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Abstract: We discuss several PT -symmetric deformations of superderivatives. Based

on these various possibilities, we propose new families of complex PT -symmetric defor-

mations of the supersymmetric Korteweg-de Vries equation. Some of these new models

are mere fermionic extensions of the former in the sense that they are formulated in terms

of superspace valued superfields containing bosonic and fermionic fields, breaking however

the supersymmetry invariance. Nonetheless, we also find extensions, which may be viewed

as new supersymmetric Korteweg-de Vries equation. Moreover, we show that these defor-

mations allow for a non-Hermitian Hamiltonian formulation and construct three charges

associated to the corresponding flow.

1. Introduction

PT -symmetry, that is the invariance under a simultaneous parity transformation P : x →

−x and time reversal T : t → −t, is a very desirable property to have in a physical

model without dissipation. For a Hamiltonian system it can be exploited to guarantee

the reality of the corresponding spectrum, even though the Hamiltonian might be non-

Hermitian [1, 2, 3]. However, even for non-Hamiltonian systems this principle can be used

to construct interesting new complex extended models, e.g. [4, 5, 6, 7, 8, 9]. See [10, 11]

for a review and some recent results of this field of research.

Here we commence with an integrable model, which are well known to exhibit many

extremely interesting features on the classical as well as on the quantum level. Due to

their rich structure it is a very natural and common procedure to take these models as

starting points and study new models closely related to them. We intend here to per-

turb or deform such a model in a PT -symmetric manner. Concerning integrable models

only few extensions of such type have been constructed. So far several extensions related

to Calogero-Moser-Sutherland models [12, 13, 14, 15, 16, 17] and the Korteweg-de Vries

http://arXiv.org/abs/0807.1828v1
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(KdV) equations [8, 9] have been investigated. Based on the observation that also the

supersymmetric version of the KdV-equation (sKdV) is PT -symmetric, the main aim in

this manuscript is to extend these type of analysis to this equation.

Our manuscript is organized as follows: In section 2 we recall some basic facts about the

sKdV-equation and demonstrate how the PT -symmetry manifests itself in these equations.

We exploit these observations to discuss various versions of PT -symmetrically deformed

superderivatives and demonstrate how they can be employed to construct new models. In

section 3 we provide a supersymmetric Hamiltonian version of a such extensions. We state

our conclusions in section 4.

2. PT -symmetric extensions the sKdV equation

Let us first fix our notations and recall some known facts about the sKdV-equation. There

exist various fermionic extensions of the KdV-equation in terms of superfields, which are

either supersymmetric [18] or break this symmetry [19, 20] and are therefore mere fermionic

extensions. We take as a starting point the former case and focus on the one-parameter

family of the sKdV-equation as derived first by Mathieu in [18]

Φt = −D6Φ + λD2(ΦDΦ) + (6 − 2λ)DΦD2Φ. (2.1)

Here λ is a real constant and Φ(x, θ) denotes a fermionic superfield

Φ(x, θ) = ξ(x) + θu(x) (2.2)

defined in terms of the fermionic (anticommuting) field ξ(x), the usual bosonic (commuting)

KdV field u(x) and the anticommuting superspace variable θ. Furthermore D in (2.1)

denotes the superderivative defined as

D = θ∂x + ∂θ. (2.3)

Expanding the superfield Φ in terms of component fields, as specified in (2.2), equation

(2.1) may be re-written as a set of two coupled equations

ut = −uxxx + 6uux − λξξxx, (2.4)

ξt = −ξxxx + (6 − λ)ξxu + λξux. (2.5)

When λ → 0 or ξ → 0 equation (2.4) reduces to the standard KdV equation. In superspace

the supersymmetry transformation is realized as

SUSY : x → x − ηθ, θ → θ + η, (2.6)

with η being an anticommuting constant. As a consequence the superfield and its compo-

nents transform as

SUSY : Φ → Φ + ηu + θηξx, u → u + ηξx, ξ → ξ + ηu, (2.7)

– 2 –



PT -symmetric extensions of the supersymmetric Korteweg-de Vries Equation

i.e. a bosonic field is related to a fermionic one and vice versa. Equations (2.1), (2.4) and

(2.5) are designed to remain invariant under the changes (2.7).

In order to see how one can deform the sKdV-equation in a PT -symmetric manner, we

need to establish first how this symmetry manifests itself. We observe that the equation

(2.1) remains invariant under the following anti-linear symmetry transformation

PT : t → −t, x → −x, i → −i,Φ → iΦ,D → −iD. (2.8)

As a result of these properties of the superfield and superderivative we deduce that the

component fields and the superspace variable transform as

PT : u → u, ξ → iξ, θ → iθ. (2.9)

These transformations leave the equations (2.4) and (2.5) invariant. Notice that the PT -

transformation is an automorphism and we still have PT 2 = 1, as it should be.

Before we embark on the task of seeking PT -symmetric extensions of equation (2.1)

or its equivalent component version (2.4), (2.5), we shall define some deformations of

derivatives and their supersymmetric counterparts in a more generic fashion.

2.1 Deformed (super) derivatives

In the spirit of the construction in [8, 9] we will define some new superderivatives, which

respect the PT -transformation properties (2.8). For this purpose we recall how to employ

an ordinary deformed derivative ∂x,ε acting on some arbitrary PT -invariant function f(x)

∂x,εf(x) = −i(ifx)ε with ε ∈ R. (2.10)

The case ε = 1 corresponds to the standard undeformed case. Notice further that this

deformed differential operator acts not distributively. We define higher derivatives by

acting successively with ordinary derivatives on ∂x,ε as

∂n
x,ε := ∂n−1

x ∂x,ε. (2.11)

Alternatively we could have introduced a nested version of (2.10) or possibly a mix of ∂x,ε

and ∂x in succession such as ∂x,ε(∂x,ε . . . (∂x,εf(x) . . .)) or ∂x,ε(∂x . . . (∂x,εf(x) . . .)). These

latter possibilities do of course also not break the PT -symmetry, but they would insinuate

a much higher degree of non-linearity than the definition (2.11). More explicitly the first

expressions for (2.11) read

∂2
x,εf = −iε(ifx)ε

fxx

fx

, (2.12)

∂3
x,εf = −iε(ifx)ε

[

fxxx

fx
+ (ε − 1)

(

fxx

fx

)2
]

, (2.13)

∂4
x,εf = −iε(ifx)ε

[

(2 + ε(ε − 3))

(

fxx

fx

)3

+ 3(ε − 1)

(

fxx

fx

)2

fxxx +
fxxxx

fx

]

. (2.14)

...

– 3 –
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Note that for ε = −1/2 the bracket in (2.13) simply becomes a Schwarzian derivative.

Obviously by construction the derivatives ∂n
x,ε and ∂n

x,ε=1 = ∂n
x transform in the same

way under a PT -transformation, i.e. PT : ∂n
x → (−1)n∂n

x and PT : ∂n
x,ε → (−1)n∂n

x,ε,

which gives rise to the simple construction principle: In a defining equation of a particular

model replace ∂n
x by ∂n

x,ε in order to introduce a new family of models.

Next we employ these deformations of ordinary derivatives to define a deformed version

of the superderivative (2.3)

Dε := θ∂x,ε + ∂θ. (2.15)

Clearly D and Dε have the same transformation properties with regard to (2.8) and (2.9).

The derivative with respect to the superspace variable is left undeformed as there is no nat-

ural deformed counterpart to this. In the deformation of the standard derivative we could

achieve that the minus sign results from the anti-linear nature of the PT -operator through

the newly introduced factor i rather than from ∂x. In contrast, for the derivative ∂θ we can

not implement this feature, since in that case we have PT : ∂θΦ → ∂θΦ. Depending now

on the way the higher derivatives are defined one may obtain deformations only acting on

the bosonic, fermionic or possibly on both type of fields. Let us explore these possibilities.

2.1.1 PT-symmetric superderivatives of bosonic-fermionic type

As a first option we define higher deformed superderivatives as

D2
ε : = DεDε, (2.16)

Dn
ε : = Dn−2D2

ε for n > 2. (2.17)

Accordingly the action on the superfield Φ(x, θ) is computed to

DεΦ = θ∂x,εξ + u, (2.18)

D2
εΦ = θ∂x,εu + ∂x,εξ, (2.19)

D3
εΦ = θ∂2

x,εξ + ∂x,εu, (2.20)

...

D2n−1
ε Φ = θ∂n

x,εξ + ∂n−1
x,ε u, (2.21)

D2n
ε Φ = θ∂n

x,εu + ∂n
x,εξ. (2.22)

This means for n > 2 the derivatives acting on the fermionic as well as the ones acting on

the bosonic field are deformed. However, in general we would like to take ε to be an integer

and since ∂n
x,εξ = −i(iξx)ε = 0 for ε = 2, 3, . . . this does not appear to be an interesting

choice.

2.1.2 PT-symmetric superderivatives of fermionic type

Alternatively we may define

D̂n
ε := Dn−1Dε for n > 1. (2.23)

– 4 –
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in which case the action on the superfield Φ(x, θ) gives

D̂εΦ = θ∂x,εξ + u, (2.24)

D̂2
εΦ = θux + ∂x,εξ, (2.25)

D̂3
εΦ = θ∂2

x,εξ + ux, (2.26)

...

D̂2n−1
ε Φ = θ∂n

x,εξ + ∂n−1
x u, (2.27)

D̂2n
ε Φ = θ∂n

x u + ∂n
x,εξ. (2.28)

Thus with this choice only the terms involving the derivatives acting on fermionic fields

are PT -symmetrically deformed, which for the reasons mentioned at the end of the last

subsection is even less exciting.

2.1.3 PT-symmetric superderivatives of bosonic type

It is clear from the above discussion that the most interesting definitions will be those just

involving deformations of derivatives acting on the bosonic fields. We may achieve this by

defining

D̃2
ε : = DεD, (2.29)

D̃n
ε : = Dn−2D2

ε for n > 2. (2.30)

In this case the action on the superfield Φ(x, θ) turns out to be

D̃εΦ = θξx + u, (2.31)

D̃2
εΦ = θ∂x,εu + ξx, (2.32)

D̃3
εΦ = θξxx + ∂x,εu, (2.33)

...

D̃2n−1
ε Φ = θ∂n

x ξ + ∂n−1
x,ε u, (2.34)

D̃2n
ε Φ = θ∂n

x,εu + ∂n
x ξ. (2.35)

Thus with this choice we have achieved that only the terms involving the derivatives acting

on the bosonic fields are PT -symmetrically deformed.

According to the principle that any function which transforms as PT : f → −f should

be deformed as f → −i(if)ε, we may also try to deform the superderivatives directly

instead of focussing on the part of it involving the ordinary derivatives. Observing that

PT : DΦ → DΦ, this form of deformation can not be applied to the superderivative of

first order. However, we may apply it to higher orders. We have PT : D2Φ → −iD2Φ,

D3Φ → −D3Φ and therefore we may consistently define

Ďn
ε : = Dn for n = 1, 2 (2.36)

Ď3
εΦ : = −i(iD3Φ)ε = ∂x,εu + iθε∂x,ε−1uξxx, (2.37)

Ďn
ε : = Dn−3Ď3

ε for n > 3. (2.38)
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Taking only PT -symmetry as a guiding principle there are of course more possibil-

ities. For instance, we could have also nested the derivatives as Dε(Dε . . . Dεf) . . .)), or

Dε(Dε . . . Ď3
εf) . . .)), etc. For similar reasons as stated for the ordinary derivatives we re-

strain here from these choices. Alternatively we could keep the ordinary superderivatives

up to some higher order derivative, since D4n−1Φ → −D4n−1Φ for n ∈ N, but the models

we are concerned with here do not involve such high order.

We may now use either of these possibilities in any of the terms in (2.1), giving rise to

many different options to formulate PT -symmetric extensions.

2.2 Construction of new models

We can replace the superderivatives by their deformed versions in various different terms

and in addition we may introduce different deformation parameters in the higher order

derivatives. In order to explore some of these possibilities, let us first rewrite equation

(2.1) as

Φt = −D6Φ + 6DΦD2Φ + λΦD3Φ − λDΦD2Φ, (2.39)

by using the identities D2(ΦDΦ) = D2ΦDΦ + ΦD3Φ and D2ΦDΦ = DΦD2Φ. Note

that these identities no longer hold in the deformed cases, such that we would have a

different starting point when deforming (2.1) directly. As discussed above, the purely

bosonic deformation is the most interesting one and we may therefore consider

Φt = −D̃6
εΦ + 6D̃κΦD̃2

κΦ + λΦD̃3
µΦ − λD̃νΦD̃2

νΦ. (2.40)

In order to remain as generic as possible we have introduced four different deformation

parameters ε, κ, µ and ν. The component version of (2.40) reads

ut = −∂3
x,εu + 6u∂x,κu − λξξxx + λu (∂x,µu − ∂x,νu) , (2.41)

ξt = −ξxxx + 6uξx + λ(ξ∂x,µu − uξx). (2.42)

The case µ = ν, κ = 1 constitutes a fermionic extension of the PT -symmetric deformation

of the KdV-equation introduced in [9], which is obtained for ξ → 0. In turn the case

µ = ν, ε = 1 reduces for ξ → 0 to the PT -symmetric deformation of the KdV-equation

introduced in [8]. Noting how a deformed derivative transforms under a supersymmetry

transformation

SUSY : ∂x,εu → ∂x,εu + iηε∂x,ε−1uξxx, (2.43)

∂3
x,εu → ∂3

x,εu + iηε(∂3
x,ε−1uξxx + 2∂2

x,ε−1uξxxx + ∂x,ε−1uξxxxx), (2.44)

it is easily seen that the equations (2.41) and (2.42) are only invariant under the super-

symmetry transformations (2.7) in the case µ = ν = κ = ε = 1.

Instead of employing D → D̃ε let us now use the deformation D → Ďε. An interesting

possibility is to deform just the first term in (2.39) and consider

Φt = −Ď6
εΦ + 6DΦD2Φ + λΦD3Φ − λDΦD2Φ. (2.45)

– 6 –
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Using (2.38), we find Ď6
εΦ = θ∂3

x,εu+iε(∂2
x,ε−1uξxx+∂x,ε−1uξxxx), such that the component

version of (2.45) reads

ut = −∂3
x,εu + 6uux − λξξxx, (2.46)

ξt = −iε(∂2
x,ε−1uξxx + ∂x,ε−1uξxxx) + (6 − λ)uξx + λξux. (2.47)

Thus equation (2.45) may also be viewed as yet another fermionic extension of the PT -

symmetric deformation of the KdV-equation of [9], to which (2.46) reduces in the limits

ξ → 0 or λ → 0. Interestingly this system is partially supersymmetric. We find that

(2.46) remains invariant under the supersymmetry transformation (2.7), but (2.47) does

not respect it.

Further interesting options are of course combinations of the above, such for instance

Φt = −Ď6
εΦ + 6D̃κΦD̃2

κΦ + λΦĎ3
µΦ − λD̃νΦD̃2

νΦ (2.48)

or to add PT -invariant terms which vanish in the limit ε → 1. We will make use of the

last possibility in order to restore full supersymmetry.

A few comments are in order: There are of course various other options, as for instance

to deform only one of the last two terms in (2.39), possibly together with the first term. This

would lead to a rather strange extension, which does not reduce to any of the known PT -

extended KdV-equations for ξ → 0. These cases involve an additional term resulting from

the fact the original sKdV-equation was constructed as a one-parameter family taking into

account that the term 6uux can be supersymmetrised in various alternative ways. Further

options are to use the derivatives D̂ε or Dε, which yield similar equations as above with the

difference that also the derivatives acting on the ξ-fields are deformed, which is, however,

less interesting for the reasons mentioned above.

3. PT and supersymmetric non-Hermitian Hamiltonian deformations

Let us now recall the original motivation to consider PT -symmetrically extended models,

which was to exploit the feature that unbroken PT -symmetry guarantees the reality of the

corresponding spectrum. In this spirit it is highly desirable to discriminate between the

models, which are Hamiltonian systems and those which are not. It is well known that the

sKdV-equation admits a Hamiltonian description for λ = 2, see [18], and it is interesting

to investigate whether this feature survives the deformation.

Making use of the usual properties for the Berezin integral
∫

dθ = 0,
∫

dθθ = 1, we

consider the Hamiltonian

Hε =

∫

dµ

[

Φ(DΦ)2 +
1

1 + ε
D2ΦĎ3

εΦ

]

(3.1)

=

∫

dx

[

u3 − 2ξξxu −
1

1 + ε
(iux)ε+1 −

ε

1 + ε
(iux)ε−1ξxξxx

]

, (3.2)

where we abbreviated
∫

dxdθ =:
∫

dµ. This Hamiltonian is a deformed version of the sKdV

Hamiltonian [18] and in addition a supersymmetrised version of the PT -symmetrically

– 7 –
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deformed Hamiltonian [9], as it reduces to these Hamiltonians in the limits ε → 1 and

ξ → 0, respectively. By construction Hε is PT -symmetric, but in addition it is also

supersymmetic, which is most easily verified for the component version (3.2)

SUSY : Hε → Hε + η

∫

dx∂x

(

ξu2 +
iε−1

1 + ε
uε

xξx

)

= Hε. (3.3)

This means we can also think of Hε as a new supersymmetric version of the KdV-Hamiltonian.

Unlike as for the KdV-equation, which admits a bi-Hamiltonian structure [21], see also

[22], the sKdV-equation is known to possess only one such structure [18], which respects

supersymmetry. The Poisson brackets are defined as

{

F (µ), G(µ′)
}

:=

∫

dµ0

δF (µ)

δΦ(µ0)
Dµ0

δG(µ′)

δΦ(µ0)
. (3.4)

Using the same Poisson bracket structure gives rise to a deformed equation of motion.

With definition (3.4) we may then compute the corresponding flow as

Φt = {Φ(µ),H} = D
δH

δΦ
= D

[

δ
∫

dµH

δΦ

]

, (3.5)

= D
∂H

∂Φ
+ D2 ∂H

∂(DΦ)
− D3 ∂H

∂(D2Φ)
− D4 ∂H

∂(D3Φ)
+ . . . (3.6)

For the Hamiltonian (3.1) we find

Φt = 4DΦD2Φ + 2ΦD3Φ −
1

1 + ε

[

Ď6
εΦ + iεD4(D2ΦĎ3

ε−1Φ)
]

, (3.7)

with corresponding component version

ut = 6uux − ∂3
x,εu − 2ξξxx +

ε − ε2

1 + ε

[

∂3
x,ε−2uξxξxx + ∂2

x,ε−2uξxξxxx + ∂x(∂x,ε−2uξxξxxx)
]

,

ξt = 4uξx + 2ξux −
iε

1 + ε

(

3∂2
x,ε−1uξxx + 2∂x,ε−1uξxxx + ∂3

x,ε−1uξx

)

. (3.8)

As we expect (3.7) and (3.8), (3.8) reduce to (2.1) and (2.4), (2.5), in the limit ε → 1,

respectively.

4. Conclusion

We have discussed various possibilities to introduce PT -symmetrically deformed superderiva-

tives. The most interesting cases are those just involving deformed derivatives acting on the

bosonic field, i.e. D̃n
ε and Ďn

ε as defined in (2.30) and (2.38), respectively. We have demon-

strated that these derivatives can be employed very systematically to construct new PT -

symmetric extensions of the sKdV-equation. Most of these extensions are mere fermionic

extensions that is they involve fermionic superfields, but do not preserve the invariance

under a supersymmetry transformation. Remarkably it is also possible to find genuinely

supersymmetric extensions. Furthermore, these models allow for a Hamiltonian formula-

tion. This means we may also think of this latter models as new supersymmetrized versions

of the KdV-equation.

– 8 –
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Clearly with regard to these new models there are many interesting questions left to be

explored. It remains to be settled whether these models possess non-trivial higher charges

and if the conservation laws survive the deformation procedure [18, 23]. Possibly the new

models are even integrable. Nonetheless, even when they turn out to be non-integrable

one may exploit the rich properties of the underlying integrable model and treat the new

models as perturbations of the former. This is somewhat similar in spirit as studying

non-integrable quantum field theories as perturbations of integrable models, see e.g. [24].

Further interesting properties to investigate are the nature of the solutions these equations

possess, what type of additional symmetries they allow [25] etc.

Besides these issues centered around the sKdV equation one may of course use the

deformed superderivatives in other contexts to construct new PT -symmetric deformations

in the same spirit. Most immediate would be to consider the sKdV-equation involving

bosonic rather than fermionic superfields and its N=2 version.
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