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Abstract: We demonstrate that dynamical noncommutative space-time will give rise

to deformed oscillator algebras. In turn, starting from some q-deformations of these

algebras in a two dimensional space for which the entire deformed Fock space can be

constructed explicitly, we derive the commutation relations for the dynamical variables in

noncommutative space-time. We compute minimal areas resulting from these relations,

i.e. finitely extended regions for which it is impossible to resolve any substructure in

form of measurable knowledge. The size of the regions we find is determined by the

noncommutative constant and the deformation parameter q. Any object in this type of

space-time structure has to be of membrane type or in certain limits of string type.

1. Introduction

The idea to extend the quantization procedure from canonical variables to space-time itself

[1] traces back over sixty years. In recent years this general possibility has become more

and more appealing, especially in the context of quantum field theories as such type of

space-time structures will introduce natural cut-offs and theories on them are therefore

renormalized by construction [2, 3]. In addition, almost all possible theories of quantum

gravity require non-Minkowskian space-time in one form or another [4, 5, 6, 7, 8].

One of the interesting consequences of these type of space-time structures is that in

many cases they lead to modifications of Heisenberg’s uncertainty relations, which in turn

result in the emergence of minimal lengths. This means in such spaces one has almost

inevitably definite fundamental distances below which no substructure can be resolved

[9, 10, 11, 12, 13, 14, 15, 16, 17]. Recently some of us proposed [18] a consistent dynamical

noncommutative space-time structure in a two dimensional space which leads to a funda-

mental length in one direction, implying that objects in these spaces are of string type.

Here we provide a different type of dynamical noncommutative space-time implying a fun-

damental length in each of the two directions, thus giving rise to minimal areas for which
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any substructures is beyond measurable knowledge. In our construction procedure we will

not only postulate the deformed Heisenberg canonical commutation relations and check

their consistency, but we will also derive them from some more extensively studied and

more fundamental structure, namely q-deformed oscillator algebras for which the entire

Fock space can be constructed explicitly [12, 13, 14].

In section 2 we commence with various consistent deformations of Heisenberg’s canon-

ical commutation relations and investigate the consequences on the commutation relations

of the associated oscillator algebra. We find that the latter are almost inevitably deformed.

In section 3 we take this fact into account and reverse the setting by starting instead from

a well suited q-deformed oscillator algebra and derive from it Heisenberg’s uncertainty re-

lations for the dynamical variables. In section 4 we briefly recall the standard argument

leading to minimal length and compute the minimal area for a selected algebra. Our

conclusions and an outlook to further open problems are stated in section 5.

2. Creation and annihilation operators from noncommutative space-time

2.1 Oscillator algebras in flat noncommutative space-time

Noncommutative flat space-time in two dimensions manifests itself in the following modi-

fication of Heisenberg’s canonical commutation relations for the dynamical variables

[x0, y0] = iθ, [x0, px0
] = i~, [y0, py0 ] = i~,

[px0
, py0 ] = 0, [x0, py0 ] = 0, [y0, px0

] = 0.
(2.1)

Restricting the noncommutative constant to be real, i.e. θ ∈ R, ensures that x0 and y0
are Hermitian operators. We now wish to find a representation for creation and annihi-

lation operators in terms of the dynamical variables x0, y0, px0
, py0 satisfying the standard

commutation relations for a Fock space representation

[ai, a
†
j ] = δij, [ai, aj ] = 0, [a†i , a

†
j ] = 0 for i, j = 1, 2. (2.2)

In order to reduce the number of unknown coefficients in a possible Ansatz for the ai, a
†
i we

may take the properties of the dynamical variables under a PT -transformation as a guiding

principle. These type of considerations have proved to be very fruitful, allowing even a

consistent formulation of non-Hermitian systems with real eigenvalues, see e.g. [19, 20, 21]

for a review or [22, 23] for recent special issues. For this purpose we note that the relations

(2.1) are PxT -symmetric and PyT -symmetric in the sense that they remain invariant under

a simultaneous reflection in the x0-direction together with a time reversal and under a

simultaneous reflection in the y0-direction together with a time reversal, respectively,

Px: x0 7→ −x0, y0 7→ y0, px0
7→ −px0

, py0 7→ py0 ,

Py: x0 7→ x0, y0 7→ −y0, px0
7→ px0

, py0 7→ −py0 ,

T : x0 7→ x0, y0 7→ y0, px0
7→ −px0

, py0 7→ −py0 , i 7→ −i,

PxT : x0 7→ −x0, y0 7→ y0, px0
7→ px0

, py0 7→ −py0 , i 7→ −i,

PyT : x0 7→ x0, y0 7→ −y0, px0
7→ −px0

, py0 7→ py0 , i 7→ −i.

(2.3)

– 2 –
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We demand now to have a definite transformation property for the ai, a
†
i , that is we would

like them to be either even or odd under a Px,yT -transformation, i.e. ai 7→ ai, a
†
i 7→ a†i

or ai 7→ −ai, a
†
i 7→ −a†i , such that we can use this property to reduce the total number of

constants. Assuming that the dependence on the x0, y0, px0
, py0 is still linear, the general

operators of the form

a1 := α1x0 + iα2y0 + iα3px0
+ α4py0 , a†1 := α1x0 − iα2y0 − iα3px0

+ α4py0 ,

a2 := α5x0 + iα6y0 + iα7px0
+ α8py0 , a†2 := α5x0 − iα6y0 − iα7px0

+ α8py0 ,
(2.4)

with unknown constants α1, . . . , α8 ∈ R for the time being, are PxT -odd: ai 7→ −ai,

a†i 7→ −a†i and PyT -even: ai 7→ ai, a
†
i 7→ a†i when using the realization (2.3). The reverse

scenario is simply achieved by αj 7→ iαj for j = 1, . . . , 8.

The operators defined in (2.4) satisfy the commutation relations (2.2) provided that

the following four constraints on the constants hold

α1 =
α6

2~∆
, α4 =

θα6 + ~α7

2~2∆
, α5 = −

α2

2~∆
, α8 = −

θα2 + ~α3

2~2∆
, (2.5)

where we abbreviated ∆ := α3α6−α2α7 6= 01. This means we have still four almost entirely

free parameters left. Inverting the relations (2.4) while keeping the constraints (2.5), we

can express the coordinates and the momenta in terms of the creation and annihilation

operators

x0 = (θα2 + ~α3) (a1 + a†1) + (θα6 + ~α7) (a2 + a†2), y0 =
iα7

2∆ (a1 − a†1)−
iα3

2∆ (a2 − a†2),

px0
= − iα6

2∆ (a1 − a†1) +
iα2

2∆ (a2 − a†2), py0 = −~α2(a1 + a†1)− ~α6(a2 + a†2).
(2.6)

It is easily verified that these operators obey (2.1) when using (2.2).

2.2 Oscillator algebras from string type noncommutative space-time

Let us now carry out a similar analysis for the situation when the underlying space-time is

dynamical, i.e. the constant θ becomes position and possibly also momentum dependent.

A set of consistent commutation relations for such a scenario was introduced in [18]

[x, y] = iθ(1 + τy2), [x, px] = i~(1 + τy2), [y, py] = i~(1 + τy2),

[px, py] = 0, [x, py] = 2iτy(θpy + ~x), [y, px] = 0.
(2.7)

Defining the analogues to the creation and annihilation operators and keeping the depen-

dence on the dynamical variables similar as in (2.4)

â1 := α1x+ iα2y + iα3px + α4py, â†1 := α1x− iα2y − iα3px + α4py,

â2 := α5x+ iα6y + iα7px + α8py, â†2 := α5x− iα6y − iα7px + α8py,
(2.8)

1For the specific choice

α1 = α2 = −
λ1

~
√

K1

, α3 = −α4 = −
1

√

K1

, α5 = −α6 =
λ2

~
√

K2

, α7 = α8 =
1

√

K2

,

we recover the representation found in [24] when comparing with equations (57) and (58) therein and

identifying the quantities λ1, λ2 and K1,K2 which are defined in equation (56) and (59), respectively.

– 3 –
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we can compute the resulting commutation relations. Keeping the constraints (2.5) and

setting in addition α3 = 0 we find that the standard commutation relations are deformed

[âi, â
†
i ] = 1 +

τ

4α2
2

(

â1â
†
1 + â†1â1 − â1â1 − â†1â

†
1

)

for i = 1, 2 (2.9)

[â1, â2] = [â1, â
†
2] = [â†1, â2] = [â†1, â

†
2] =

τ

4α2
2

(

â1â2 + â1â
†
2 − â†1â2 − â†1â

†
2

)

. (2.10)

The asymmetry between i = 1 and i = 2 in (2.9) appears odd at first sight in the light

of (2.8), but it is a consequence of the non-symmetric nature of (2.7) and our choice

α3 = 0. Clearly when the deformation parameter τ vanishes we obtain the usual Fock

space commutation relations (2.2).

2.3 Oscillator algebras from membrane type noncommutative space-time

We propose now a new type of deformation for the flat noncommutative space-time (2.1)

[x̃, ỹ] = iθ + iτ
(

x̃2 + ỹ2
)

, [x̃, p̃x] = i~+ i τ~
θ

(

x̃2 + ỹ2
)

, [x̃, p̃y] = 0,

[p̃x, p̃y] = iτ
[

2~

θ
(ỹp̃x − x̃p̃y)− p̃2x − p̃2y

]

, [ỹ, p̃y] = i~+ i τ~
θ

(

x̃2 + ỹ2
)

, [ỹ, p̃x] = 0.
(2.11)

In the same manner as for (2.7) we may verify that these commutation relations are con-

sistent in the sense that the Jacobi identities are satisfied. Using the standard arguments

to find a minimal length, we observe that the x̃, ỹ-commutator implies a minimal length in

the x̃ as well as in the ỹ-direction, which means the underlying object, whose substructure

we can not determine, is of a membrane structure. Once again we define creation and

annihilation type operators analogously to (2.4) keeping the dependence on the dynamical

variables the same. When specifying the coefficients such that

ã1 :=
√

1−τ
2θ (x̃+ iỹ), ã†1 :=

√

1−τ
2θ (x̃− iỹ),

ã2 :=
√

1−τ
2θ

[

x̃− iỹ + θ
~
(p̃y + ip̃x)

]

, ã†2 :=
√

1−τ
2θ

[

x̃+ iỹ + θ
~
(p̃y − ip̃x)

]

,
(2.12)

we find the commutation relations

ãiã
†
j −

(

1 + τ

1− τ

)δij

ã†j ãi = δij, [ã†i , ã
†
j ] = 0, [ãi, ãj ] = 0, for i, j = 1, 2. (2.13)

As expected (2.2) is recovered for τ → 0. These relations are very reminiscent of the

q-deformed oscillator algebra studied in this context for instance in [9, 10, 11, 12, 13, 14,

15, 16].

This example and the one in the previous subsection indicate that dynamical space-

time relations will naturally lead to deformed Fock spaces. As we have seen some of them

have a very convenient and well studied structure, as (2.13), whereas others are rather

awkward such as (2.9) and (2.10). Let us therefore now reverse the scenario and deform

first the Fock space relations in a “nice” way and subsequently compute the corresponding

commutation relations for the dynamical variables.

– 4 –
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3. Noncommutative space-time from q-deformed creation and annihila-

tion operators

Resembling the relations (2.13) we q-deform the relations in (2.2) by defining a new set of

creation and annihilation operators A1, A
†
1, A2, A

†
2 satisfying

AiA
†
j − q2δijA†

jAi = δij , [A†
i , A

†
j ] = 0, [Ai, Aj ] = 0, for i, j = 1, 2. (3.1)

There exist various other possibilities to deform the relations (2.2) which still lead to

constructable Fock spaces, such as for instance using different qs in the first relation of

(3.1), i.e. q2δij → q
2δij
i or replacing the δij on the right hand side of the first relation by

qg(A
†
i
Ai) with g(x) being an arbitrary function as in [11, 16]. Guided by the limit q → 1

in which we should recover the relations (2.6) and the properties of these operators under

a PT -transformation, we expand the new set of deformed canonical variables X,Y, Px, Py

linearly in terms of the A1, A
†
1, A2, A

†
2 as

X = κ1(A
†
1 +A1) + κ2(A

†
2 +A2), Px = iκ3(A

†
1 −A1) + iκ4(A

†
2 −A2),

Y = iκ5(A
†
1 −A1) + iκ6(A

†
2 −A2), Py = κ7(A

†
1 +A1) + κ8(A

†
2 +A2).

(3.2)

The constants κ1, . . . , κ8 ∈ R are unknown for the time being. Inverting the relations (3.2)

we may express the deformed creation and annihilation operators in terms of the deformed

canonical variables

A1 =
κ8

λ
X + iκ4

µ
Y − iκ6

µ
Px −

κ2

λ
Py, A†

1 =
κ8

λ
X − iκ4

µ
Y + iκ6

µ
Px −

κ2

λ
Py,

A2 = −κ7

λ
X − iκ3

µ
Y + iκ5

µ
Px +

κ1

λ
Py, A†

2 = −κ7

λ
X + iκ3

µ
Y − iκ5

µ
Px +

κ1

λ
Py,

(3.3)

where we abbreviated λ := 2(κ1κ8 − κ2κ7) 6= 0 and µ := 2(κ4κ5 − κ3κ6) 6= 0. Using the

representation (3.2) together with (3.1) we compute

[X,Y ] = 2i(κ1κ5 + κ2κ6) + 2i(q2 − 1)(κ1κ5A
†
1A1 + κ2κ6A

†
2A2), (3.4)

[X,Px] = 2i(κ1κ3 + κ2κ4) + 2i(q2 − 1)(κ1κ3A
†
1A1 + κ2κ4A

†
2A2), (3.5)

[Y, Py] = −2i(κ5κ7 + κ6κ8) + 2i(1− q2)(κ5κ7A
†
1A1 + κ6κ8A

†
2A2), (3.6)

[Px, Py] = −2i(κ3κ7 + κ4κ8) + 2i(1− q2)(κ3κ7A
†
1A1 + κ4κ8A

†
2A2), (3.7)

[X,Py] = 0, (3.8)

[Y, Px] = 0. (3.9)

Next we employ the relations (3.3) and evaluate

A†
1A1 =

κ2
8

λ2X
2 +

κ2
4

µ2
Y 2 +

κ26
µ2

P 2
x +

κ22
λ2P

2
y −

2κ8κ2

λ2 XPy −
2κ4κ6

µ2
Y Px (3.10)

+i
κ4κ8
λµ

[X,Y ] + i
κ4κ2
λµ

[Y, Py]− i
κ6κ8

λµ
[X,Px]− i

κ6κ2
λµ

[Px, Py],

A†
2A2 =

κ2
7

λ2X
2 +

κ2
3

µ2
Y 2 +

κ25
µ2

P 2
x +

κ21
λ2P

2
y −

2κ7κ1

λ2 XPy −
2κ3κ5

µ2
Y Px (3.11)

+i
κ3κ7
λµ

[X,Y ] + i
κ3κ1
λµ

[Y, Py]− i
κ5κ7

λµ
[X,Px]− i

κ5κ1
λµ

[Px, Py].

– 5 –
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Substituting (3.10) and (3.11) into the right hand sides of (3.4)-(3.7) we obtain four equa-

tions for the four unknown commutators [X,Y ], [X,Px], [Y, Py] and [Px, Py]. Solving these

equations, the resulting dynamical noncommutative relations are

[X,Y ] = iθ + i
q − q−1

q + q−1

[

κ2κ6κ
2
7 + κ1κ5κ

2
8

(κ2κ7 − κ1κ8)
2 X2 +

κ2κ6κ
2
3 + κ1κ5κ

2
4

(κ4κ5 − κ3κ6)
2 Y 2 (3.12)

+
κ5κ6 (κ2κ5 + κ1κ6)

(κ4κ5 − κ3κ6)
2 P 2

x +
κ1κ2 (κ2κ5 + κ1κ6)

(κ2κ7 − κ1κ8)
2 P 2

y

−
2κ1κ2 (κ6κ7 + κ5κ8)

(κ2κ7 − κ1κ8)
2 XPy −

2κ5κ6 (κ2κ3 + κ1κ4)

(κ4κ5 − κ3κ6)
2 Y Px

]

,

[X,Px] = i~+ i
q − q−1

q + q−1

[

κ2κ4κ
2
7 + κ1κ3κ

2
8

(κ2κ7 − κ1κ8)
2 X2 +

κ3κ4 (κ2κ3 + κ1κ4)

(κ4κ5 − κ3κ6)
2 Y 2 (3.13)

+
κ2κ4κ

2
5 + κ1κ3κ

2
6

(κ4κ5 − κ3κ6)
2 P 2

x +
κ1κ2 (κ2κ3 + κ1κ4)

(κ2κ7 − κ1κ8)
2 P 2

y

−
2κ1κ2 (κ4κ7 + κ3κ8)

(κ2κ7 − κ1κ8)
2 XPy −

2κ3κ4 (κ2κ5 + κ1κ6)

(κ4κ5 − κ3κ6)
2 Y Px

]

,

[Y, Py] = i~− i
q − q−1

q + q−1

[

κ7κ8 (κ6κ7 + κ5κ8)

(κ2κ7 − κ1κ8)
2 X2 +

κ6κ8κ
2
3 + κ5κ7κ

2
4

(κ4κ5 − κ3κ6)
2 Y 2 (3.14)

+
κ5κ6 (κ6κ7 + κ5κ8)

(κ4κ5 − κ3κ6)
2 P 2

x +
κ6κ8κ

2
1 + κ5κ7κ

2
2

(κ2κ7 − κ1κ8)
2 P 2

y

−
2κ7κ8 (κ2κ5 + κ1κ6)

(κ2κ7 − κ1κ8)
2 XPy −

2κ5κ6 (κ4κ7 + κ3κ8)

(κ4κ5 − κ3κ6)
2 Y Px

]

,

[Px, Py] = −i
q − q−1

q + q−1

[

κ7κ8 (κ4κ7 + κ3κ8)

(κ2κ7 − κ1κ8)
2 X2 +

κ3κ4 (κ4κ7 + κ3κ8)

(κ4κ5 − κ3κ6)
2 Y 2 (3.15)

+
κ4κ8κ

2
5 + κ3κ7κ

2
6

(κ4κ5 − κ3κ6)
2 P 2

x +
κ4κ8κ

2
1 + κ3κ7κ

2
2

(κ2κ7 − κ1κ8)
2 P 2

y

−
2κ7κ8 (κ2κ3 + κ1κ4)

(κ2κ7 − κ1κ8)
2 XPy −

2κ3κ4 (κ6κ7 + κ5κ8)

(κ4κ5 − κ3κ6)
2 Y Px

]

.

For the constant terms of these commutators we have implemented here the constraints

κ1κ5 + κ2κ6 =
θ

4

(

1 + q2
)

, (3.16)

κ1κ3 + κ2κ4 =
~

4

(

1 + q2
)

, (3.17)

κ5κ7 + κ6κ8 = −
~

4

(

1 + q2
)

, (3.18)

κ3κ7 + κ4κ8 = 0, (3.19)

in order to ensure that the limit q → 1 for the relations (3.12)-(3.15) will yield the standard

commutation relations for noncommutative flat space-time (2.1). The relations (3.8) and

(3.9) remain of course unchanged.

– 6 –
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3.1 Some special limits

Keeping all the constants generic in the algebra (3.12)-(3.15) will make the handling very

cumbersome. However, using the fact that we still have four κs free at our disposal allows

us to extract some special limiting cases in order to obtain some more tractable algebras.

3.1.1 Dependent X and Y directions

Considering (3.2) the first natural limit is to reduce the number of free parameters to four,

e.g. κ1, . . . , κ4, and introduce some dependence for the coefficients in the Y -direction on

those in the X-direction. Considering the representation (3.3) we impose

κ5 = κ1, κ6 = −κ2, κ7 = −κ3 and κ8 = κ4, (3.20)

such that without activating the constraints (3.16)-(3.19) the eight unknown constants are

already limited to four. The four constraints (3.16)-(3.19) are not independent for these

choices as (3.17) and (3.18) become identical. The remaining three constraints read

κ2
1 − κ2

2 =
θ

4

(

1 + q2
)

, κ1κ3 + κ2κ4 =
~

4

(

1 + q2
)

and κ23 = κ24, (3.21)

which means we have still one constant at our disposal. The algebra (3.12)-(3.15), (3.8)

and (3.9) simplifies to

[X,Y ] = iθ + i
q − q−1

q + q−1

[

κ1κ4 − κ2κ3
κ1κ4 + κ2κ3

(X2 + Y 2)−
2κ1κ2

κ1κ4 + κ2κ3
(XPy − Y Px)

]

, (3.22)

[X,Px] = ih+ i
q − q−1

q + q−1

[

κ3κ4

κ1κ4 + κ2κ3
(X2 + Y 2) +

κ1κ2
κ1κ4 + κ2κ3

(P 2
x + P 2

y )

]

, (3.23)

[Y, Py] = ih+ i
q − q−1

q + q−1

[

κ3κ4

κ1κ4 + κ2κ3
(X2 + Y 2) +

κ1κ2
κ1κ4 + κ2κ3

(P 2
x + P 2

y )

]

, (3.24)

[Px, Py] = −i
q − q−1

q + q−1

[

κ1κ4 − κ2κ3
κ1κ4 + κ2κ3

(P 2
x + P 2

y )−
2κ3κ4

κ1κ4 + κ2κ3
(XPy − Y Px)

]

, (3.25)

[X,Py] = 0, (3.26)

[Y, Px] = 0. (3.27)

The conditions λ 6= 0, µ 6= 0 now coincide and have translated into κ1κ4 + κ2κ3 6= 0. Our

choice of constants has achieved that the terms XPy and Y Px have combined into the

angular momentum operator Lz.

3.2 Membrane and string type relations

As one of the κs is still not fixed we can simplify the commutation relations (3.22)-(3.27)

further by setting κ2 = 0, such that all three unknown left are fixed by the remaining three

relations

κ2
1 =

θ

4

(

1 + q2
)

, κ1κ3 =
~

4

(

1 + q2
)

and κ2
3 = κ2

4. (3.28)
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We may now implement the constraints (3.28) in the algebra (3.22)-(3.27) and eliminate

all constants κi being left with a purely q-deformed algebra

[X,Y ] = iθ + i
q − q−1

q + q−1

(

X2 + Y 2
)

, (3.29)

[X,Px] = i~+ i
q − q−1

q + q−1

~

θ

(

X2 + Y 2
)

, (3.30)

[Y, Py] = i~+ i
q − q−1

q + q−1

~

θ

(

X2 + Y 2
)

, (3.31)

[Px, Py] = i
q−1 − q

q−1 + q

[

P 2
x + P 2

y + 2
~

θ
(XPy − Y Px)

]

, (3.32)

[X,Py ] = 0, (3.33)

[Y, Px] = 0. (3.34)

These relations reduce to (2.11) for q = ±
√

(1 + τ)/(1 − τ). Notice further that the q-

deformation and the θ-deformation originally introduced in the space-space commutation

relations have become intrinsically linked through the constraints. We can no longer take

the limit θ → 0 separately without taking also the limit q → 0. However, the limit q → 0

may still be taken separately and we recover (2.1).

We named these relations “membrane type” as the relation (3.29) will give rise to a

minimal length in the X and Y direction in a simultaneous measurement as we will explain

in more detail below. As it stands, the relation (3.29) will lead to the same minimal length

in either direction. This is by no means unavoidable and can be overcome by taking another

limit of the algebra (3.12)-(3.15), (3.8) and (3.9). Setting for instance κ2 = κ6 = 0 without

any additional constraints besides (3.16)-(3.19), which in this case read

κ1κ5 =
θ

4

(

1 + q2
)

, κ1κ3 =
~

4

(

1 + q2
)

, κ5κ7 = −
~

4

(

1 + q2
)

, κ3κ7 = −κ4κ8. (3.35)

the algebra simplifies considerably

[X,Y ] = iθ + i
q − q−1

q + q−1

(

κ5

κ1
X2 +

κ1

κ5
Y 2

)

, (3.36)

[X,Px] = i~+ i
q − q−1

q + q−1

(

κ3

κ1
X2 +

κ1κ3
κ25

Y 2

)

, (3.37)

[Y, Py] = i~− i
q − q−1

q + q−1

(

κ5κ7

κ2
1

X2 +
κ7
κ5

Y 2

)

, (3.38)

[Px, Py] = −i
q − q−1

q + q−1

[

(κ4κ7 + κ3κ8)

(

κ7
κ8κ21

X2 +
κ3

κ4κ25
Y 2

)

(3.39)

+
κ8
κ4

P 2
x +

κ4

κ8
P 2
y − 2

κ4κ7
κ1κ8

Y Px − 2
κ3κ8

κ4κ5
XPy

]

,

[X,Py ] = 0, (3.40)

[Y, Px] = 0. (3.41)

We notice that in (3.36) we have now different coefficients in front of the X2 and Y 2-terms

and may achieve unequal minimal length in either direction, although they are not entirely

independent being related by the first relation in (3.35).
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Taking now a less trivial limit, we may obtain string like relations from (3.36)-(3.41)

similar to those proposed in [18]. Parameterizing q = e2τκ
2

5 with τ ∈ R
+ and taking the

limit κ5 → 0 we obtain yet simpler relations. As we have still many free parameters left

in (3.39) we have several choices. With respect to the constraints (3.35) we can take for

instance κ3 = ~/θκ5, κ4 = ~
2/θκ5, κ8 = (1+ q2)/(4κ5) and derive the simple “string type”

relations

[X,Y ] = iθ
(

1 + τY 2
)

, [X,Px] = i~
(

1 + τY 2
)

, [X,Py ] = 0,

[Px, Py] = iτ ~
2

θ
Y 2, [Y, Py] = i~

(

1 + τY 2
)

, [Y, Px] = 0.
(3.42)

Arguing in the same way as in [18], we obtain now from the first relation in (3.42) a minimal

length in the Y -direction in a simultaneous X,Y -measurement as the commutator [X,Y ]

is identical. The remaining commutators are, however, different.

There are of course plenty of other possible limits compatible with the constraints

(3.16)-(3.19), which we do not present here.

4. Minimal areas and minimal lengths

As mentioned, one of the interesting physical consequences of noncommutative space-time,

especially when it is dynamical, is the emergence of minimal lengths in simultaneous mea-

surements of two observables. The standard noncommutative space-time relations (2.1)

give rise to additional uncertainties similar to the usual Heisenberg uncertainty relations,

meaning for instance that the two position operators x0 and y0 can never be known with

complete precision at the same time, where θ plays the role of ~ when compared with the

conventional relations. When the underlying algebra becomes a dynamical noncommuta-

tive space-time structure the consequences are more severe and one finds that the position

operators X or Y can never be known, that is even when giving up the entire knowledge

about the canonical conjugate partner Y or X, respectively. Thus X or Y are said to

be bound by some absolute minimal length ∆X0 or ∆Y0, which is the highest possible

precision to which these quantities can be resolved.

Minimal lengths have been known and studied for some time [9, 10, 11, 12, 13, 14,

15, 16] in simultaneous x, p-measurements as a consequence of a deformation of the x, p-

commutator. In [18] it was demonstrated explicitly that they also result in simultaneous

x, y-measurements as a consequence of the dynamical noncommutativity of space-time.

Whereas the algebra investigated in [18] only gave rise to a minimal length in one direction,

i.e. “string like” objects, we demonstrate here that the algebras provided in section 3 will

lead to minimal lengths in two direction, i.e. minimal areas. Objects in these type of

spaces are “membrane like”, meaning that there exists a finitely extended region about

whose substructure it is impossible to obtain any measurable knowledge.

Following the standard arguments we will now compute these quantities by starting

with the well known relation

∆A∆B ≥
1

2
|〈[A,B]〉| , (4.1)

which holds for any two observables A and B, which are Hermitian with respect to the

standard inner product. In order to determine the range of validity for this inequality
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we simply have to minimize f(∆A,∆B) := ∆A∆B − 1
2 |〈[A,B]〉| as a function of ∆B to

find the absolute minimal length ∆A0. This means we need to solve the two equations

∂∆Bf(∆A,∆B) = 0 and f(∆A,∆B) = 0 for ∆A =: ∆Amin and subsequently compute

the smallest value for ∆Amin in order to obtain the absolute minimal length ∆A0. In

case we obtain minimal length for both of these observables we define the minimal area

and its smallest possible value of four times the product, that is ∆(AB)min and ∆(AB)0,

respectively.

For definiteness we choose now θ ∈ R
+ and carry out the analysis for the algebra

(3.36)-(3.41) starting with a simultaneous X,Y -measurement. When q2 > 1 the imaginary

parts of all terms of the commutator [X,Y ] are positive due to the first constraint in

(3.35). The absolute value for |〈[X,Y ]〉| is therefore simply Im 〈[X,Y ]〉. When q2 < 1 we

use |A−B| ≥ A−B for A,B > 0 to drop the absolute value. Using furthermore that the

mean-squared deviation about the expectation value 〈X〉 is given by ∆X2 =
〈

X2
〉

− 〈X〉2

and similarly for X ↔ Y , we compute

∆Xmin =

√

|q2 − 1| (κ2
1 〈X〉2 + κ2

5 〈Y 〉2) + θ(q4 − 1)κ1κ5

2qκ5
, (4.2)

∆Ymin =

√

|q2 − 1| (κ2
5 〈X〉2 + κ2

1 〈Y 〉2) + θ(q4 − 1)κ1κ5

2qκ1
, (4.3)

such that the absolute minimal lengths result to

∆X0 =
κ1
q

√

|q2 − 1| and ∆Y0 =
κ5

q

√

|q2 − 1|, (4.4)

hen 〈X〉 = 〈Y 〉 = 0. Together with the first constraint in (3.35) the absolute minimal area

in the X,Y -plane results to

∆(XY )0 = θ
∣

∣q2 − q−2
∣

∣ . (4.5)

This means the size of the minimal area is independent of the free parameters κ1 and κ5.

We can also make ∆Y0 a function of ∆X0 and compute for given ∆X0 the corresponding

minimal length ∆Y0 or vice versa. Note that it is impossible to achieve any of the minimal

lengths to vanish without the other becoming infinitely large. We illustrate this in figure

1, where we plot ∆Y0(∆X0) = ±θ
∣

∣q2 − q−2
∣

∣ /(4∆X0) for a specific value of θ and various

values of q. The two minimal areas indicated in the figure have the same size.

For a simultaneous X,Px-measurement we compute similarly the minimal momentum

in the X-direction

(∆Px)min =

√

(q2 − 1)2(〈Y 〉2 + 〈Y 2〉)κ2
3κ

2
1 + ~ |q4 − 1| κ1κ3κ25 + 〈X〉2 (q2 − 1)2κ23κ

2
5

(q2 + 1)κ1κ5
,

(4.6)

such that the corresponding absolute value turns out to be

(∆Px)0 = 2κ3

√

|q2 − 1|

q2 + 1
. (4.7)
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There is no minimal length for X in this case as we can tune ∆X to be as small as we wish

by enlarging ∆Px.
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Figure 1: Minimal areas in the XY-plane.

Similarly we compute for a simultaneous Y, Py-measurement the minimal momentum

in the Y -direction

(∆Py)min =

√

(q2 − 1)2(〈X〉2 + 〈X2〉)κ2
7κ

2
5 + ~ |1− q4|κ5κ7κ

2
1 + 〈Y 〉2 (q2 − 1)2κ21κ

2
7

(q2 + 1)κ1κ5
,

(4.8)

with corresponding absolute value

(∆Py)0 = 2κ7

√

|q2 − 1|

q2 + 1
. (4.9)

By the same reasoning as in the previous case there is also no minimal length for Y in this

case as ∆Y can be taken to be as small as desiredh by enlarging ∆Py.

The analysis for a simultaneous Px, Py-measurement is less straightforward due to the

appearance of the angular momentum term. we first note that

|〈[Px, Py]〉| ≥

∣

∣

∣

∣

q2 − 1

q2 + 1

∣

∣

∣

∣

[

|κ4κ7 + κ3κ8|

(

κ7
κ8κ21

〈

X2
〉

−

∣

∣

∣

∣

κ3
κ4κ25

∣

∣

∣

∣

〈

Y 2
〉

)

(4.10)

+
κ8
κ4

〈

P 2
x

〉

+
κ4

κ8

〈

P 2
y

〉

− 2
κ4κ7
κ1κ8

|〈Y Px〉| − 2
κ3κ8
κ4κ5

|〈XPy〉|

]

,

where for definiteness we assumed that κ23 < κ24. Using next the estimate |〈AB〉| ≤

∆A∆B + |〈A〉 〈B〉| we compute

∆Px∆Py ≥
1

2

∣

∣

∣

∣

q2 − 1

q2 + 1

∣

∣

∣

∣

[

κ8
κ4

∆P 2
x +

κ4

κ8
∆P 2

y − 2

∣

∣

∣

∣

κ4κ7
κ1κ8

∣

∣

∣

∣

∆Y∆Px − 2
κ3κ8

κ4κ5
∆X∆Py + λ

]

,

(4.11)
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with

λ =
κ8

κ4
〈Px〉

2 +
κ4
κ8

〈Py〉
2 + |κ4κ7 + κ3κ8|

(

κ7

κ8κ2
1

〈X〉2 −

∣

∣

∣

∣

κ3

κ4κ25

∣

∣

∣

∣

〈Y 〉2
)

(4.12)

−2

∣

∣

∣

∣

κ4κ7
κ1κ8

∣

∣

∣

∣

|〈Y 〉 〈Px〉| − 2
κ3κ8
κ4κ5

|〈X〉 〈Py〉| .

When varying the inequality (4.11) in the same manner as the expressions above we find

(∆Px)min = −

∣

∣q4 − 1
∣

∣

4q2
κ3κ8

κ4κ5
∆X −

(

q2 − 1
)2

4q2

∣

∣

∣

∣

κ4κ7

κ1κ8

∣

∣

∣

∣

κ4

κ8
∆Y (4.13)

±

∣

∣q2 − q−2
∣

∣

4

√

√

√

√κ2
3κ

2
8∆X2

κ25κ
2
4

+
κ2
7κ

4
4∆Y 2

κ21κ
4
8

+
2
∣

∣

∣

κ4κ7

κ1κ8

∣

∣

∣
κ3∆X∆Y

κ5 |q2 − 1| (q2 + 1)−1
+

4q2λκ4

κ8 (q2 − 1)2
.

and

(∆Py)min = −

(

q2 − 1
)2

4q2
κ3

κ1κ24κ
2
5

∆X −

∣

∣1− q4
∣

∣

4q2

∣

∣

∣

∣

κ4κ7

κ1κ8

∣

∣

∣

∣

1

κ1κ5κ28
∆Y (4.14)

±

∣

∣q2 − q−2
∣

∣

4

√

√

√

√κ2
3κ

4
8∆X2

κ4
4κ

2
5

+
κ24κ

2
7∆Y 2

κ21κ
2
8

+
2
∣

∣

∣

κ7κ8

κ1κ4

∣

∣

∣
κ3∆X∆Y

κ5 (q2 − 1)2 |1− q4|−1 +
4q2λκ8

κ4 (q2 − 1)2
.

We can minimize this expression further with a subsequent X,Y -measurement. This is,

however, a matter of interpretation if one would like to view measurements as a pairwise

succession or whether this should be considered as a simultaneous measurement of four

quantities. A further option would be to exploit the explicit occurrence of the Lz-operator

and take this complication here as a hint that the angular momentum variables are possibly

a more natural set of variables. We leave this problem for future investigations. Similar

expressions are obtained for the choice κ23 > κ24.

5. Conclusions

We have demonstrated that dynamical noncommutative space-time relations will inevitably

lead to deformed oscillator algebras. Taking some well studied oscillator algebras with the

useful property that the entire Fock spaces associated to them is explicitly constructable as

a starting point, we derived some very general commutation relations (3.12)-(3.15) for the

dynamical variables. Since these relations are rather cumbersome, we investigated some

specific limits leading to simplified and more tractable variants, whose properties can be

discussed more transparently. All of these special limits led to minimal lengths in the two

dimensional space and mostly to minimal areas which we have calculated explicitly (4.5).

There are some obvious further problems following from our considerations. First of

all it would be very interesting to explore the consequences of taking different types of

deformations as starting points and derive the resulting dynamical commutation relations.

Secondly it would be interesting to consider explicit models on these type space-time struc-

tures and thirdly but not last a generalization to three dimensional space would be highly

interesting. The latter will almost inevitably lead to minimal volumes.

– 12 –



Minimal areas

Acknowledgments: A.F. would like to thank the UGC Special Assistance Programme in

the Applied Mathematics Department of the University of Calcutta and S.N. Bose National

Centre for Basic Sciences for providing infrastructure and financial support. Thanks for

extremely kind hospitality go to many members of these institutions, but especially to

Bijan Bagchi and Partha Guha for being tireless in this effort. L.G. is supported under the

grant of the National Research Foundation of South Africa.

References

[1] H. S. Snyder, Quantized space-time, Phys. Rev. 71, 38–41 (1947).

[2] M. R. Douglas and N. A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73,

977–1029 (2001).

[3] R. J. Szabo, Quantum Field Theory on Noncommutative Spaces, Phys. Rept. 378, 207–299

(2003).

[4] X. Calmet, M. Graesser, and S. D. H. Hsu, Minimum Length from Quantum Mechanics and

Classical General Relativity, Phys. Rev. Lett. 93(21), 211101 (Nov 2004).

[5] D. Gross and P. Mende, String Theory Beyond the Planck Scale, Nucl. Phys. B303, 407

(1988).

[6] D. Amati, M. Ciafaloni, and G. Veneziano, Can Space-Time Be Probed Below the String

Size?, Phys. Lett. B216, 41 (1989).

[7] D. Amati, M. Ciafaloni, and G. Veneziano, Higher order gravitational deflection and soft

Bremsstrahlung in Planckian energy superstring collisions, Nucl. Phys. B347, 550–580

(1990).

[8] A. Ashtekar, Mathematical Problems of Non-perturbative Quantum General Relativity, Les

Houches summer school 1992 on Gravitation and Quantization (1993).

[9] A. Kempf, Uncertainty relation in quantum mechanics with quantum group symmetry, J.

Math. Phys. 35, 4483–4496 (1994).

[10] A. Kempf, G. Mangano, and R. B. Mann, Hilbert space representation of the minimal length

uncertainty relation, Phys. Rev. D52, 1108–1118 (1995).

[11] G. Brodimas, A. Jannussis, and R. Mignani, Bose realization of a noncanonical Heisenberg

algebra, J. Phys. A25, L329–L334 (1992).

[12] L. C. Biedenham, The quantum group group SU(2)q and a q-analogue of the boson

operators, J. Phys. A22, L873–L878 (1989).

[13] A. J. Macfarlane, On q-analogues of the quantum harmonic oscillator and the quantum

group SU(2)q, J. Phys. A22, 4581–4588 (1989).

[14] C.-P. Su and H.-C. Fu, The q-deformed boson realisation of the quantum group SU(n)q and

its representations, J. Phys. A22, L983–L986 (1989).

[15] C. Quesne and V. M. Tkachuk, Generalized deformed commutation relations with nonzero

minimal uncertainties in position and/or momentum and applications to quantum mechanics,

SIGMA 3, 016 (2007).

– 13 –



Minimal areas

[16] B. Bagchi and A. Fring, Minimal length in Quantum Mechanics and non-Hermitian

Hamiltonian systems, Phys. Lett. A373, 4307–4310 (2009).

[17] S. Hossenfelder, Self-consistency in theories with a minimal length, Class. Quant. Grav. 23,

1815–1821 (2006).

[18] A. Fring, L. Gouba, and F. G. Scholtz, Strings from dynamical noncommutative space-time,

arXiv:1003.3025 .

[19] C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rept. Prog. Phys. 70, 947–1018

(2007).

[20] A. Mostafazadeh, Pseudo-Hermitian Quantum Mechanics, arXiv:0810.5643, to appear Int. J.

Geom. Meth. Mod. Phys .

[21] P. E. G. Assis, Non-Hermitian Hamiltonians in Field Theory, PhD thesis, City University

London (2010).

[22] A. Fring, H. Jones, and M. Znojil (guest editors), Special issue dedicated to the physics of

non-Hermitian operators (PHHQP VI) (City University London, UK, July 2007), J. Phys.

A24 (June, 2008).

[23] S. Jain and Z. Ahmed (guest editors), Non Hermitian Hamitonians in Quantum Physics -

Part I and II (PHHQP VIII) (Bhabha Atomic Research Centre, India, January 2009),

Pramana Journal of Physics 73 (August, September, 2009).

[24] F. G. Scholtz, L. Gouba, A. Hafver, and C. M. Rohwer, Formulation, Interpretation and

Application of non- Commutative Quantum Mechanics, J. Phys. A42, 175303 (2009).

– 14 –


