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Abstract. Considering the Euclidean Division of two real polynomials,
we present an iterative process based on the ERES method to compute
the remainder of the division and we represent it using a simple matrix
form.

Introduction

The representation of the Euclidean algorithm process is presented using the
matrix-based methodology of Extended-Row-Equivalence and Shifting opera-
tions (ERES) [3, 4]. This allows the use of numerical methodologies for algebraic
computation problems with the additional advantage of being able to handle
uncertain coefficients and numerical errors.

We consider two real polynomials:

P (x) =

m∑
i=0

pi x
i, pm 6= 0 and Q (x) =

n∑
i=0

qi x
i, qn 6= 0, m, n ∈ IN (0.1)

with degrees deg{P (x)} = m, deg{Q(x)} = n respectively, and m ≥ n.

Definition 1. We define the set

Dm,n =
{

(P (x), Q(x)) : P (x), Q(x) ∈ IR[x], m = deg{P (x)} ≥ deg{Q(x)} = n
}

For any pair D = (P (x), Q(x)) ∈ Dm,n, we define a vector representative D(x)
and a basis matrix Dm represented as :

D(x) = [P (x), Q(x)]t = [p, q]t · em(x) = Dm · em(x)

where Dm ∈ IR2×(m+1), em(x) = [xm, xm−1, . . . , x, 1]t. The matrix Dm is formed
directly from the coefficients of the given polynomials P (x) and Q(x).

Definition 2. Given a pair Dm,n of real polynomials with a basis matrix Dm

the following operations are defined [3, 4]:
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a) Elementary row operations with scalars from IR on Dm .
b) Addition or elimination of zero rows on Dm .
c) If at = [0, . . . , 0, al, . . . , ak] ∈ IRk, al 6= 0 then we define as the Shifting

operation
shf : shf(at) = [al, . . . , ak, 0, . . . , 0] ∈ IRk

By shf(Dm,n) ≡ D∗m,n, we shall denote the pair obtained from Dm,n by applying
shifting on the rows of Dm. Type (a), (b) and (c) operations are referred to as
Extended-Row-Equivalence and Shifting (ERES) operations.

The following theorem shows the relation between a matrix and its shifted
form [1] .

Theorem 1 (Matrix representation of Shifting). If D ∈ IR2×k, k > 2, is
an upper trapezoidal matrix with rank ρ(D) = 2 and D∗ ∈ IR2×k is the matrix
obtained from D by applying shifting on its rows, then there exists a matrix
S ∈ IRk×k such that: D∗ = D · S .

Corollary 1. If Dm ∈ IR2×(m+1) is the basis matrix of a pair of real polynomials
D = (P (x), Q(x)) ∈ Dm,n, then D∗m ∈ IR2×(m+1) is the basis matrix of the pair

D∗ = (P (x), xm−nQ(x)) ∈ Dm,m and there exists a matrix SD ∈ IR(m+1)×(m+1)

such that:
D∗m = Dm · SD (0.2)

The ERES representation of the Euclidean Division

If we have a pair of polynomials D = (P (x), Q(x)) ∈ Dm,n, then, according to
Euclid’s division algorithm, it holds:

P (x) =
pm
qn

xm−nQ(x) +R1(x) (0.3)

This is the first and basic step of the Euclidean Division algorithm. The poly-
nomial R1(x) ∈ IR[x] is given by:

R1(x) =

m−1∑
i=m−n

(
pi −

pm
qn
qi−(m−n)

)
xi +

m−n−1∑
i=0

pi x
i (0.4)

In the following, we will show that the remainder R1(x) can be computed by
applying ERES operations to the basis matrix Dm of the pair D.

Proposition 1 (Matrix representation of the first remainder of the
Euclidean Division). Applying the algorithm of the Euclidean Division to a
pair D = (P (x), Q(x)) ∈ Dm,n of real polynomials, there exists a polynomial
R1(x) ∈ IR[x] with degree 0 ≤ deg{R1(x)} < m such that:

P (x) =
pm
qn

xm−nQ(x) +R1(x)



70 Dimitrios Christou, Nicos Karcanias and Marilena Mitrouli

Then, the remainder R1(x) can be represented in matrix form as:

R1(x) = vt · E1 · em(x)

where E1 ∈ IR2×(m+1) is the matrix, which occurs from the application of the
ERES operations on the basis matrix Dm of the pair D and v = [0, 1]

t
.

Proof. If we consider the division P (x)/Q(x), then, according to Euclid’s al-
gorithm, there is a polynomial R1(x) with degree 0 ≤ deg{R1(x)} < m such
that:

R1(x) = P (x)− pm
qn

xm−nQ(x) = [0, 1] ·
[

0 1
1 −pm

qn

]
·
[

P (x)
xm−nQ (x)

]
(0.5)

If we take into account the result in corollary 1, we will have:

R1(x) = [0, 1] ·
[

0 1
1 −pm

qn

]
·Dm · SD · em(x) = vt · C ·Dm · SD · em(x) (0.6)

where vt = [0, 1], C =

[
0 1
1 −pm

qn

]
, Dm is the basis matrix of the polynomials

P (x) and Q(x) and SD the respective shifting matrix. Therefore, there exists a

matrix E1 ∈ IR2×(m+1) such that:

E1 = C ·Dm · SD and R1(x) = vt · E1 · em(x) (0.7)

We consider now the basis matrix Dm of the polynomials P (x) and Q(x) :

Dm =

[
P (x)
Q (x)

]
=

[
pm ... pn+1 pn pn−1 ... p0
0 ... 0 qn qn−1 ... q0

]
· em (x) (0.8)

and we will show that the above matrix E1 is produced by applying the ERES
operations to the basis matrix Dm of the polynomials P (x) and Q(x). We follow
the next methodology:

1. We apply shifting on the rows of Dm. Let SD ∈ IR(m+1)×(m+1), be the proper

shifting matrix: D
(1)
m = Dm · SD =

[
pm ... pm−n+1 pm−n pm−n−1 ... p0
qn ... q1 q0 0 ... 0

]
2. We reorder the rows of the matrix D

(1)
m . If J =

[
0 1
1 0

]
is the permutation

matrix, then: D
(2)
m = J ·D(1)

m =

[
qn ... q1 q0 0 ... 0
pm ... pm−n+1 pm−n pm−n−1 ... p0

]
3. We apply stable row operations on D

(2)
m (LU factorization). If L =

[
1 0
pm

qn
1

]
then L−1 =

[
1 0
−pm

qn
1

]
and therefore:
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D(3)
m = L−1 ·D(2)

m =

[
1 0
−pm

qn
1

]
·
[
qn ... q1 q0 0 ... 0
pm ... pm−n+1 pm−n pm−n−1 ... p0

]

=

 qn ... q1 q0 0 ... 0
0 ... pm−n+1 − q1 pm

qn
pm−n − q0 pm

qn
pm−n−1 ... p0


We notice that the term pm

qn
emerges from the LU factorization.

The above process can be described by the following equation:

D(3)
m = L−1 · J ·Dm · SD (0.9)

which represents the ERES methodology. Obviously L−1 · J = C and therefore,

we conclude that D
(3)
m ≡ E1 . ut

The following theorem establishes the connection between the ERES method
and the Euclidean Division of two real polynomials.

Theorem 2 (Matrix representation of the remainder of the Euclidean
Division). Applying the algorithm of the Euclidean Division to a pair D =
(P (x), Q(x)) ∈ Dm,n of real polynomials, there are polynomials G(x), R(x) ∈
IR[x] with degrees deg{G(x)} = m−n and 0 ≤ deg{R(x)} < n respectively, such
that:

P (x) = G(x)Q(x) +R(x)

Then, the final remainder R(x) can be represented in matrix form as:

R(x) = vt · EN · em(x)

where EN ∈ IR2×(m+1) is the matrix, which occurs from the successive applica-
tion of the ERES operations on the basis matrix Dm of the pair D and v = [0, 1]

t
.

The proof of the previous theorem is based on the iterative application of
the result from proposition 1 to the sequence {(P (x), Q(x)), (Ri(x), Q(x))}, for
1 ≤ i ≤ (m− n) . Therefore, we get a sequence of matrices Ei = L−1i ·Ei−1 · Si,
for i = 1, 2, . . . , N < m−n, where the final matrix EN gives the total remainder
R(x) and every matrix Li gives a specific coefficient of the quotient G(x) .
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