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Abstract

We describe a general construction principle which allows to add colour values
to a coupling constant dependent scattering matrix. As a concrete realization of
this mechanism we provide a new type of S-matrix which generalizes the one of
affine Toda field theory, being related to a pair of Lie algebras. A characteristic
feature of this S-matrix is that in general it violates parity invariance. For par-
ticular choices of the two Lie algebras involved this scattering matrix coincides
with the one related to the scaling models described by the minimal affine Toda
S-matrices and for other choices with the one of the Homogeneous sine-Gordon
models with vanishing resonance parameters. We carry out the thermodynamic
Bethe ansatz and identify the corresponding ultraviolet effective central charges.
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1 Introduction

The bootstrap principle [1] has turned out to be a successful method to compute scat-
tering matrices in 1+1-dimensions. Solving the set of bootstrap equations and giving
a consistent explanation to the singularity structure in the complex rapidity plane, the
scattering matrices are determined uniquely up to the so-called CDD-factors [2]. The
latter factors are constituted in such a way that they solve the bootstrap equations but
do not introduce additional poles in the physical sheet. Therefore they are neglected
in most situations. However, they may also by utilized in order to include coupling
constants into the scattering matrices, as for instance in [3]. We will show in the fol-
lowing that the CDD-factors can also be employed consistently to add colour values
to the scattering matrices. In the context of the Homogeneous sine-Gordon models
Fernández-Pousa and Miramontes [4] proposed a new type of S-matrix which violates
parity invariance and describes the scattering of particles which carry two quantum
numbers. The main quantum number governs the fusing structure while for certain val-
ues of the colour quantum numbers the particles interact solely via a CDD-factor, which
could be trivial in some cases. We will provide a systematic construction principle for
colour valued scattering matrices and give explicit realizations which include the ones of
[4] as a particular case. These type of theories are related to two different Lie algebras
g and g̃, where the former relates to the main and the latter to the colour quantum
number. We refer to these theories by g|g̃.

Our manuscript is organized as follows: In section 2 we describe the general con-
struction principle which attaches colour values to an S-matrix and provide a concrete
realization of this. In section 3 we carry out a TBA-analysis in order to identify the
corresponding ultraviolet effective central charges. We provide an explicit example in
section 4. In section 5 we state our conclusions.

2 Construction Principle

We recall that the two-particle S-matrix which describes the scattering between particles
of type a and b as a function of the rapidity difference θ is often∗ of the general form
Sab(θ) = Smin

ab (θ)SCDD
ab (θ, B). Here Smin

ab (θ) is the so-called minimal S-matrix, related for
instance to scaling theories of statistical models [7], which satisfies the unitarity, crossing
and fusing bootstrap equations

Sab(θ)Sba(−θ) = 1, Sāb(θ) = Sba(iπ − θ),
∏

l=a,b,c

Sdl(θ + ηl) = 1 , (1)

with ηl being the fusing angles. The CDD-factor SCDD
ab (θ, B) depends on the effective

coupling constant and is chosen in such a way that it also satisfies these equations

∗This is not necessarily the case as for instance for affine Toda field theories related to non-simply
laced Lie algebras, which was first worked out in [5]. See also [6] and references therein for a recent
treatment of these type of theories.
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without introducing additional poles in the physical sheet, i.e. 0 ≤ Im θ ≤ π. We may
now modify the usual expression to

Ŝij
ab(θ) = Smin

ab (θ)SCDD
ab (θ, Bij) . (2)

Here we have introduced an additional dependence of the effective coupling constant on
the quantum numbers i and j, which we refer to as colours. It is clear by construction
that Ŝij

ab(θ) also satisfies the crossing, unitarity and fusing bootstrap equations, but
now each particle carries two quantum numbers (a, i), which may take their values in
different ranges, for definiteness say 1 ≤ a ≤ ℓ and 1 ≤ i ≤ ℓ̃. This means, now we have
in total ℓ̃ × ℓ different particle types. Alternatively, we can define an S-matrix which
coincides with one or the other factor in (2) for certain colour values

Sij
ab(θ) =

{

Smin
ab (θ) = (SCDD

ab (θ, Bii = 0))−1 for i = j

SCDD
ab (θ, Bij) for i 6= j

. (3)

This means whenever i = j we simply have ℓ̃ copies of theories which interact via a
minimal scattering matrix and for i 6= j the particles interact purely via a CDD-factor.
Clearly by construction also (3) satisfies the consistency equations (1). It should be
noted here that (2) and (3) still describe scattering processes for which backscattering
is absent. Hence, these type of colour values play a different role as those which occur
for instance in S-matrices related to affine Toda field theories [9] with purely imaginary
coupling constant, e.g. [10]. Despite the fact that the relative mass spectra related to
(3) are degenerate, this is consistent when we encounter ℓ̃ different overall mass scales
or the particles have different charges.

We will now generalize the structure just outlined, which we already encountered
in [8], and provide a concrete realization for Sij

ab(θ), which is of affine Toda field theory
type, involving a pair of simply laced Lie algebras. It is clear, however, from our previous
comments that the forms (2) and (3) are of a more general nature. We associate the
main quantum numbers a, b to the vertices of the Dynkin diagram of a simply laced Lie
algebra g of rank ℓ and the colour quantum numbers i, j to the vertices of the Dynkin
diagram of a simply laced Lie algebra g̃ of rank ℓ̃ and refer from now on to these theories
as g|g̃†.

We define now the general building blocks

[x, B]θ,ij = e
iπxεij

h

(

sinh 1
2
(θ + iπ(x − 1 + B)/h) sinh 1

2
(θ + iπ(x + 1 − B)/h)

sinh 1
2
(θ − iπ(x − 1 + B)/h) sinh 1

2
(θ − iπ(x + 1 − B)/h)

)
1

2

. (4)

with εij being the anti-symmetric tensor, i.e. εij = −εji. It is this property of the ε’s
which is responsible for the parity breaking of the S-matrix. This block has the obvious
properties

[x, B]θ,ij [x, B]−θ,ji = 1 and [h − x, B = 1]θ,ij = [x, B = 1]iπ−θ,ji . (5)

†This should of course not be understood as a coset.
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We understand here in a slightly loose notation that in the second equality we first take
the square root and thereafter perform the shifts in the arguments. Note further that
the order of the colour values is relevant. From (4) we construct the g|g̃–scattering
matrix

Sij
ab(θ) =

h
∏

q=1

[

2q − (ca + cb)/2), Ĩij

]−
K̃ij

2
λa·σqγb

θ,ij
. (6)

This is of the form (3) apart from a phase factor and a square root taken when i 6= j.
Here the λa’s are fundamental weights, the γa’s are simple roots times a colour value
ca = ±1, h is the Coxeter number and σ is the Coxeter element related to the Lie algebra
g. K̃ is the Cartan matrix and Ĩ = 2− K̃ the incidence matrix of the g̃ related Dynkin
diagram. For more details on the notation and properties of the quantities involved see
[11, 6]. For i = j we recover with Ĩii = 0 and K̃ii = 2 the known form of the minimal
scattering matrix of affine Toda field theory. Whenever i and j are not linked on the
g̃–Dynkin diagram S becomes 1, i.e. the particles interact freely. Instead when i and
j are linked on the g̃–Dynkin diagram, we have Ĩij = 1 and K̃ij = −1 such that the
corresponding blocks are inverted. Comparing (4) with the conventional minimal blocks,
we have introduced the parity breaking phase factor and also taken the square root to
minimize the powers of the poles since in [x, B = 1]θ,ij the two factors in the denominator
and as well as in the numerator coincide. Hence for i 6= j the expression (6) corresponds
to the square root of the usual affine Toda field theory CDD-factor for B = 1. It is this
operation of taking the square root which is the reason for the occurrence of the phase
factor in (4), since only with its presence the consistency equations are satisfied.

There is no need to introduce the phase to satisfy the unitarity equation in (1),
since the first property in (5) is satisfied with or without it. However, already in order
to satisfy the crossing relation the introduction of the phase factor is crucial since the
second property in (5), which is needed to establish it, only holds when it is included.
Assuming the validity of the ADE-fusing rules one may verify by the usual shifting
arguments, e.g. [11, 6], that the fusing bootstrap equations are satisfied. It is further
clear that (6) is hermitian analytic [12].

For many applications, like the thermodynamic Bethe ansatz or form factors, it is
most convenient to employ the scattering matrix in form of an integral representation
instead of the blockform (4). In [13, 6] it was demonstrated how to derive one formulation
from the other and by specifying the analysis in there to the present situation it follows
immediately that we can express the scattering matrix (3) alternatively as

Sij
ab(θ) = eiπεijK−1

ab exp

∞
∫

−∞

dt

t

(

2 cosh
πt

h
− Ĩ

)

ij

(

2 cosh
πt

h
− I

)−1

ab

e−itθ . (7)

The pre-factor results from a similar computation as may be found in section 4.2.1.
of [13].

We note that when we choose g̃ to be A1 the colour values become identical for
all particles and the system reduces to the one described by Smin

ab (θ). This is the only
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example for which (6), (7) does not violate the parity invariance. Choosing instead g to
be An we recover the S-matrix of the Homogeneous sine-Gordon models for vanishing
resonance parameter at level (n + 1) [4, 8].

Similar as in the case for which the universal scattering matrix (6) coincides with
models already known, also all S-matrix elements which belong to the new theories are
well-behaved meromorphic functions. At first sight the power 1/2 in the definition of
the building block (4) seems to suggest the presence of square root branch cuts. For
the g|A1–model the 1/2 is familiar for instance from [11] where it is kept as a power
in relation (6). A detailed analysis which explains how the building blocks combine to
meromorphic functions may be found in there. For the case B = Ĩij = 1 the square
root can be taken directly in (4) and the remaining power 1/2 in (6) is once again
compensated by the same mechanism as in [11].

It is straightforward to include also resonance parameters into the scattering matrix
(6), (7) which could in principle be colour value dependent and may also break the
parity invariance [4, 8].

3 TBA Analysis for the g|g̃ S-matrix

According to the standard arguments of the thermodynamic Bethe ansatz [14] the TBA-
equations for a system which interacts dynamically via the scattering matrix (7) and
statistically via Fermi statistics read

rmi
a cosh θ = εi

a(θ) +
ℓ
∑

b=1

ℓ̃
∑

j=1

∞
∫

−∞

dθ′ϕij
ab(θ − θ′) ln

(

1 + e−ε
j

b
(θ′)
)

. (8)

Here r is the inverse temperature and mi
a the mass of particle (a, i). The pseudoenergies

are denoted as usual by εi
a(θ) and the kernels are obtained from (7)

ϕij
ab(θ) = −i

d

dθ
lnSij

ab(θ) =

∞
∫

−∞

dt

[

δabδij −
(

2 cosh
πt

h
− Ĩ

)

ij

(

2 cosh
πt

h
− I

)−1

ab

]

e−itθ .

(9)
One of the most direct informations the thermodynamic Bethe ansatz provides is the
effective central charge ceff = c−24h0 of the underlying ultraviolet conformal field theory,
with c being the Virasoro central charge and h0 the smallest conformal dimension of
the theory. Then, provided that the solutions of the TBA-equation develop the usual
“plateau behaviour”‡, e.g. [14], one may approximate εi

a(θ) = εi
a = const in a large

region for θ when r is small. By standard TBA arguments [14] follows that the effective
central charge is expressible as

ceff =
6

π2

ℓ
∑

a=1

ℓ̃
∑

i=1

L

(

xi
a

1 + xi
a

)

(10)

‡This is not always the case as for instance in affine Toda field theories with generic effective coupling
constant [13].
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with L(x) =
∑∞

n=1 xn/n2 + ln x ln(1 − x)/2 denoting Rogers dilogarithm [15] where the
xi

a = exp(−εi
a) are obtained as solutions from the constant TBA-equations in the form

xi
a =

ℓ
∏

b=1

ℓ̃
∏

j=1

(1 + xj
b)

N
ij

ab . (11)

The matrix N ij
ab is defined via the asymptotic behaviour of the scattering matrix which

for the case at hand may be read off directly from (9)

N ij
ab =

1

2π

∞
∫

−∞

dθ ϕij
ab(θ) = δabδij − K−1

ab K̃ij . (12)

In regard to finding explicit solutions for the set of coupled equations (11), it turns
out to be convenient to introduce new variables because they may be related to Weyl
characters of the Lie algebra g or g̃. Following [16, 17] we define

Qi
a =

ℓ
∏

b=1

(1 + xi
b)

K−1

ab ⇔ xi
a =

ℓ
∏

b=1

(

Qi
b

)Kab

− 1 (13)

such that the constant TBA-equations (11) acquire the more symmetric form

ℓ
∏

b=1

(

Qi
b

)Iab

+
ℓ̃
∏

j=1

(

Qj
a

)Ĩij

=
(

Qi
a

)2
. (14)

The effective central charge (10) is then expressible in various equivalent ways

c
g|g̃
eff =

6

π2

ℓ
∑

a=1

ℓ̃
∑

i=1

L

(

1 −
ℓ
∏

b=1

(

Qi
b

)−Kab

)

= ℓℓ̃ −
6

π2

ℓ
∑

a=1

ℓ̃
∑

i=1

L



1 −
ℓ̃
∏

j=1

(

Qj
a

)−K̃ij



(15)

= ℓℓ̃ −
6

π2

ℓ
∑

a=1

ℓ̃
∑

i=1

L

(

ℓ
∏

b=1

(

Qi
b

)−Kab

)

=
6

π2

ℓ
∑

a=1

ℓ̃
∑

i=1

L





ℓ̃
∏

j=1

(

Qj
a

)−K̃ij



 (16)

where we used the well-known identity L(x) + L(1 − x) = π2/6, see e.g. [15]. It is
also clear that having solved the equations (14) for the case g|g̃ we have immediately a
solution for the case g̃|g simply by interchanging the role of the two algebras. Supposing

now that c
g|g̃
eff = µ c

g̃|g
eff for some unknown constant µ, it follows directly from (15) and

(16) that c
g|g̃
eff = µℓℓ̃/(1 + µ). We conjecture now this constant to be µ = h̃/h such that

c
g|g̃
eff =

ℓℓ̃ h̃

h + h̃
. (17)

As expected from the observations concerning the scattering matrix we recover several
known cases when we fix some of the algebras. For instance we obtain c

g|A1

eff = 2ℓ/(h+2)
which is the well known formula for the effective central charge of the minimal affine Toda
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theories. Furthermore we recover the effective central charge for the Homogeneous sine-
Gordon models c

An|g̃
eff = nℓ̃h̃/(n+1+h̃) [8]. It should be noted that this is independent of

whether a resonance parameter is present or not despite the fact that the TBA-equation
are not parity invariant in that case, see [8]. Numerically we also solved (14) explicitly
for numerous examples with g 6=An and confirmed (17).

g|g̃ Am Dm E6 E7 E8

An
nm (m+1)
n+m+2

nm (2m−2)
n+2m−1

72 n
n+13

126 n
n+19

240 n
n+31

Dn
nm (m+1)
2n+m−1

nm (m−1)
n+m−2

36 n
n+5

63 n
n+8

120 n
n+14

E6
6 m (m+1)

m+13
6 m (m−1)

m+5
18 126

5
240
7

E7
7 m (m+1)

m+19
7 m (m−1)

m+8
84
5

49
2

35

E8
8 m (m+1)

m+31
8 m (m−1)

m+14
96
7

21 32

Table1: Effective central charges c
g|g̃
eff of the g|g̃-theories.

4 An Explicit example: D4|D4

In order to illustrate the working of our general formulae it is instructive to evaluate
them for a concrete model. We chose the D4|D4-model which is an example for a
therory hitherto unknown. The model contains 16 different particles labeled by (a, i)
with 1 ≤ a, i ≤ 4. The Coxeter number is 6 for D4. Naming the central particle in the
D4–Dynkin diagram by 2 the S-matrix elements according to (6) are computed to

Sii
11(θ) = Sii

33(θ) = Sii
44(θ) = [1, 0]2θ,ii[5, 0]2θ,ii for i = 1, 2, 3, 4,

Sii
12(θ) = Sii

23(θ) = Sii
24(θ) = [2, 0]2θ,ii[4, 0]2θ,ii for i = 1, 2, 3, 4,

Sii
13(θ) = Sii

14(θ) = Sii
34(θ) = [3, 0]2θ,ii for i = 1, 2, 3, 4,

Sii
22(θ) = [1, 0]2θ,ii[3, 0]4θ,ii[5, 0]2θ,ii for i = 1, 2, 3, 4,

S2j
11(θ) = S2j

33(θ) = S2j
44(θ) = [1, 1]−2

θ,2j [5, 1]−2
θ,2j for j = 1, 3, 4,

S2j
12(θ) = S2j

23(θ) = S2j
24(θ) = [2, 1]−2

θ,2j [4, 1]−2
θ,2j for j = 1, 3, 4,

S2j
13(θ) = S2j

14(θ) = S2j
34(θ) = [3, 1]−2

θ,2j for j = 1, 3, 4,

S2j
22(θ) = [1, 1]2θ,2j [3, 1]4θ,2j [5, 1]2θ,2j for j = 1, 3, 4,

Sij
ab(θ) = 1 for a, b = 1, 2, 3, 4; i 6= j; i, j 6= 2 .

The solutions to the constant TBA-equations (11) read

x1
1 = x1

3 = x1
4 = x3

1 = x4
1 = x3

3 = x4
3 = x4

3 = x4
4 = x2

2 = 1 (18)

x1
2 = x3

2 = x4
2 = 1/2 (19)

x2
1 = x2

3 = x2
4 = 2 (20)

such that the effective central charge according to (10) is

ceff =
6

π2

(

10L
(

1

2

)

+ 3L
(

2

3

)

+ 3L
(

1

3

))

= 8 . (21)
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This result confirms the general formula (17).

5 Conclusions

We have shown that the proposed scattering matrices (6), (7) provide consistent solu-
tions of the bootstrap equations (1). In comparison with (3) we have taken the square
root of the CDD-factor which lead to the introduction of the non-trivial parity breaking
phase factors. The main motivation for this was to recover the known scattering matri-
ces which were mentioned at the end of section 2. It is clear though that when we view
(2) as the usual affine Toda field theory scattering matrix related to simply laced alge-
bras we can write down immediately colour valued S-matrices related to two different
algebras. When we do not take the square root this is straightforward and also works
for theories related to non-simply laced algebras. We leave a systematic investigation of
these type of theories for future investigations.

A further open question is to identify the corresponding Lagrangian for the g|g̃-
theories. The knowledge of the ultraviolet central charge (17) will certainly be use-
ful in this search since it provides the renormalization fixed point. As we know from
the Homogeneous sine-Gordon models the An|g̃–theory may be viewed as perturbed

G̃n+1/U(1)⊗ℓ̃-coset WZNW theories. In analogy, we could view for instance the “dual”

theory of this, i.e. the g̃|An–theory, formally as perturbed G̃
⊗(n+1)
1 /G̃n+1-coset WZNW

theory. Besides the identification of the fixed point theory for the situation in which
g 6=An, it remains open to find the precise form of the perturbing operators. We do not
expect that they will turn out to be irrelevant, since the colour giving CDD-factors are
different in nature than the ones recently discussed in [18].

Acknowledgments: We are grateful to the Deutsche Forschungsgemeinschaft
(Sfb288) for financial support and B.J. Schulz, O.A. Castro-Alvaredo and J.L. Mira-
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