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Abstract
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1 Introduction

In [1] a certain physical picture for the quantum field theory of the Homogeneous
Sine-Gordon models (HSG) [2] was extracted from a thermodynamic Bethe ansatz
analysis. The central aim of this manuscript is to inspect the picture for consistency
by means of the form factor approach [3, 4].

The HSG-models have been constructed as integrable perturbations of WZNW-
models. The related scattering matrices belong to a general class [5, 6], which
describe the scattering of particles labeled by two quantum numbers, where each of
them may be associated to a simple Lie algebra. Characteristic features of these S-
matrices are the breaking of the parity invariance of some amplitudes and in addition
the presence of a resonance parameter which enables the formation of unstable
bound states. In [1] we recovered the expected Virasoro coset central charge and
found that when the resonance parameter tends to infinity the system decouples
into several copies of minimal affine Toda field theories. Since the ultraviolet central
charge is also accessible by the c-theorem, the findings in [1] may be checked for
consistency.

Our manuscript is organised as follows: In section 2 we recall the general prop-
erties of form factors. In section 3 we specialise the equations to the case of the
SU(3)2-HSG model and provide the general solutions related to the energy momen-
tum tensor and the analogue of the order and disorder operators. Our conclusions
and a further outlook are presented in section 4.

2 Generalities on Form Factors

In order to fix our conventions and to set up the general framework we commence by
recalling briefly some general properties of form factors. For a proper justification of
them in terms of general principles of quantum field theory and analytic properties
in the complex plane we refer the reader to [3, 4, 7, 8].

Form factors are tensor valued functions, representing matrix elements of some
local operator O(~x) at the origin between a multiparticle in-state and the vacuum,
which we denote by

FO|µ1...µn
n (θ1, . . . , θn) :=

〈

0|O(0)|Vµ1
(θ1)Vµ2

(θ2) . . . Vµn
(θn)

〉

in
. (1)

Here the Vµ(θ) are some vertex operators representing a particle of species µ de-
pending on the rapidity θ satisfying the so-called Zamolodchikov algebra.

As a consequence of CPT-invariance or the braiding of two operators Vµ(θ) one
obtains

F
O|...µiµi+1...
n (. . . , θi, θi+1, . . .) = F

O|...µi+1µi...
n (. . . , θi+1, θi, . . .)Sµiµi+1

(θi,i+1) . (2)
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As usual we abbreviate θij = θi − θj . The analytic continuation in the complex
θ-plane at the cuts when θ = 2πi together with crossing leads to

FO|µ1...µn
n (θ1 + 2πi, . . . , θn) = FO|µ2...µnµ1

n (θ2, . . . , θn, θ1) . (3)

Since we are describing relativistically invariant theories we expect for an operator
O with spin s

FO|µ1...µn
n (θ1 + ∆, . . . , θn + ∆) = es∆FO|µ1...µn

n (θ1, . . . , θn) . (4)

For a form factor whose first two particles are conjugate to each other we have a
kinematical pole at iπ, which leads to a recursive equation relating the (n-2)- and
the n-particle form factor

Res
θ̄0→θ0

F
O|µ̄µµ1...µn
n+2 (θ̄0+iπ, θ0, θ1, . . . , θn) = i(1 − ω

n∏

l=1

Sµµl
(θ0l))F

O|µ1...µn
n (θ1, . . . , θn),

(5)
with ω being the factor of local commutativity and µ̄ the anti-particle of µ. We
restrict our initial considerations to a model in which stable bound states may not
be formed and therefore we do not need to report the so-called bound state residue
equation.

To be able to associate a solution of the equations (2)-(5) to a particular oper-
ator, the following upper bound on the asymptotic behaviour [9]

[

FO|µ1...µn
n (θ1, . . . , θn)

]

i
≤ ∆ (6)

turns out to be very useful. Here ∆ denotes the conformal dimension of the operator
O in the conformal limit. For convenience we introduced the short hand notation
limθi→∞ f(θ1, . . . , θn) = const exp([f(θ1, . . . , θn)]iθi).

Ultimately form factors serve to compute correlation functions, but they may
also be exploited to extract various other properties as for instance the difference
between the ultraviolet and infrared Virasoro central charges, as stated in the so-
called c-theorem [10]

∆c =
∞∑

n=1

∑

µ1...µn

9

n!(2π)n

∞∫

−∞

. . .

∞∫

−∞

dθ1 . . . dθn
(
∑n

i=1 mµi
cosh θi

)4

∣
∣
∣FO|µ1...µn

n (θ1, . . . , θn)
∣
∣
∣

2
. (7)

It is essentially the property (7) which we wish to employ for our purposes and
check for consistency of the physical picture which emerged in [1].

3 The SU(3)2-HSG model

For finite resonance parameter the SU(3)2-HSG model describes the WZNW-coset
model with central charge c = 6/5 perturbed by an operator with conformal di-
mension ∆ = 3/5. The model contains only two self-conjugate solitons which are
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conveniently denoted by “+” and “−”, since that will allow for compact notations.
The S-matrix elements read [5]

S±± = −1 and S±∓(θ) = ± tanh
1

2

(

θ ± σ − i
π

2

)

. (8)

This means the scattering of particles of the same type is simply described by the
S-matrix of the thermal perturbation of the Ising model. Also the remaining am-
plitudes do not possess poles inside the physical sheet, such that the formation of
stable particles via fusing is not possible. For vanishing resonance parameter σ the
amplitudes S±∓ coincides formally with the ones which describe the massless flow
between the tricritical Ising and the critical Ising model as analysed in [11]. How-
ever, there is an important conceptual difference since we view the expressions (8)
as describing the scattering of massive particles. This has important consequences
on the construction of the form factors and in fact the solution we compute below
will be different from the one proposed in [11]. In the HSG setting the massless flow
was recovered in the context of the thermodynamic Bethe ansatz [1] only as a sub-
system in terms of specially introduced variables combining the inverse temperature
and the resonance parameter. When the resonance parameter tends to infinity the
amplitudes S±∓ become one, describing non-interacting scattering, such that the
“+”-system and the “-”-system decouple.

Attempting now to solve the equations presented in section 2, we proceed as
usual in this context and we make a factorization ansatz which already extracts
explicitly some of the singularity structure we expect to find. For the case at hand
we have to have a kinematical pole at iπ when two particles are conjugate to each
other

F
O|

l ×±
︷ ︸︸ ︷
µ1 . . . µl

m ×∓
︷ ︸︸ ︷
µl+1 . . . µn

n (θ1 . . . θn) = HO|µ1...µn
n QO|µ1...µn

n (x1 . . . xn)
∏

i<j

F
µiµj

min (θij)
(

x
µi
i + x

µj

j

)δµiµj
.

(9)
We introduced the variable xi = exp θi. The HO|µ1...µn

n are normalization constants.
As common we suppose that the so-called minimal form factor satisfies

F ij
min(θ) = F ji

min(−θ)Sij(θ) = F ji
min(2πi − θ) (10)

and has neither zeros nor poles in the physical sheet. Then, if we further assume that
QO|µ1...µn

n (θ1, . . . , θn) is separately symmetric in the first l and the last m rapidities
and in addition 2πi-periodic function in all rapidities, the ansatz (9) solves Watson’s
equations (2) and (3) by construction. In particular we have

Q
O|

l×+

︷ ︸︸ ︷
µ1 . . . µl

m ×−
︷ ︸︸ ︷
µl+1 . . . µn

n (x1, . . . , xn) = Q
O|

m ×−
︷ ︸︸ ︷
µl+1 . . . µn

l×+

︷ ︸︸ ︷
µ1 . . . µl

n (xl+1, . . . xn, x1, . . . xl) ,
(11)
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such that when we have constructed a solution for one particular ordering of the
µ’s, e.g. the upper sign in (9), we can obtain the solution for a permuted ordering
by the monodromy properties. Especially the reversed order we obtain by apply-
ing equation (11). Despite the fact that we do not gain anything new, it is still
instructive to verify (5) as a consistency check also for the different ordering. The
monodromy properties allow some simplification in the notation and from now on
we restrict our attention w.l.g. to the upper sign in (9). In addition we deduce
from equation (4) that for a spinless operator O the total degree of QO

n has to be
l(l − 1)/2- m(m − 1)/2.

A solution for the minimal form factors, i.e. of equations (10), is found easily

F±±
min(θ) = −i sinh

θ

2
(12)

F±∓
min(θ) = N±(θ)

∞∏

k=1

Γ(k+ 1

4
)2Γ(k+ 1

4
+ i

2π
(θ±σ))Γ(k− 3

4
− i

2π
(θ±σ))

Γ(k− 1

4
)2Γ(k− 1

4
− i

2π
(θ±σ))Γ(k+ 3

4
+ i

2π
(θ±σ))

(13)

= N±(θ) exp



−

∞∫

0

dt
t

sin2((iπ−θ∓σ) t
2π )

sinh t cosh t/2



 . (14)

Here F±±
min(θ) is the well-known minimal form factor of the thermally perturbed

Ising model [12, 13] and for the upper choice of the signs, equation (14) coincides
for vanishing σ up to normalization with the expression found in [11]. We introduced

the normalization function N±(θ) = 2
1

4 exp
(

iπ(1∓1)±θ
4

− G
π

)

with G = 0.91597 being
the Catalan constant. The minimal form factors possess various properties which we
would like to employ in the course of our argumentation. They obey the functional
identities

F±±
min(θ + iπ)F±±

min(θ) = −
i

2
sinh θ (15)

F±∓
min(θ + iπ)F±∓

min(θ) =
i

2∓1

2 e±
θ
2

cosh 1
2

(

θ ± σ − i π
2

) . (16)

We will also exploit the asymptotic behaviour

lim
σ→∞

F±∓
min(±θ) ∼ e−

σ
4 ,

[

F±±
min(θij)

]

i
=

1

2
,

[

F±∓
min(θij)

]

i
=

{

0

−1/2
. (17)

Together with the factorization ansatz (9) this leads us immediately to the relations

[

FO|l,m
n

]

i
=

[

QO|l,m
n

]

i
+

1 − l

2
for 1 ≤ i ≤ l (18)

[

FO|l,m
n

]

i
=

[

QO|l,m
n

]

i
+

m − l − 1

2
for l < i ≤ n , (19)
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which are useful in the identification process of a particular solution with a specific
operator. Since we may restrict our attention to one particular ordering only, we
abbreviate the r.h.s. of (9) from now on as FO|l,m

n and similar for the Q’s.
Substituting the ansatz (9) into the kinematic residue equation (5) reduces, with

the help of (15) and (16), the whole problem of determining the form factors to the
following recursive equations

Q
O|l+2,m
n+2 (−x, x, . . . , xn) = Dl,m

n (x1, . . . , xn)QO|l,m
n (x1, . . . , xn) (20)

Dl,m
n (x, x1, . . . , xn) =

1

2
(−ix)l+1σ+

l

m∑

k=0

(−ieσx)−k(1 − ω(−1)l+k)σ−
k (21)

Here we introduced yet another short hand notation, namely for elementary sym-
metric polynomials σk(x1, . . . , xl) ≡ σ+

k and σk(xl+1, . . . , xn) ≡ σ−
k

∗. Below we
shall also employ σk when the polynomials depend on all n variables, σ̄k when
they depend on the n inverse variables, i.e. x−1

i and σ̂k when they depend on the n
variables xie

−σ.
The recursive equations for the constants turn out to be

H
O|l+2,m
n+2 = im22l−m+1eσm/2HO|l,m

n . (22)

Fixing one of the lowest constants, the solutions to these equations read

HO|2s+t,m = ism2s(2s−m−1+2t)esmσ/2HO|t,m, t = 0, 1 . (23)

For specific operators we will provide below the explicit expressions for the HO|l,m.
Notice that there is a certain ambiguity contained in the equations (22), i.e. we can
multiply HO|l,m

n by i2l, i2l2 or (−1)l and produce a new solution. However, since in
practical applications we are usually dealing with the absolute values of the form
factors, these ambiguities will turn out to be irrelevant.

3.1 Solutions

Whenever we consider FO|l,m
n with l even for vanishing resonance parameter σ, we

can use the kinematic residue equation (5) l/2-times and finally construct FO|0,m
n ,

which should correspond to a form factor of the thermally perturbed Ising model.
In other words in that case we can always use the well-known solutions QO|0,m

n as
the initial condition for the recursive problem (20).

∗The elementary symmetric polynomials are generated by

n∏

k=1

(x + xk) =

n∑

k=0

xn−kσk(x1, . . . , xn) , i.e. σk(x1, . . . , xn) =
1

2πi

∮
dz

zn−k+1

n∏

k=1

(z + xk)

(For more properties see e.g. [14].)
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3.1.1 The energy momentum tensor Θ

The only non-vanishing form factor of the energy momentum tensor in the thermally
perturbed Ising model is well know to be

FΘ
2 (θ) = −2πim2 sinh(θ/2) . (24)

From this equation we deduce immediately that [FΘ|l,2
n ]i = 1/2, which serves on the

other hand to fix [QΘ|l,2
n ]i with the help of (18) and (19). Recalling that the energy

momentum tensor is proportional to the perturbing field [15] and the fact that the
conformal dimension of the latter is ∆ = 3/5 for the SU(2)3-HSG model, the value
[FΘ|l,2

n ]i = 1/2 is compatible with the bound (6). As a further consequence of (24),
we deduce

HΘ|0,2 = 2πm2
− (25)

as the initial value for the computation of all higher constants in (23). The distinc-
tion between m− and m+ indicates that in principle the mass scales could be very
different as discussed in [1]. Notice that HΘ|0,0 is reached only formally, since the
kinematic residue equation does not connect to the vacuum expectation value. The
initial values for the recursive equations (20) are

Q
Θ|0,2
2 = x−1

1 + x−1
2 and Q

Θ|0,2t
2t = 0 for t ≥ 2 . (26)

Taking now ω = 1, the solutions to (20), with the same asymptotic behaviour as the
energy momentum tensor in the thermally perturbed Ising model, are computed to

Q
Θ|2s,2t
2s+2t = (−1)(s+1)te−tσσ1σ̄1(σ

+
2s)

s−t(σ−
2t)

1−t detAΘ for t ≥ 1, s ≥ 1, (27)

where AΘ is a (t + s − 2)×(t + s − 2)-matrix whose entries are given by

AΘ
ij =

{

σ+
2(j−i)+1 for 1 ≤ i < t

(−1)(j−i+t)σ̂−
2(j−i+t)−1 for t ≤ i ≤ s + t − 2

. (28)

Explicitly we have

AΘ =




















σ+
1 σ+

3 σ+
5 σ+

7 · · · 0
0 σ+

1 σ+
3 σ+

5 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · σ+

2s−1

−σ̂−
1 σ̂−

3 −σ̂−
5 σ̂−

7 · · · 0
0 −σ̂−

1 σ̂−
3 −σ̂−

5 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · (−1)tσ̂−

2t−1




















. (29)
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One may easily verify case-by-case that (27) is a solution of (22) to relatively high
orders in s and t. A general proof of this result, which we present elsewhere [16],
can be obtained by exploiting the fact that the determinant of A may also be
represented in terms contour integrals

detAΘ = (−1)(s+1)t
∮

du1 . . .
∮

dut−1

∮

dv1 . . .
∮

dvs−1

2s∏

i=1

t−1∏

j=1

uj + xi

u2s+2j−2
j

(30)

×
2s+2t∏

i=1+2s

s−1∏

j=1

vj + x̂i

v2t+2j−2
j

∏

1≤i<j≤t−1

(u2
j − u2

i )
∏

1≤i<j≤s−1

(v2
j − v2

i )
s−1∏

j=1

t−1∏

i=1

(u2
i + v2

j ) .

In order to establish the equivalence between (29) and (30) we simply use the
integral representation for the symmetric polynomals as stated in the footnote.
The integrals in (30) are understood as

∮

dz ≡ (2πi)−1
∮

|z|=̺ dz with ̺ being an
arbitrary positive real number.
Assembling now all the quantities we obtain for instance

F
Θ|++−−
4 (θ1, θ2, θ3, θ4) =

−πm2
−e(θ31+θ42)/2(2 +

∑

i<j cosh(θij))

2 cosh(θ12/2) cosh(θ34/2)

∏

i<j

F
µiµj

min (θij) . (31)

Having computed all form factors for the energy momentum tensor we are in the
position to apply the c-theorem, i.e. we can in principle evaluate (7). For finite
values of σ we obtain

∆c(2) = 1, ∆c(4) = 1.197..., ∆c(6) = 1.199 . . . , for σ < ∞ (32)

where in the notation ∆c(n), the superscript n indicates the upper limit in (7).
Thus, the expected value of c = 6/5 is well reproduced. Apart from ∆c(2), in which
case the calculation can be performed analytically, the integrals in (7) are computed
directly by a brute force Monte Carlo integration.

When the resonance parameter tends to infinity the system decouples and we
are left with two non-interacting free fermions, such that the only contribution in
the sum (7) is twice the free fermion two-particle contribution, such that

lim
σ→∞

∆c = 1 . (33)

In order to see this we collect the leading order behaviours form our general solution

lim
σ→∞

H
Θ|2s,2t
2s+2t ∼ estσ, lim

σ→∞
Q

Θ|2s,2t
2s+2t ∼ e−(t+s−1)σ, lim

σ→∞

∏

i<j

F
µiµj

min (θij) ∼ e−stσ, (34)

which means
lim

σ→∞
F

Θ|2s,2t
2s+2t ∼ e−(t+s−1)σ . (35)

Hence the only non-vanishing form factors in this limit are F
Θ|0,2
2 and F

Θ|2,0
2 , which

establishes (33).
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3.1.2 The order operator Σ

For the other sectors we may proceed similarly, i.e. viewing always the thermally
perturbed Ising model as a benchmark. Taking now ω = 1, we recall the solution
for the order operator

FΣ
2s+1(θ1, . . . , θ2s+1) = isFΣ

1

∏

i<j

tanh
θij

2
= is(2i)2s2+sFΣ

1 (σ2s+1)
s

∏

i<j

F±±
min

(θij)

xi+xj
. (36)

With this information we may fix the initial values of the recursive equations (20)
and (22) at once to

Q
Σ|0,2t+1
2t+1 = (σ2t+1)

−t = (σ̄2t+1)
t and HΣ|0,1 = FΣ

1 . (37)

Furthermore, we deduce from equation (36) that [FΣ|2s,2t+1
n ]i = 0. Respecting these

constraints we find as explicit solutions

Q
Σ|2s,2t+1
2s+2t+1 = (−1)(s+1)t(σ1)

1

2 (σ+
2s)

s−t−1(σ−
1 )−

1

2 (σ−
2t+1)

−t detAΣ , (38)

where AΣ is a (t + s)×(t + s)-matrix whose entries are given by

AΣ
ij =

{

σ+
2(j−i) for 1 ≤ i ≤ t

(−1)(j−i+t+1)σ̂−
2(j−i+t)+1 for t < i ≤ s + t

. (39)

Explicitly this reads

AΣ =




















1 σ+
2 σ+

4 σ+
6 · · · 0

0 1 σ+
2 σ+

4 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · σ+

2s

−σ̂−
1 σ̂−

3 −σ̂−
5 σ̂−

7 · · · 0
0 −σ̂−

1 σ̂−
3 −σ̂−

5 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · (−1)(t+1)σ̂−

2t+1




















. (40)

Once again the determinant of A admits an integral representation

detAΣ = (−1)s(t−1)
∮

du1 . . .
∮

dut

∮

dv1 . . .
∮

dvs

2s∏

i=1

t∏

j=1

uj + xi

u2s+2j−1
j

(41)

×
2s+2t+1∏

i=1+2s

s∏

j=1

vj + x̂i

v2t+2j−2
j

∏

1≤i<j≤t

(u2
j − u2

i )
∏

1≤i<j≤s

(v2
j − v2

i )
s∏

j=1

t∏

i=1

(u2
i + v2

j )

which may be used for a general proof [16].
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When the resonance parameter tends to infinity we obtain the following asymp-
totic behaviour

lim
σ→∞

Q
µ|2s,2t+1
2s+2t+1 ∼ e−sσ (42)

lim
σ→∞

H
µ|2s,2t+1
2s+2t+1

∏

i<j

F
µiµj

min (θij) = const
∏

1≤i<j≤2s

F++
min(θij)

∏

2s<i<j≤2s+2t+1

F−−
min(θij) . (43)

This means unless s = 0, that is a reduction to the thermally perturbed Ising model,
the form factors will vanish in this limit.

3.1.3 The disorder operator µ

For the disorder operator we have ω = −1 and the solution acquires the same form
as in the previous case

F µ
2s(θ1, . . . , θ2s) = isF µ

0

∏

i<j

tanh
θij

2
. (44)

Similar as for the order variable we can fix the initial values of the recursive equa-
tions (20) and (22) to

Q
µ|0,2t
2t = (σ2t)

1/2−t = (σ̄2t)
t−1/2 and Hµ|0,0 = F µ

0 . (45)

Furthermore, we deduce [F µ|2s,2t
n ]i = 0. Respecting these constraints we find as a

general solution

Q
µ|2s,2t
2s+2t = (−1)st(σ2s+2t)

3

2
−t(σ+

2s)
s−2(σ−

2t)
−1 detAµ , (46)

where Aµ is a (t + s)×(t + s)-matrix whose entries are given by

Aµ
ij =

{

σ+
2(j−i) for 1 ≤ i ≤ t

(−1)(j−i+t)σ̂−
2(j−i+t) for t < i ≤ s + t

. (47)

Explicitly we have

Aµ =




















1 σ+
2 σ+

4 σ+
6 · · · 0

0 1 σ+
2 σ+

4 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · σ+

2s

1 −σ̂−
2 σ̂−

4 −σ̂−
6 · · · 0

0 1 −σ̂−
2 σ̂−

4 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · (−1)tσ̂−

2t




















. (48)
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Similarly as in the previous sections we can write the determinant of A alternatively
in form of an integral representation

detAµ = (−1)s(t−1)
∮

du1 . . .
∮

dut

∮

dv1 . . .
∮

dvs

2s∏

i=1

t∏

j=1

uj + xi

u2s+2j−1
j

(49)

×
2s+2t∏

i=1+2s

s∏

j=1

vj + x̂i

v2t+2j−1
j

∏

1≤i<j≤t

(u2
j − u2

i )
∏

1≤i<j≤s

(v2
j − v2

i )
s∏

j=1

t∏

i=1

(u2
i + v2

j ) .

When the resonance parameter tends to infinity we observe the following asymp-
totic behaviour

lim
σ→∞

Q
µ|2s,2t
2s+2t = (−1)stQ

µ|2s,0
2s Q

µ|0,2t
2t (50)

lim
σ→∞

H
µ|2s,2t
2s+2t

∏

i<j

F
µiµj

min (θij) = const
∏

1≤i<j≤2s

F++
min(θij)

∏

2s<i<j≤2t+2s

F−−
min(θij) (51)

such that
lim

σ→∞
F

µ|2s,2t
2s+2t ∼ F

µ|0,2t
2t F

µ|2s,0
2s . (52)

This means also in this sector we observe the decoupling of the theory into two free
fermions.

4 Conclusions

The application of the c-theorem confirms very well the physical picture we found
in [1] from the thermodynamic Bethe ansatz. For finite resonance parameter we
recover the expected Virasoro central charge of c = 6/5 and for σ → ∞ the theory
decouples in all sectors into two non-interacting free fermions. Besides the con-
struction of all n-particle form factors related to the trace of energy momentum,
we computed in addition the complete solutions for the order and disorder operator
in form of determinants whose entries are symmetric polynomials. Such determi-
nant formulae have occurred before in various places in the literature, e.g. [7, 17].
Representing the solutions for form factors in this form has turned out to be use-
ful in the construction of correlation functions [18] and might eventually lead to a
reformulation of the whole problem in terms of differential equations analogous to
the situation in conformal field theory [19]. Apart from higher spin solutions which
may always be constructed by including the polynomials as suggested in [20], we
did not find any additional solutions related to other sectors. We expect that a
careful analysis of the cluster decomposition property will lead to more conclusive
statements concerning the question whether such solutions exist at all. From a
mathematical point of view it is also desirable to present a rigorous proof of the
determinant formulae [16].
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