theory living

on C3/ZZm × ZZn parametrised as an algebraic variety. A host of activities followed in the

generalisation of this abelian orbifold, notably to C4/ZZ2 × ZZ2 × ZZ2 by [10], to the inclusion

of orientifolds by [11], and to the orbifolded conifold by [12].

Along the mathematical thread, Sharpe has presented a prolific series of works to relate

discrete torsion with connection on gerbes [14], which could allow generalisations of the con-

cept to beyond the 2-form B-field. Moreover, in relation to twisted K-theory and attempts

to unify space-time cohomology with group cohomology in the vein of the McKay Corre-

spondence (see e.g. [15]), works by Gomis [16] and Aspinwall-Plesser [17, 18] have given

some guiding light.

Before we end this review of the current studies, we would like to mention the work by

Gaberdiel [13]. He pointed out that there exists a different choice, such that the original

intimate relationship between discrete torsion in the closed string sector and the non-trivial

cocycle in the open sector can be loosened. It would be interesting to investigate further in

this spirit.

We see however, that during these last three years of renewed activity, the focus has

mainly been on Abelian orbifolds. It is one of the main intentions of this paper to initiate

the study of non-Abelian orbifolds with discrete torsion, which, to the best of our knowledge,

have not been discussed so far in the literature2. We shall classify the general orbifold

theories with N = 0, 1, 2 supersymmetry which could allow discrete torsion by exhaustively

computing the second cohomology of the discrete subgroups of SU(n) for n = 4, 3, 2.

Thus rests the current state of affairs. Our main objectives are two-fold: to both supple-

ment the past, by presenting and studying a first example of a non-Abelian orbifold which

affords discrete torsion, and to presage the future, by classifying the orbifold theories which

could allow discrete torsion being turned on.

2In the context of conformal field theory on orbifolds, there has been a recent work addressing some

non-Abelian cases [31].



Nomenclature

Throughout this paper, unless otherwise specified, we shall adhere to the following conven-

tions for notation:
ωn n-th root of unity;

G finite group of order |G|;

F (algebraically closed) number field;

F∗ multiplicative subgroup of F;

〈xi|yj〉 the group generated by elements {xi} with relations yj;

< G1, G2, . . . , Gn > group generated by the generators of groups G1, G2, . . . , Gn;

gcd(m, n) the greatest common divisor of m and n;

D2n, E6,7,8 ordinary dihedral, tetrahedral, octahedral and icosahedral groups;

D̂2n, Ê6,7,8 the binary counterparts of the above;

An and Sn alternating and symmetric groups on n elements;

H ⊳ G H is a normal subgroup of G;

A×B semi-direct product of A and B;

Z(G) centre of G;

NG(H) the normaliser of H ⊂ G;

G′ := [G, G] the derived (commutator) group of G;

exp(G) exponent of group G.

2. Some Mathematical Preliminaries

2.1 Projective Representations of Groups

We begin by first formalising (1.2), the group representation of our interest:

DEFINITION 2.1 A projective representation of G over a field F (throughout we let F be an

algebraically closed field with characteristic p ≥ 0) is a mapping ρ : G → GL(V ) such that

(A) ρ(x)ρ(y) = α(x, y)ρ(xy) ∀ x, y ∈ G; (B) ρ(IIG) = IIV .

Here α : G × G → F∗ is a mapping whose meaning we shall clarify later. Of course we

see that if α = 1 trivially, then we have our familiar ordinary representation of G to which

we shall refer as linear. Indeed, the mapping ρ into GL(V ) defined above is naturally

equivalent to a homomorphism into the projective linear group PGL(V ) ∼= GL(V )/F∗IIV ,

and hence the name “projective.” In particular we shall be concerned with projective matrix

representations of G where we take GL(V ) to be GL(n,F).



The function α can not be arbitrary and two immediate restrictions can be placed

thereupon purely from the structure of the group:

(a) Group Associativity ⇒ α(x, y)α(xy, z) = α(x, yz)α(y, z), ∀x, y, z ∈ G

(b) Group Identity ⇒ α(x, IIG) = 1 = α(IIG, x), ∀x ∈ G.
(2.1)

These conditions on α naturally leads to another discipline of mathematics.

2.2 Group Cohomology and the Schur Multiplier

The study of such functions on a group satisfying (2.1) is precisely the subject of the theory

of Group Cohomology. In general we let α to take values in A, an abelian coefficient

group (F∗ is certainly a simple example of such an A) and call them cocycles. The set of

all cocycles we shall name Z2(G, A). Indeed it is straight-forward to see that Z2(G, A) is an

abelian group. We subsequently define a set of functions satisfying

B2(G, A) := {(δg)(x, y) := g(x)g(y)g(xy)−1} for any g : G → A such that g(IIG) = 1,

(2.2)

and call them coboundaries. It is then obvious that B2(G, A) is a (normal) subgroup of

Z2(G, A) and in fact constitutes an equivalence relation on the latter in the manner of (1.3).

Thus it becomes a routine exercise in cohomology to define

H2(G, A) := Z2(G, A)/B2(G, A),

the second cohomology group of G.

Summarising what we have so far, we see that the projective representations of G are

classified by its second cohomology H2(G,F∗). To facilitate the computation thereof, we

shall come to an important concept:

DEFINITION 2.2 The Schur Multiplier M(G) of the group G is the second cohomology

group with respect to the trivial action of G on C∗:

M(G) := H2(G,C∗).

Since we shall be mostly concerned with the field F = C, the Schur multiplier is exactly

what we need. However, the properties thereof are more general. In fact, for any algebraically

closed field F of zero characteristic, M(G) ∼= H2(G,F∗). In our case of F = C, it can be shown

that [11],

H2(G,C∗) ∼= H2(G, U(1)).

This terminology is the more frequently encountered one in the physics literature.

One task is thus self-evident: the calculation of the Schur Multiplier of a given group

G shall indicate possibilities of projective representations of the said group, or in a physical



language, the possibilities of turning on discrete torsion in string theory on the orbifold group

G. In particular, if M(G) ∼= II, then the second cohomology of G is trivial and no non-trivial

discrete torsion is allowed. We summarise this

KEY POINT: Calculate M(G) ⇒ Information on Discrete Torsion.

2.3 The Covering Group

The study of the actual projective representation of G is very involved and what is usually

done in fact is to “lift to an ordinary representation.” What this means is that for a central

extension3 A of G to G∗, we say a projective representation ρ of G lifts to a linear represen-

tation ρ∗ of G∗ if (i) ρ∗(a ∈ A) is proportional to II and (ii) there is a section4 µ : G → G∗

such that ρ(g) = ρ∗(µ(g)), ∀g ∈ G. Likewise it lifts projectively if ρ(g) = t(g)ρ∗(µ(g)) for

a map t : G → F∗. Now we are ready to give the following:

DEFINITION 2.3 We call G∗ a covering group5 of G over F if the following are satisfied:

(i) ∃ a central extension 1 → A → G∗ → G → 1 such that any projective representation of

G lifts projectively to an ordinary representation of G∗;

(ii) |A| = |H2(G,F∗)|.

The following theorem, initially due to Schur, characterises covering groups.

THEOREM 2.1 ([20] p143) G⋆ is a covering group of G over F if and only if the following

conditions hold:

(i) G⋆ has a finite subgroup A with A ⊆ Z(G⋆) ∩ [G⋆, G⋆];

(ii) G ∼= G⋆/A;

(iii) |A| = |H2(G, F ⋆)|

where [G⋆, G⋆] is the derived group6 G∗
′

of G∗.

Thus concludes our prelude on the mathematical rudiments, the utility of the above

results shall present themselves in the ensuing.

3. Schur Multipliers and String Theory Orbifolds

The game is thus afoot. Orbifolds of the form Ck/{G ∈ SU(k)} have been widely studied in

the context of gauge theories living on D-branes probing the singularities. We need only to

compute M(G) for the discrete finite groups of SU(n) for n = 2, 3, 4 to know the discrete

torsion afforded by the said orbifold theories.

3i.e., A in the centre Z(G∗) and G∗/A ∼= G according to the exact sequence 1 → A → G∗ → G → 1.
4i.e., for the projection f : G∗ → G, µ ◦ f = IIG.
5Sometimes is also known as representation group.
6For a group G, G′ := [G, G] is the group generated by elements of the form xyx−1y−1 for x, y ∈ G.



3.1 The Schur Multiplier of the Discrete Subgroups of SU(2)

Let us first remind the reader of the well-known ADE classification of the discrete finite

subgroups of SU(2). Here are the presentations of these groups:

G Name Order Presentation

Ân Cyclic,∼= ZZn+1 n 〈a|an = II〉

D̂2n Binary Dihedral 4n 〈a, b|b2 = an, abab−1 = II〉

Ê6 Binary Tetrahedral 24 〈a, b|a3 = b3 = (ab)3〉

Ê7 Binary Octahedral 48 〈a, b|a4 = b3 = (ab)2〉

Ê8 Binary Icosahedral 120 〈a, b|a5 = b3 = (ab)2〉

(3.1)

We here present a powerful result due to Schur (1907) (q.v. Cor. 2.5, Chap. 11 of [21])

which aids us to explicitly compute large classes of Schur multipliers for finite groups:

THEOREM 3.2 ([20] p383) Let G be generated by n elements with (minimally) r defining

relations and let the Schur multiplier M(G) have a minimum of s generators, then

r ≥ n + s.

In particular, r = n implies that M(G) is trivial and r = n + 1, that M(G) is cyclic.

Theorem 3.2 could be immediately applied to G ∈ SU(2).

Let us proceed with the computation case-wise. The Ân series has 1 generator with 1

relation, thus r = n = 1 and M(Ân) is trivial. Now for the D̂2n series, we note briefly that the

usual presentation is D̂2n := 〈a, b|a2n = II, b2 = an, bab−1 = a−1〉 as in [23]; however, we can

see easily that the last two relations imply the first, or explicitly: a−n := (bab−1)n = banb−1 =

an, (q.v. [21] Example 3.1, Chap. 11), whence making r = n = 2, i.e., 2 generators and 2

relations, and further making M(D̂2n) trivial. Thus too are the cases of the 3 exceptional

groups, each having 2 generators with 2 relations. In summary then we have the following

corollary of Theorem 3.2, the well-known [17] result that

COROLLARY 3.1 All discrete finite subgroups of SU(2) have second cohomology H2(G,C∗) =

II, and hence afford no non-trivial discrete torsion.

It is intriguing that the above result can actually be hinted from physical considerations

without recourse to heavy mathematical machinery. The orbifold theory for G ⊂ SU(2)

preserves an N = 2 supersymmetry on the world-volume of the D3-Brane probe. Inclusion

of discrete torsion would deform the coefficients of the superpotential. However, N = 2

supersymmetry is highly restrictive and in general does not permit the existence of such

deformations. This is in perfect harmony with the triviality of the Schur Multiplier of

G ⊂ SU(2) as presented in the above Corollary.



To address more complicated groups we need a methodology to compute the Schur

Multiplier, and we have many to our aid, for after all the computation of M(G) is a vast

subject entirely by itself. We quote one such method below, a result originally due to Schur:

THEOREM 3.3 ([22] p54) Let G = F/R be the defining finite presentation of G with F the

free group of rank n and R is (the normal closure of) the set of relations. Suppose R/[F, R]

has the presentation 〈x1, . . . , xm; y1, . . . , yn〉 with all xi of finite order, then

M(G) ∼= 〈x1, . . . , xn〉.

Two more theorems of great usage are the following:

THEOREM 3.4 ([22] p17) Let the exponent7 of M(G) be exp(M(G)), then

exp(M(G))2 divides |G|.

And for direct products, another fact due to Schur,

THEOREM 3.5 ([22] p37)

M(G1 × G2) ∼= M(G1) × M(G2) × (G1 ⊗ G2),

where G1 ⊗ G2 is defined to be Hom
ZZ
(G1/G

′

1, G2/G
′

2).

With the above and a myriad of useful results (such as the Schur Multiplier for semi-

direct products), and especially with the aid of the Computer Algebra package GAP [24]

using the algorithm developed for the p-Sylow subgroups of Schur Multiplier [25], we have

engaged in the formidable task of giving the explicit Schur Multiplier of the list of groups of

our interest.

Most of the details of the computation we shall leave to the appendix, to give the reader a

flavour of the calculation but not distracting him or her from the main course of our writing.

Without much further ado then, we now proceed with the list of Schur Multipliers for the

discrete subgroups of SU(n) for n = 3, 4, i.e., the N = 1, 0 orbifold theories.

3.2 The Schur Multiplier of the Discrete Subgroups of SU(3)

The classification of the discrete finite groups of SU(3) is well-known (see e.g. [26, 27, 28]

for a discussion thereof in the context of string theory). It was pointed out in [23] that

the usual classification of these groups does not include the so-called intransitive groups

(see [29] for definitions), which are perhaps of less mathematical interest. Of course from

a physical stand-point, they all give well-defined orbifolds. More specifically [23], all the

7i.e., the lowest common multiple of the orders of the elements.



ordinary polyhedral subgroups of SO(3), namely the ordinary dihedral group D2n and the

ordinary E6
∼= A4

∼= ∆(3 × 22), E7
∼= S4

∼= ∆(6 × 22), E8
∼= Σ60, due to the embedding

SO(3) →֒ SU(3), are obviously (intransitive) subgroups thereof and thus we shall include

these as well in what follows. We discuss some aspects of the intransitives in Appendix B

and are grateful to D. Berenstein for pointing out some subtleties involved [33]. We insert

one more cautionary note. The ∆(6n2) series does not actually include the cases for n odd

[28]; therefore n shall be restricted to be even.

Here then are the Schur Multipliers of the SU(3) discrete subgroups.

G Order Schur Multiplier M(G)

Intransitives ZZn × ZZm n × m ZZgcd(n,m)

< ZZn, D̂2m >





n × 4m n odd
n
2
× 4m n even





II n mod 4 6= 1

ZZ2 n mod 4 = 0, m odd

ZZ2 × ZZ2 n mod 4 = 0, m even

< ZZn, Ê6 >





n × 24 n odd
n
2
× 24 n even

ZZgcd(n,3)

< ZZn, Ê7 >





n × 48 n odd
n
2
× 48 n even





II n mod 4 6= 0

ZZ2 n mod 4 = 0

< ZZn, Ê8 >





n × 120 n odd
n
2
× 120 n even

II

Ordinary Dihedral D2n 2n ZZgcd(n,2)

< ZZn, D2m >





n × 2m m odd

n × 2m m even, n odd
n
2
× 2m m even, n even





ZZgcd(n,2) m odd

ZZ2 m even, n mod 4 = 1, 2, 3

ZZ2 m mod 4 6= 0, n mod 4 = 0

ZZ2 × ZZ2 m mod 4 = 0, n mod 4 = 0

Transitives ∆3n2 3n2





ZZn × ZZ3, gcd(n, 3) 6= 1

ZZn, gcd(n, 3) = 1

∆6n2 (n even) 6n2
ZZ2

Σ60
∼= A5 60 ZZ2

Σ168 168 ZZ2

Σ108 36 × 3 II

Σ216 72 × 3 II

Σ648 216 × 3 II

Σ1080 360 × 3 ZZ2

(3.2)



Some immediate comments are at hand. The question of whether any discrete subgroup

of SU(3) admits non-cyclic discrete torsion was posed in [17]. From our results in table (3.2),

we have shown by explicit construction that the answer is in the affirmative: not only the

various intransitives give rise to product cyclic Schur Multipliers, so too does the transitive

∆(3n2) series for n a multiple of 3.

In Appendix A we shall present the calculation for M(∆3n2) and M(∆6n2) for illustrative

purposes. Furthermore, as an example of non-Abelian orbifolds with discrete torsion, we shall

investigate the series of the ordinary dihedral group in detail with applications to physics in

mind. For now, for the reader’s edification or amusement, let us continue with the SU(4)

subgroups.

3.3 The Schur Multiplier of the Discrete Subgroups of SU(4)

The discrete finite subgroups of SL(4,C), which give rise to non-supersymmetric orbifold

theories, are presented in modern notation in [29]. Using the notation therein, and recalling

that the group names in SU(4) ⊂ SL(4,C) were accompanied with a star (cit. ibid.), let us

tabulate the Schur Multiplier of the exceptional cases of these particulars (cases XXIX∗ and

XXX∗ were computed by Prof. H. Pahlings to whom we are grateful):

G Order Schur Multiplier M(G)

I∗ 60 × 4 II

II∗ ∼= Σ60 60 ZZ2

III∗ 360 × 4 ZZ3

IV∗ 1
2
7! × 2 ZZ3

VI∗ 26345 × 2 II

VII∗ 120 × 4 ZZ2

VIII∗ 120 × 4 ZZ2

IX∗ 720 × 4 ZZ2

X∗ 144 × 2 ZZ2 × ZZ3

XI∗ 288 × 2 ZZ2 × ZZ3

XII∗ 288 × 2 ZZ2

XIII∗ 720 × 2 ZZ2

XIV∗ 576 × 2 ZZ2 × ZZ2

XV∗ 1440 × 2 ZZ2

G Order Schur Multiplier M(G)

XVI∗ 3600 × 2 ZZ2

XVII∗ 576 × 4 ZZ2

XVIII∗ 576 × 4 ZZ2 × ZZ3

XIX∗ 288 × 4 II

XX∗ 7200 × 4 II

XXI∗ 1152 × 4 ZZ2 × ZZ2

XXII∗ 5 × 16 × 4 ZZ2

XXIII∗ 10 × 16 × 4 ZZ2 × ZZ2

XXIV∗ 20 × 16 × 4 ZZ2

XXV∗ 60 × 16 × 4 ZZ2

XXVI∗ 60 × 16 × 4 ZZ2 × ZZ4

XXVII∗ 120 × 16 × 4 ZZ2 × ZZ2

XXVIII∗ 120 × 16 × 4 ZZ2

XXIX∗ 360 × 16 × 4 ZZ2 × ZZ3

XXX∗ 720 × 16 × 4 ZZ2

(3.3)



4. D2n Orbifolds: Discrete Torsion for a non-Abelian Example

As advertised earlier at the end of subsection 3.2, we now investigate in depth the discrete

torsion for a non-Abelian orbifold. The ordinary dihedral group D2n
∼= ZZn×ZZ2 of order 2n,

has the presentation

D2n = 〈a, b|an = 1, b2 = 1, bab−1 = a−1〉.

As tabulated in (3.2), the Schur Multiplier is M(D2n) = II for n odd and ZZ2 for n even

[20]. Therefore the n odd cases are no different from the ordinary linear representations as

studied in [23] since they have trivial Schur Multiplier and hence trivial discrete torsion. On

the other hand, for the n even case, we will demonstrate the following result:

PROPOSITION 4.1 The binary dihedral group D̂2n of the D-series of the discrete subgroups

of SU(2) (otherwise called the generalised quaternion group) is the covering group of D2n

when n is even.

Proof: The definition of the binary dihedral group D̂2n, of order 4n, is

D̂2n = 〈a, b|a2n = 1, b2 = an, bab−1 = a−1〉,

as we saw in subsection 3.1. Let us check against the conditions of Theorem 2.1. It is

a famous result that D̂2n is the double cover of D2n and whence an ZZ2 central extension.

First we can see that A = Z(D̂2n) = {1, an} ∼= ZZ2 and condition (ii) is satisfied. Second

we find that the commutators are [ax, ay] := (ax)−1(ay)−1axay = 1, [axb, ayb] = a2(x−y) and

[axb, ay] = a2y. From these we see that the derived group [D̂2n, D̂2n] is generated by a2 and

is thus equal to ZZn (since a is of order 2n). An important point is that only when n is even

does A belong to Z(D̂2n)∩ [D̂2n, D̂2n]. This result is consistent with the fact that for odd n,

D2n has trivial Schur Multiplier. Finally of course, |A| = |H2(G,F∗)| = 2. Thus conditions

(i) and (iii) are also satisfied. We therefore conclude that for even n, D̂2n is the covering

group of D2n.

4.1 The Irreducible Representations

With the above Proposition, we know by the very definition of the covering group, that

the projective representation of D2n should be encoded in the linear representation of D̂2n,

which is a standard result that we can recall from [23]. The latter has four 1-dimensional

and n − 1 2-dimensional irreps. The matrix representations of these 2-dimensionals for the

generic elements ap, bap (p = 0, ..., 2n − 1) are given below:

ap =
(

ωlp
2n 0

0 ω−lp
2n

)
bap =

(
0 ilω−lp

2n

ilωlp
2n 0

)
, (4.1)



with l = 1, ..., n − 1; these are denoted as χl
2. On the other hand, the four 1-dimensionals

are

n = even n = odd

aeven a(aodd) b(baeven) ba(baodd)

χ1
1 1 1 1 1

χ2
1 1 −1 1 −1

χ3
1 1 1 −1 −1

χ4
1 1 −1 −1 1

aeven a(aodd) b(baeven) ba(baodd)

1 1 1 1

1 −1 ω4 −ω4

1 1 −1 −1

1 −1 −ω4 ω4

(4.2)

We can subsequently obtain all irreducible projective representations of D2n from the

above (henceforth n will be even). Recalling that D̂2n/{1, an} ∼= D2n from property (ii) of

Theorem 2.1, we can choose one element of each of the transversals of D̂2n with respect to the

ZZ2 to be mapped to D2n. For convenience we choose bxay with x = 0, 1 and y = 0, 1, ..., n−1,

a total of 4n/2 = 2n elements. Thus we are effectively expressing D2n in terms of D̂2n

elements.

For the matrix representation of an ∈ D̂2n, there are two cases. In the first, we have

an = 1 × Id×d where d is the dimension of the representation. This case includes all four

1-dimensional representations and (n/2 − 1) 2-dimensional representations in (4.1) for l =

2, 4, ..., n − 2. Because an has the same matrix form as II, we see that the elements bxay

and bxay+n also have the same matrix form. Consequently, when we map them to D2n, they

automatically give the irreducible linear representations of D2n.

In the other case, we have an = −1 × Id×d and this happens when l = 1, 3, ..., n − 1. It

is precisely these cases8 which give the irreducible projective representations of D2n. Now,

because an has a different matrix form from II, the matrices for bxay and bxay+n differ.

Therefore, when we map D̂2n to D2n, there is an ambiguity as to which of the matrix forms,

bxay or bxay+n, to choose as those of D2n.

This ambiguity is exactly a feature of projective representations. Preserving the no-

tations of Theorem 2.1, we let G∗ =
⋃

gi∈G
Agi be the decomposition into transversals of G

for the normal subgroup A. Then choosing one element in every transversal, say Aqgi for

some fixed q, we have the ordinary (linear) representation thereof being precisely the pro-

jective representation of gi. Of course different choices of Aq give different but projectively

equivalent (projective) representations of G.

By this above method, we can construct all irreducible projective representations of D2n

from (4.1). We can verify this by matching dimensions: we end up with n/2 2-dimensional

representations inherited from D̂2n and 22 × (n/2) = 2n, which of course is the order of D2n

as it should.

8Sometimes also called negative representations in such cases.



4.2 The Quiver Diagram and the Matter Content

The projection for the matter content Φ is well-known (see e.g., [7, 27]):

γ−1(g)Φγ(g) = r(g)Φ, (4.3)

for g ∈ G and r, γ appropriate (projective) representations. The case of D2n without torsion

was discussed as a new class of non-chiral N = 1 theories in [23]. We recall that for the

group D2n we choose the generators (with action on C3) as

a =




1 0 0

0 ωn 0

0 0 ω−1
n


 b =




−1 0 0

0 0 −1

0 −1 0


 . (4.4)

Now we can use these explicit forms to work out the matter content (the quiver diagram) and

superpotential. For the regular representation, we choose γ(g) as block-diagonal in which

every 2-dimensional irreducible representation repeats twice with labels l = 1, 1, 3, 3, .., n −

1, n − 1 (as we have shown in the previous section that the even labels correspond to the

linear representation of D2n). With this γ(g), we calculate the matter content below.

For simplicity, in the actual calculation we would not use (4.3) but rather the standard

method given by Lawrence, Nekrasov and Vafa [7], generalised appropriately to the projective

case by [17]. We can do so because we are armed with Definition 2.3 and results from the

previous subsection, and directly use the linear representation of the covering group: we lift

the action of D2n into the action of its covering group D̂2n. It is easy to see that we get

the same matter content either by using the projective representations of the former or the

linear representations of the latter.

From the point of view of the covering group, the representation r(g) in (4.3) is given

by

3 −→ χ3
1 + χ2

2 (4.5)

and the representation γ(g) is given by γ −→
n/2−1∑

l=0
2χ2l+1

2 . We remind ourselves that the 3

must in fact be a linear representation of D2n while γ(g) is the one that has to be projective

when we include discrete torsion [4].

For the purpose of tensor decompositions we recall the result for the binary dihedral

group [23]:



2 2 2 2 2 2 2....................2 22

Figure 1: The quiver diagram of the ordinary dihedral group D2n with non-trivial projective

representation. In this case of discrete torsion being turned on, we have a product of n/2 U(2)

gauge groups (nodes). The line connecting two nodes without arrows means that there is one chiral

multiplet in each direction. Therefore we have a non-chiral theory.

1 ⊗ 1′

n = even n = odd

χ2
1χ

2
1 = χ1

1 χ3
1χ

3
1 = χ1

1 χ4
1χ

4
1 = χ1

1

χ2
1χ

3
1 = χ4

1 χ2
1χ

4
1 = χ3

1 χ3
1χ

4
1 = χ2

1

χ2
1χ

2
1 = χ3

1 χ3
1χ

3
1 = χ1

1 χ4
1χ

4
1 = χ3

1

χ2
1χ

3
1 = χ4

1 χ2
1χ

4
1 = χ1

1 χ3
1χ

4
1 = χ2

1

1 ⊗ 2 χh
1χ

l
2 =





χl
2 h = 1, 3

χn−l
2 h = 2, 4

2 ⊗ 2′ χl1
2 χl2

2 = χ
(l1+l2)
2 + χ

(l1−l2)
2 where

χ
(l1+l2)
2 =





χ
(l1+l2)
2 if l1 + l2 < n,

χ
2n−(l1+l2)
2 if l1 + l2 > n,

χ2
1 + χ4

1 if l1 + l2 = n.

χ
(l1−l2)
2 =





χ
(l1−l2)
2 if l1 > l2,

χ
(l2−l1)
2 if l1 < l2,

χ1
1 + χ3

1 if l1 = l2.

(4.6)

From these relations we immediately obtain the matter content. Firstly, there are n/2

U(2) gauge groups (n/2 nodes in the quiver). Secondly, because χ3
1χ

l
2 = χl

2 we have one

adjoint scalar for every gauge group. Thirdly, since χ2
2χ

2l+1
2 = χ2l−1

2 +χ2l+3
2 (where for l = 0,

χ2l−1
2 is understood to be χ1

2 and for l = n/2 − 1, χ2l+3
2 is understood to be χn−1

2 ), we have

two bi-fundamental chiral supermultiplets. We summarise these results in Figure 1.

We want to emphasize that by lifting to the covering group, in general we not only find

the matter content (quiver diagram) as we have done above, but also the superpotential

as well. The formula is given in (2.7) of [7], which could be applied here without any

modification (of course, one can use the matrix form of the group elements to obtain the

superpotential directly as done in [4, 5, 6, 8, 9, 10, 11], but (2.7), expressed in terms of the

Clebsh-Gordan coefficients, is more convenient).

Knowing the above quiver (cf. Figure 1) of the ordinary dihedral group D2n with discrete

torsion, we wish to question ourselves as to the relationships between this quiver and that

of its covering group, the binary dihedral group D̂2n without discrete torsion (as well as

that of D2n without discrete torsion). The usual quiver of D̂2n is well-known [30, 27]; we

give an example for n = 4 in part (a) of Figure 2. The quiver is obtained by choosing the

decomposition of 3 −→ χ1
1 +χ1

2 (as opposed to (4.5) because this is the linear representation



(a) 

1 1

11

2 2 2 Split

1 1

1 1

2

1
1χ

2
χ 1+ χ 3

1 χ 2
2+

(c)

2 2

(b) 

3 3

Figure 2: (a) The quiver diagram of the binary dihedral group D̂4 without discrete torsion; (b)

the quiver of the ordinary dihedral group D4 without discrete torsion; (c) the quiver of the ordinary

dihedral group D4 with discrete torsion.

of D̂2n); also γ(g) is in the regular representation of dimension 4n. A total of (n − 1) + 4 =

n + 3 nodes results. We recall that when getting the quiver of D2n with discrete torsion in

the above, we chose the decomposition of 3 −→ χ3
1 + χ2

2 in (4.5) which provided a linear

representation of D2n. Had we made this same choice for D̂2n, our familiar quiver of D̂2n

would have split into two parts: one being precisely the quiver of D2n without discrete torsion

as discussed in [23] and the other, that of D2n with discrete torsion as presented in Figure 1.

These are given respectively in parts (b) and (c) of Figure 2.

From this discussion, we see that in some sense discrete torsion is connected with different

choices of decomposition in the usual orbifold projection. We want to emphasize that the

example of D2n is very special because its covering group D̂2n belongs to SU(2). In general,

the covering group does not even belong to SU(3) and the meaning of the usual orbifold

projection of the covering group in string theory is vague.

5. Conclusions and Prospects

Let us pause here awhile for reflection. A key purpose of this writing is to initiate the

investigation of discrete torsion for the generic D-brane orbifold theories. Inspired by this

goal, we have shown that computing the Schur Multiplier M(G) for the finite group G serves

as a beacon in our quest.

In particular, using the fact that M(G) is an indicator of when we can turn on a non-

trivial NS-NS background in the orbifold geometry and when we cannot: only when M(G),

as an Abelian group is not trivially II can the former be executed. As a guide for future



investigations, we have computed M(G) for the discrete subgroups G in SU(n) with n =

2, 3, 4, which amounts to a classification of which D-brane orbifolds afford non-trivial discrete

torsion.

As an explicit example, in supplementing the present lack of studies of non-Abelian

orbifolds with discrete torsion in the current literature, we have pursued in detail the N = 1

gauge theory living on the D3-Brane probe on the orbifold singularity C3/D2n, corresponding

to the ordinary dihedral group of order 2n as a subgroup of SU(3). As the group has Schur

Multiplier ZZ2 for even n, we have turned on the discrete torsion and arrived at an interesting

class of non-chiral theories.

The prospects are as manifold as the interests are diverse and much work remains to

be done. An immediate task is to examine the gauge theory living on the world-volume of

D-brane probes when we turn on the discrete torsion of a given orbifold wherever allowed

by our classification. This investigation is currently in progress.

Our results of the Schur Multipliers could also be interesting to the study of K-theory

in connexion to string theory. Recent works [16, 17, 19] have noticed an intimate relation

between twisted K-theory and discrete torsion. More specifically, the Schur Multiplier of an

orbifold group may in fact supply information about the torsion subgroup of the cohomology

group of space-time in the light of a generalised McKay Correspondence [17, 15].

It is also tempting to further study the non-commutative moduli space of non-Abelian

orbifolds in the spirit of [5, 8, 9] which treated Abelian cases at great length. How the

framework developed therein extends to the non-Abelian groups should be interesting. Works

on discrete torsion in relation to permutation orbifolds and symmetric products [32] have

also been initiated, we hope that our methodologies could be helpful thereto.

Finally, there is another direction of future study. The boundary state formalism was

used in [13] where it was suggested that the ties between close and open string sectors maybe

softened with regard to discrete torsion. It is thus natural to ask if such ambiguities may

exist also for non-Abelian orbifolds.

All these open issues, of concern to the physicist and the mathematician alike, present

themselves to the intrigue of the reader.
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6. Appendix A: Some Explicit Computations for M(G)

6.1 Preliminary Definitions

We begin with a few rudimentary definitions [20]. Let H be a subgroup of G and let g ∈ G.

For any cocycle α ∈ Z2(G,C∗) we define an induced action g ·α ∈ Z2(gHg−1,C∗) thereon as

g · α(x, y) = α(g−1xg, g−1yg), ∀ x, y ∈ gHg−1. Now, it can be proved that the mapping

cg : M(H) → M(gHg−1), cg(α) := g · α

is a homomorphism, which we call cocycle conjugation by g.

On the other hand we have an obvious concept of restriction: for S ⊆ L subgroups of G,

we denote by ResL,S the restriction map M(L) → M(S). Thereafter we define stability as:

DEFINITION 6.4 Let H and K be arbitrary subgroups of G. An element α ∈ M(H) is said

to be K-stable if

ResH,gHg−1∩H(α) = ResgHg−1,gHg−1∩H(cg(α)) ∀ g ∈ K.

The set of all K-stable elements of M(H) will be denoted by M(H)K and it forms a subgroup

of M(H) known as the K-stable subgroup of M(H).

When K ⊆ NG(H) all the above concepts9 coalesce and we have the following important

lemma:

LEMMA 6.1 ([20] p299) If H and K are subgroups of G such that K ⊆ NG(H), then M(H)K

is the K-stable subgroup of M(H) with respect to the action of K on M(H) induced by the

action of K on H by conjugation. In other words,

M(H)K = {α ∈ M(H), α(x, y) = cg(α)(x, y) ∀ g ∈ K, ∀ x, y ∈ H}.

Finally let us present a useful class of subgroups:

DEFINITION 6.5 A subgroup H of a group G is called a Hall subgroup of G if the order

of H is coprime with its index in G, i.e. gcd(|H|, |G/H|) = 1.

9NG(H) is the normalizer of H in G, i.e., the set of all elements g ∈ G such that gHg−1 = H . When H

is a normal subgroup of G we obviously have NG(H) = G.



For these subgroups we have:

THEOREM 6.6 ([20] p334) If N is a normal Hall subgroup of G. Then

M(G) ∼= M(N)G/N × M(G/N).

The above theorem is really a corollary of a more general case of semi-direct products:

THEOREM 6.7 ([22] p33) Let G = N×T with N ⊳ G, then

(i) M(G) ∼= M(T ) × M̃(G);

(ii) The sequence 1 → H1(T, N∗) → M̃(G)
Res
→M(N)T → H2(T, N∗) is exact,

where M̃(G) := ker ResG,N , N∗ := Hom(N,C∗) and H i=1,2(T, N∗) is the cohomology defined

with respect to the conjugation action by T on N∗.

Part (ii) of this theorem actually follows from the Lyndon-Hochschild-Serre spectral sequence

into which we shall not delve.

One clarification is needed at hand. Let us define the first A-valued cohomology group

for G, which we shall utilise later in our calculations. Here the 1-cocycles are the set of

functions Z1(G, A) := {f : G → A|f(xy) = (x · f(y))f(x) ∀x, y ∈ G}, where A is being

acted upon (x · A → A for x ∈ G) by G as a ZZG-module. These are known as crossed

homomorphisms. On the other hand, the 1-coboundaries are what is known as the prin-

cipal crossed homomorphisms, B1(G, A) := {fa∈A(x) = (x · a)a−1} from which we define

H1(G, A) := Z1(G, A)/B1(G, A).

Alas, caveat emptor, we have defined in subsection 2.2, H2(G, A). There, the action of

G on A (as in the case of the Schur Multiplier) is taken to be trivial, we must be careful, in

the ensuing, to compute with respect to non-trivial actions such as conjugation. In our case

the conjugation action of t ∈ T on χ ∈ Hom(N,C∗) is given by χ(tnt−1) for n ∈ N .

6.2 The Schur Multiplier for ∆3n2

6.2.1 Case I: gcd(n, 3) = 1

Thus equipped, we can now use theorem 6.6 at our ease to compute the Schur multipliers

the first case of the finite groups ∆3n2 . Recall that ZZn × ZZn ⊳ ∆(3n2) or explicitly

∆3n2
∼= (ZZn × ZZn)×ZZ3.

Our crucial observation is that when gcd(n, 3) = 1, ZZn×ZZn is in fact a normal Hall subgroup

of ∆3n2 with quotient group ZZ3. Whence Theorem 6.6 can be immediately applied to this

case when n is coprime to 3:

M(∆3n2) = (M(ZZn × ZZn))ZZ3 × M(ZZ3) = (M(ZZn × ZZn))ZZ3,



by recalling that the Schur Multiplier of all cyclic groups is trivial and that of ZZn × ZZn is ZZn

[20]. But, ZZ3 ⊆ N∆
3n2

(ZZn × ZZn) = ∆3n2 , and hence by Lemma 6.1 it suffices to compute the

ZZ3-stable subgroup of ZZn by cocycle conjugation.

Let the quotient group ZZ3 be 〈z|z3 = II〉 and similarly, if x, y, xn = yn = II are the

generators of ZZn × ZZn, then a generic element thereof becomes xayb, a, b = 0, . . . , n− 1. The

group conjugation by z on such an element gives

z−1xaybz = xby−a−b zxaybz−1 = x−a−bya. (6.1)

It is easy now to check that if α is a generator of the Schur multiplier ZZn, we have an induced

action

cz(α)(xayb, xa′

yb′) := α(z−1xaybz, z−1xa′

yb′z) = α(xby−(a+b), xb′y−(a′+b′))

by Lemma 6.1.

However, we have a well-known result [11]:

PROPOSITION 6.2 For the group ZZn × ZZn, the explicit generator of the Schur Multiplier is

given by

α(xayb, xa′

yb′) = ωab′−a′b
n .

Consequently, α(xby−(a+b), xb′y−(a′+b′)) = α(xayb, xa′

yb′) whereby making the cz-action trivial

and causing (M(ZZn×ZZn)ZZ3 ∼= M(ZZn×ZZn) = ZZn. From this we conclude part I of our result:

M(∆3n2) = ZZn for n coprime to 3.

6.2.2 Case II: gcd(n, 3) 6= 1

Here the situation is much more involved. Let us appeal to Part (ii) of Theorem 6.7. We let

N = ZZn × ZZn and T = ZZ3 as above and define U := Hom(ZZn × ZZn,C∗)); the exact sequence

then takes the form

1 → H1(ZZ3, U) → M̃(∆3n2) → ZZn → H2(ZZ3, U) (6.2)

using the fact that the stable subgroup M(ZZn × ZZn)ZZ3 ∼= ZZn as shown above. Some explicit

calculations are now called for.

As for U , it is of course isomorphic to ZZn×ZZn since for an Abelian group A, Hom(A,C∗) ∼=

A ([22] p17). We label the elements thereof as (p, q)(xayb) := ωap+bq
n , taking xayb ∈ ZZn × ZZn

to C∗.

We recall that the conjugation by z ∈ ZZ3 on ZZn × ZZn is (6.1). Therefore, by the remark

at the end of the previous subsection, z acts on U as: (z ·(p, q))(xayb) := (p, q)(z(xayb)z−1) =



ωa′p+b′q
n with a′ = −a − b and b′ = a due10 to (6.1), whence

z · (p, q) = (q − p,−p), for (p, q) ∈ U. (6.3)

Some explicit calculations are called for. First we compute H1(ZZ3, U). Z1 is generically

composed of functions such that f(z) = (p, q) (and also f(II) = II and f(z2) = (z · f(z))f(z)

by the crossed homomorphism condition, and is subsequently equal to (q, p + q) by (6.3).

Since no further conditions can be imposed, Z1 ∼= ZZn × ZZn. Now B1 consists of all functions

of the form (z ·(p, q))(p, q)−1 = (q−2p,−p−q), these are to be identified with the trivial map

in Z1. We can re-write these elements as (p′ := q − 2p,−p′ − 3p) = (ωa
nω

−b
n )p′(ωb

n)−3p, and

those in Z1 we re-write as (ωa
nω

−b
n )p′(ωb

n)q′ as we are free to do. Therefore if gcd(3, n) = 1,

then H1 := Z1/B1 is actually trivial because in mod n, 3p also ranges the full 0, · · · , n − 1,

whereas if gcd(3, n) 6= 1 then H1 := Z1/B1 ∼= ZZ3.

The computation for H2(ZZ3, U) is a little more involved, but the idea is the same. First

we determine Z2 as composed of α(z1, z2) constrained by the cocycle condition (with respect

to conjugation which differs from (2.1) where the trivial action was taken)

α(z1, z2)α(z1z2, z3) = (z1 · α(z2, z3))α(z1, z2z3) z1, z2, z3 ∈ ZZ3.

Again we only need to determine the following cases: α(z, z) := (p1, q1); α(z2, z2) := (p2, q2);

α(z2, z) := (p3, q3); α(z, z2) := (p4, q4). The cocycle constraint gives (p1, q1) = (q4,−q3);

(p2, q2) = (−q3 − q4,−q4); (p3, q3) = (−q4, q3); (p4, q4) = (p4, q4), giving Z2 ∼= ZZn × ZZn.

The coboundaries are given by (δt)(z1, z2) = (z1 · t(z2))t(z1)t(z1z2)
−1 (for any mapping t :

ZZ3 → ZZn × ZZn which we define to take values t(z) = (r1, s1) and t(z2) = (r2, s2))), making

(δt)(z, z) = (s1 − r2,−r1 + s1 − s2); (δt)(z
2, z2)(−s2 + r2 − r1, r2 − s1); (δt)(z

2, z) = (−s1 +

r2, r1−s1 +s2); (δt)(z, z
2) = (s2−r2 +r1, s1−r2). Now, the transformation r2 = s1 +q4; r1 =

s1 − s2 − p4 + q4 makes this set of values for B2 completely identical to those in Z2, whence

we conclude that B2 ∼= ZZn × ZZn. In conclusion then H2 := Z2/B2 ∼= II.

The exact sequence (6.2) then assumes the simple form of

1 →





ZZ3, gcd(n, 3) 6= 1

II, gcd(n, 3) = 1



 → M̃(G) → ZZn → 1,

which means that if n does not divide 3, M̃(G) ∼= ZZn, and otherwise M̃(G)/ZZ3
∼= ZZn. Of

course, in conjunction with Part (i) of Theorem 6.7, we immediately see that the first case

makes Part I of our discussion (when gcd(n, 3) = 1) a special case of our present situation.

On the other hand, for the remaining case of gcd(n, 3) 6= 1, we have M(∆3n2)/ZZ3
∼= ZZn,

which means that M(∆3n2), being an Abelian group, can only be ZZ3n or ZZn × ZZ3. The

10Note that we must be careful to let the order of conjugation be the opposite of that in the cocycle

conjugation.



exponent of the former is 3n, while the later (since 3 divides n), is n, but by Theorem 3.4,

the exponent squared must divide the order, which is 3n2, whereby forcing the second choice.

Therefore in conclusion we have our theorema egregium:

M(∆3n2) =





ZZn × ZZ3, gcd(n, 3) 6= 1

ZZn, gcd(n, 3) = 1

as reported in Table (3.2).

6.3 The Schur Multiplier for ∆6n2

Recalling that n is even, we have ∆6n2
∼= (ZZn × ZZn)×S3 with ZZn × ZZn normal and thus we

are once more aided by Theorem 6.7.

We let N := ZZn × ZZn and T := S3 and the exact sequence assumes the form

1 → H1(S3, U) → M̃(∆6n2) → (ZZn)S3 → H2(S3, U)

where U := Hom(ZZn × ZZn,C
∗) as defined in the previous subsection.

By calculations entirely analogous to the case for ∆3n2 , we have (ZZn)S3 ∼= ZZ2. This is

straight-forward to show. Let S3 := 〈z, w|z3 = w2 = II, zw = wz2〉. We see that it contains

ZZ
3 = 〈z|z3 = II〉 as a subgroup, which we have treated in the previous section. In addition

to (6.1), we have

w−1xaybw = x−1−byb = wxaybw−1.

Using the form of the cocycle in Proposition 6.2, we see that cw(α) = α−1. Remembering

that cz(α) = α from before, we see that the S3-stable part of consists of αm with m = 0 and

n/2 (recall that in our case of ∆(6n2), n is even), giving us a ZZ2.

Moreover we have H1(S3, U) ∼= II. This is again easy to show. In analogy to (6.3), we

have

w · (p, q) = (−q, q − p), for (p, q) ∈ U,

using which we find that Z1 consists of f : S3 → U given by f(z) = (l1, 3k2 − l1) and

f(w) = (2k2, k2). In addition B1 consists of f(z) = (k − 2l,−l − k) and f(w) = (−2l,−l).

Whence we see instantly that H1 is trivial.

Now in fact H2(S3, U) ∼= II as well (the involved details of these computations are too

pathological to be even included in an appendix and we have resisted the urge to write an

appendix for the appendix).

The exact sequence then forces immediately that M̃(∆6n2) ∼= ZZ2. Moreover, since

M(S3) ∼= II (q.v. e.g. [20]), by Part (i) of Theorem 6.7, we conclude that

M(∆6n2) ∼= ZZ2

as reported in Table (3.2).



7. Appendix B: Intransitive subgroups of SU(3)

The computation of the Schur Multipliers for the non-Abelian intransitive subgroups of

SU(3) involves some subtleties related to the precise definition and construction of the

groups.

Let us consider the case of combining the generators of ZZn with these of D̂2m to construct

the intransitive subgroup < ZZn, D̂2m >. We can take the generators of D̂2m to be

α =




ω2m 0 0

0 ω−1
2m 0

0 0 1


 , β =




0 i 0

i 0 0

0 0 1




and that of ZZn to be

γ =




ωn 0 0

0 ωn 0

0 0 ω−2
n


 .

The group < ZZn, D̂2m > is not in general the direct product of ZZn and D̂2m. More

specifically, when n is odd < ZZn, D̂2m >= ZZn × D̂2m. For n even however, we notice that

αm = β2 = γn/2. Accordingly, we conclude that < ZZn, D̂2m >= (ZZn × D̂2m)/ZZ2 for n even

where the central ZZ2 is generated by γn/2. Actually the conditions are more refined: when

n = 2(2k + 1) we have ZZn = ZZ2 × ZZ2k+1 and so (ZZ2 × D̂2m)/ZZ2 = ZZ2k+1 × D̂2m. Thus the

only non-trivial case is when n = 4k.

This subtlety in the group structure holds for all the cases where ZZn is combined with

binary groups Ĝ. When n mod 4 6= 0, < ZZn, Ĝ > is the direct product of Ĝ with either ZZn

or ZZn/2. For n mod 4 = 0 it is the quotient group (ZZn × Ĝ)/ZZ2. In summary

< ZZn, Ĝ >=





ZZn × Ĝ n mod 2 = 1

ZZn/2 × Ĝ n mod 4 = 2

(ZZn × Ĝ)/ZZ2 n mod 4 = 0

.

The case of ZZn combined with the ordinary dihedral group D2m is a bit different however.

The matrix forms of the generators are

α =




ωm 0 0

0 ω−1
m 0

0 0 1


 , β =




0 1 0

1 0 0

0 0 −1


 , γ =




ωn 0 0

0 ωn 0

0 0 ω−2
n




where α and β generate D2m and γ generates ZZn.



From these we notice that when both n and m are even, αm/2 = γn/2 and < ZZn, D2m >

is not a direct product. After inspection, we find that

< ZZn, D2m >=





ZZn × D2m m mod 2 = 1

ZZn × D2m m mod 2 = 0, n mod 2 = 1

ZZn/2 × D2m m mod 2 = 0, n mod 4 = 2

(ZZn × D2m)/ZZ2 m mod 2 = 0, n mod 4 = 0

.

The Schur Multipliers of the direct product cases are immediately computable by consulting

Theorem 3.5. For example, M(ZZn×D̂2m) ∼= M(ZZn)×M(D̂2m)×(ZZn⊗D̂2m) by Theorem 3.5,

the last term of which in turn equates to Hom(ZZn, D̂2m/D̂2m
′

). This is Hom(ZZn, ZZ2 × ZZ2) ∼=

ZZgcd(n,2) × ZZgcd(n,2) for m even and Hom(ZZn, ZZ4) ∼= ZZgcd(n,4) for m odd. By similar token, we

have that M(ZZn ×D2m) for even m is ZZ2 ×Hom(ZZn, ZZ2 ×ZZ2) ∼= ZZ2 ×ZZgcd(n,2) ×ZZgcd(n,2) and

Hom(ZZn, ZZ2) ∼= ZZgcd(n,2) for odd m. Likewise M(ZZn × Ê6,7,8) = Hom(ZZn, ZZ3,2,1).
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