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Abstract: We review some recent results concerning integrable quantum field theories in

1+1 space-time dimensions which contain unstable particles in their spectrum. Recalling

first the main features of analytic scattering theories associated to integrable models,

we subsequently propose a new bootstrap principle which allows for the construction of

particle spectra involving unstable as well as stable particles. We describe the general

Lie algebraic structure which underlies theories with unstable particles and formulate

a decoupling rule, which predicts the renormalization group flow in dependence of the

relative ordering of the resonance parameters. We extend these ideas to theories with

an infinite spectrum of unstable particles. We provide new expressions for the scattering

amplitudes in the soliton-antisoliton sector of the elliptic sine-Gordon model in terms of

infinite products of q-deformed gamma functions. When relaxing the usual restriction

on the coupling constants, the model contains additional bound states which admit an

interpretation as breathers. For that situation we compute the complete S-matrix of all

sectors. We carry out various reductions of the model, one of them leading to a new type

of theory, namely an elliptic version of the minimal SO(n)-affine Toda field theory.

1. Introduction

The structure of integrable quantum field theories (IQFT) in 1+1 space-time dimensions

has been unravelled to a very large extend. Many theories can be solved even exactly,

that is to all orders in perturbation theory, in this context. However, the large majority of

investigations concentrates on theories which involve exclusively stable particles, despite

the fact that in nature most particles are unstable. Since of course one of the motivations

to study IQFT is to reproduce realistic features, there is an apparent need to investigate

also theories which have unstable particles in their spectrum. The aim of this talk is to

review some recent results which deal with such theories.

0Proceeding of the workshop on ”Infinite dimensional algebras and quantum integrable systems” (Faro,

Portugal, July, 2003). We thank the organizers, especially Nenad Manojlovic, for their kind hospitality and

untiring engagement to make things work.

http://arXiv.org/abs/hep-th/0311148v1
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2. Analytic scattering theory of factorizable integrable models

Since not all participants of this conference work directly on integrable quantum field

theories, we briefly recall some well known facts on analytic scattering theories in 1+1

space-time dimensions. Having in mind to emphasize features related to unstable particles

this will also be useful to the experts. As a starting point in every scattering theory one

requires a complete set of asymptotic in and out states (t → ±∞). These states consist of

operators Zµ(p) acting on the vacuum |0〉 and creating in this way a stable particle of the

type µ with momentum p. Already at this point enters the fundamental difference between

stable and unstable particles. Even though experimentally unstable particles with a very

long lifetime can very often not be distinguished from stable ones, mathematically they are

very distinct. They can never be associated to an asymptotic state, even when they have

an extremely long lifetime, as by their very nature they will have decayed in the infinite

future or were never produced in the infinite past. Then the scattering matrix is defined

to be the operator which relates a stable n-particle in state to a stable m-particle out state

Zµm
(θ

′

m) . . . Zµ1
(θ

′

1) |0〉out = S
µ1µ2...µn
µ1µ2...µm

(θ
′

1, . . . θn)Zµ1
(θ1) . . . Zµn

(θn) |0〉in . (2.1)

Conveniently one parameterizes the two-momentum by the rapidity θ as ~p = m(cosh θ, sinh θ).

Now there are some very special features happening in integrable (that means here there

exists at least one non-trivial conserved charge) quantum field theories in 1+1 dimensions

[1, 2, 3, 4, 5]. There is no particle production and furthermore the incoming and outgoing

momenta coincide

{θ′

1, θ
′

2, . . . θ
′

m} = {θ1, θ2, . . . θn} with n = m . (2.2)

In addition, the n-particle S-matrix factorizes into a set of two-particle S-matrices

S
µ1µ2...µn
µ1µ2...µm

(θ
′

1, . . . θn) =
∏

1≤i<j≤n

Sµiµj
(θi, θj) . (2.3)

Obviously, this is a considerable simplification in comparison with the general situation

(2.1), as it means that once we know the two-particle S-matrix, we control the entire

scattering matrix. Because of this fact, we refer from now on to the two-particle scattering

matrix as the S-matrix.

How does one construct this S-matrix? In general one is limited to the use of perturba-

tion theory in the coupling constant. In particular in higher dimensions that is essentially

the only method available. In contrast, two dimensions are very special as they miracu-

lously allow to determine S exactly to all orders in perturbation theory. This is one of the

major successes of this area of research and one of the reasons for the continued interest in

such theories. The original ideas which lead to explicit expressions for S go back to what

is called the bootstrap approach [6, 1, 2]. It consists of using various properties for the

scattering matrix, which one motivates by some physical principles in order to set up an

axiomatic system for S in the hope that it might be so constraining that it determines S

completely. Indeed, these hopes are not in vain.
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We recall the S-matrix properties:

i) Lorentz invariance

Dealing with relativistic scattering theories, we expect the scattering matrix to be

Lorentz invariant, i.e. it should depend only on covariant combinations of the momenta.

The Mandelstam variables are precisely such quantities, see e.g. [7]. In 1+1 dimensions

only one of them is independent, usually taken to be sab = (pa + pb)
2 = m2

a + m2
b +

2mamb cosh(θa − θb). Hence, Lorentz invariance is simply guaranteed when S depends

either only on sab or the rapidity difference θab := θa − θb

Sab(pa, pb) = Sab(θa, θb) = Sab(sab) = Sab(θab). (2.4)

Since sab admits the interpretation as the total energy in the centre of mass system, θab

has to be real for a physical process, such that sab ≥ (ma + mb)
2.

ii) Hermitian analyticity

As a central assumption of analytic S-matrix theory [7] one assumes that the S-matrix

can be continued to the complex plane and depends on sab, θab ∈ C. Physical scattering

amplitudes are then assumed to be real boundary values of analytic functions, which can

be obtained from a generalization of Feynman’s iε prescription of perturbation theory

Sphysical
ab = lim

ε→0
Sab(s + iε) = Sab(θ) s ∈ R, ε, θ ∈ R+. (2.5)

The choice of the signs is important and relates to causality. Since a two-particle wave-

function, having here plane waves in mind modulated by some enveloping function, will

depend on the sum of the momenta, i.e. on
√

sab, one has lost the single valuedness of the

scattering matrix by an analytic continuation. This is remedied by branch cuts along the

real axis at sab ≥ (ma +mb)
2 and sab ≤ (ma −mb)

2, the latter being motivated by crossing

see iv). Hermitian analyticity is now a postulate which states how to continue over these

cuts [8, 9]

lim
ε→0

Sab(s + iε) = lim
ε→0

Sab(s − iε) ⇔ Sab(θ) = [Sba(−θ∗)]∗ . (2.6)

once more for s ∈ R, ε, θ ∈ R+. The equivalence is due to the fact that the analytic con-

tinuation s + iε ↔ s − iε corresponds to θ ↔ −θ. Often one merely uses real analyticity

Sab(θ) = [Sab(−θ∗)]∗ instead of (2.6), which only coincides when Sab = Sba, that is in

parity invariant theories. This difference is very important with regard to the theories con-

sider below, which involve unstable particles as they unavoidably break parity invariance.

Further support for (2.6) comes from perturbation theory [8], general considerations in

analytic S-matrix theory [10, 7] and explicitly constructed examples.

iii) Unitarity

Assuming that the states in (2.1) are complete and orthogonal, the operator which

maps them to each other has to be unitary

SS† = S†S = 1 . (2.7)

The combination of (2.6) and (2.7) leads to the simpler relation Sab(θ)Sba(−θ) = 1,

which may also be derived from applying twice the Zamolodchikov algebra Za(θ1)Zb(θ2) =

Sab(θ12)Zb(θ2)Za(θ1).

– 3 –
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iv) Crossing symmetry

Crossing symmetry can be motivated by the Lehmann-Symanzik-Zimmermann (LSZ)

formalism [11] and consists of the replacement of an incoming particle a by its anti-particle

ā with reversed momentum. A discussion of the anti-particle theorem can be found in

[10]. The prescription amounts to the continuation of the Mandelstam variable sab to the

variable tab = (pa − pb)
2

lim
ε→0

Sab(s + iε) = lim
ε→0

Sbā(t − iε) ⇔ Sbā(θ) = Sab(iπ − θ) . (2.8)

It is easy to check that the analytic continuation s+ iε ↔ t− iε corresponds to θ ↔ iπ− θ.

v) Yang-Baxter equation

In (2.3) we already indicated that the conserved charge(s) of an integrable theory can

be used to disentangle an n-particle scattering process into a consecutive scattering of two

particles only. An additional consequence of this argument is that the order in which this

takes place does not matter, such that two different orderings are taken to be equivalent.

As in general the S-matrices do not commute, this leads to a new constraint. In other

words this amounts to say that the operators Z in (2.1) obey an associative algebra. As a

result of this one obtains the Yang-Baxter equation [12, 13]

S(θ12) ⊗ S(θ13) ⊗ S(θ23) = S(θ23) ⊗ S(θ13) ⊗ S(θ12) . (2.9)

For diagonal theories, i.e. when backscattering is absent, we simply have Scd
ab(θ) → Sab(θ)

such that (2.9) is trivially satisfied.

vi) Fusing bootstrap equation

By the same reasoning as in v) integrability, i.e. factorizability, yields a further con-

straining equation, when two particles are allowed (what that means is discussed in vii)) to

form bound state. For instance, the particles a, b fuse to a third particle c̄, i.e. a + b → c̄.

One makes now a further assumption, sometimes referred to as nuclear democracy, namely

that also the particle of type c̄ exists asymptotically. Then, by integrability, it is equiva-

lence if a third particle, say l, scatters with the bound state c̄ or consecutively with the

two particles a, b. For S this reads

Slc̄(θ) = Sla(θ + iη̄b
ac)Slb(θ − iη̄a

bc) . (2.10)

The η̄b
ac ∈ R+ are the fusing angles specific to the individual theory considered. It is clear

that the assumption of nuclear democracy does not hold if c̄ is an unstable particle, such

that (2.10) can not be valid in the form stated for that case. We will now indicate the

origin for the possibility to form bound states, which is the

vii) Pole structure

In general, the S-matrix can have a quite intricate singularity structure consisting of

poles of finite order distributed all over the complex s, θ-plane. A strong further constraint

is to assume that all singularities which emerge in S admit a consistent explanation. As

a slightly weaker assumption one could suppose that all explainable poles form a coherent

system, in the sense that the bootstrap (2.10) closes etc., and allow some redundant poles.

– 4 –
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Single order poles are most important as they determine the particle spectrum of the

theory. In the s-plane they might be on the real axis between the two branch cuts at

s = m2
c̄ , interpreted as an on-shell bound state particle, or in the second Riemann sheet

at s = (mc̄ − iΓc̄/2)
2 corresponding to an unstable particle with finite lifetime τ = 1/Γc̄.

The discussion is more conveniently carried out in the θ-plane, since S(θ) is a meromorphic

function unlike S(s). Near the singularity S has to be of the form

Sab(θ) ∼ iRc
ab

(θ − iηc
ab + σc

ab)
. (2.11)

Depending on the location and signs of the residues we have the following interpretations

s-channel bound state: Rc
ab ∈ R+, ηc

ab ∈ R+, σc
ab = 0

t-channel bound state: Rc
ab ∈ R−, ηc

ab ∈ R+, σc
ab = 0

unstable particle: Rc
ab ∈ R, ηc

ab ∈ R−, σc
ab ∈ R−

The relation between the poles in the s and θ planes are the Breit-Wigner (BW) equations

[14]

m2
c̄
− Γ2

c̄

4
= m2

a + m2
b + 2mamb cosh σc̄

ab cos ηc̄
ab (2.12)

mc̄Γc̄ = 2mamb sinh σc̄
ab sin ηc̄

ab , (2.13)

which allow to express the mass m
c̄

and decay width Γc̄ of the unstable particle as functions

of ma,mb, η
c̄
ab, σ

c̄
ab. For the stable particle formation we have the following relation between

the fusing angles in (2.10) and the poles in (2.11): η̄b
ac = π− ηc

ab. Note further that for the

unstable particle formation in (2.11) we made the definite choice that the unstable particle

c̄ is formed in the process

a + b → c̄ (2.14)

rather than in the not equivalent one b+a. It is clear that parity has to be broken, as with

the choice ηc
ab, σ

c
ab ∈ R− the amplitude Sbā(θ) will have a pole at iπ − iηc

ab + σc
ab, leaving

in (2.13) the choice that either mc̄ < 0 or Γc̄ < 0, which is of course both non-physical.

Below we will be particularly interested in the situation for large resonance parameters

σc̄
ab, when the mass of the unstable particles can be approximated as

mc̄ ∼
√

mambe
−σc̄

ab
/2 . (2.15)

In terms of perturbation theory in a coupling constant β, the pole (2.11) would be of

second order, i.e. Rc
ab(β

2), corresponding to a tree diagram. Similarly, higher order poles

admit interpretations in form of more complicated singular Feynman diagrams. In some

simple theories, such as for example sine-Gordon, the highest order of the poles is two.

In that context it was suggested [15] that such type of poles are of order β4 and may be

viewed as box diagrams. For quite some time higher order poles were ignored and also

here we will not enter into a deeper discussion of them, which can be found for instance in

[16, 17]. From what is said it is clear that such poles will not alter the particle spectrum.

Nonetheless, one should be able to draw the relevant Feynman diagrams, which means one

– 5 –
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needs certain three-point couplings to be non-vanishing. Consequently this is a constraint

on the existence of certain three point couplings Rc
ab.

Remarkably, the constraints i)-vii) allow to determine the S-matrix exactly, that is to

all orders in perturbation theory. However, one should say that the solution constructed

this way is not unique, as there exists always the possibility to multiply with so-called

CDD-factors [18]. To fix them requires additional arguments beyond the scheme outlined

above, such as ultraviolet limits, certain inputs from Lagrangians, etc.

2.1 A proposal for a construction principle of unstable particle spectra

We have seen in the previous section, that there exists a powerful construction principle for

the spectrum of stable particles, consisting of solving the equations (axioms) i)-vii). For

unstable particles we do not have yet such a construction tool, as by now they emerge rather

passively as poles in the unphysical sheet as by-products in the scattering process of two

stable particles. Furthermore, a description of the scattering process of an unstable particle

with another stable or unstable particle is entirely missing in this context. Obviously,

scattering processes involving unstable particles do occur in nature, such that the quest for

a proper prescription is of physical relevance. In addition, one aims of course always at a

description which has predictive power.

From what has been said, it is clear that such a description can not be a scatter-

ing theory in the usual sense, since for that one requires the particles involved to exist

asymptotically. Any unstable particle will vanish in this limit rendering such formulation

meaningless at first sight. Nonetheless, some particles have extremely long lifetimes, and

seem to exist quasi infinitely long from an experimentalists point of view. It appears there-

fore natural to seek a principle closely related to the conventional bootstrap for stable

particles. Inspired by this we proposed [19] the following construction principle:

Let us assume that in the time interval 0 < t < τ c̄ we can formally associate to the

unstable particle some creation operator Z̃†
c̄ (θ), with limt→∞ Z̃†

c̄ (θ) = 1 if τ c̄ < ∞. It is

clear that these operators do not exist asymptotically, but for the stated time interval they

can mimic an asymptotic state. Let us now further suppose that these operators satisfy a

Zamolodchikov algebra

Za(θ1)Z̃b(θ2) = S̃ab(θ12)Z̃b(θ2)Za(θ1) (2.16)

Z̃a(θ1)Z̃b(θ2) = S̃ab(θ12)Z̃b(θ2)Z̃a(θ1) (2.17)

which can be used to generate an S-matrix type of amplitude S̃ab, describing the scattering

of one unstable particle with a stable one (2.16) or the scattering of two unstable particles

(2.17). We may proceed as before and ask which type of properties might be satisfied for

S̃.

i) Lorentz invariance

As already indicated in (2.16), (2.17) it is natural to expect Lorentz invariance also for

this amplitude such that S̃ depends only the rapidity difference θab

S̃ab(pa, pb) = S̃ab(θa, θb) = S̃ab(sab) = S̃ab(θab). (2.18)

– 6 –
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ii,iii) Hermitian analyticity, unitarity

We will not make any assumption on hermitian analyticity here and in fact we do not

expect unitarity to hold, since the states formed with the Z̃ are not complete. However,

applying (2.16) or (2.17) twice yields

S̃ab(θ)S̃ba(−θ) = 1, (2.19)

which also holds for S, derivable from combining (2.6) and (2.7) in that case. In fact, also

for the construction of S it is really only the corresponding equation to (2.19) which is

employed, rather than individually (2.6) and (2.7).

iv) Crossing symmetry

The validity of crossing can also be argued as before, but now we have to continue as

lim
ε→0

S̃ab(s − iε) = lim
ε→0

S̃bā(t + iε) ⇔ S̃bā(−θ) = S̃ab(iπ + θ) , (2.20)

which in the θ-plane amounts to the same equation as the one for S.

v) Yang-Baxter equation

Supposing the algebra related to (2.16), (2.17) is associative we have by the same

reasoning as for stable particles the Yang-Baxter equation

S̃(θ12) ⊗ S̃(θ13) ⊗ S̃(θ23) = S̃(θ23) ⊗ S̃(θ13) ⊗ S̃(θ12) . (2.21)

vi) Fusing bootstrap equation

We commence with the fusing of two stable particles to create an unstable particle as

in the process (2.14). To this process we can associate bootstrap equations almost in the

usual way. We scatter for this with an additional stable or unstable particle, say of type l,

and obtain the S̃ bootstrap equations

S̃la(θ − γ̄ b̄
ca) S̃lb(θ + γ̄ā

bc) = S̃lc̄(θ), (2.22)

where γ̄ = ±iπ− γ, γ = iη − σ and also γ̄ → −γ̄ is not a symmetry. The angles should

be measured anti-clockwise, which explains the signs. We also note that we do not assume

parity invariance, such that in general γ̄ c̄
ba 6= γ̄ c̄

ab. With the help of (2.19), (2.20) one derives

the bootstrap equations for the opposite parity and the ones for the crossed processes

a + c → b̄ and b + c → ā and from (2.22)

S̃c̄l(θ) = S̃al(θ + γ̄ b̄
ca) S̃bl(θ − γ̄ā

bc) , (2.23)

S̃l̄(θ) = S̃lc(θ − γ̄ ā
bc) S̃la(θ ± iπ − γ̄ b̄

ca − γ̄ā
bc), (2.24)

S̃lı̄(θ) = S̃lc(θ + γ̄ b̄
ca)S̃lb(θ ± iπ + γ̄ b̄

ca + γ̄ā
bc) . (2.25)

From the crossing relation for the “scattering matrix” and (2.24) or (2.25) one obtains

some relations between the various fusing angles

γ̄ c̄
ab + γ̄ b̄

ca + γ̄ā
bc = ±iπ . (2.26)

At first sight this looks very much like the usual bootstrap prescription, but there are

some differences. As is clear from the scattering process of two stable particles producing

– 7 –
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an unstable one, the angle γ̄ c̄
ab is not purely complex any longer as it is for the situation

when exclusively stable particles scatter. As a consequence, this property then extends to

the other angles γ̄ b̄
ca and γ̄ā

bc in (2.22), which also possess some non-vanishing real parts.

Note that (2.26) implies that the real parts of the three angels involved add up to zero.

At this point we do not have an entirely compelling reason for demanding that, but this

formulation will turn out to work well.

Of course the above equations are only a proposal, which needs to be put on more solid

ground. Nonetheless, at this point our proposal gains support from self-consistency and

its predictive power, which may be double checked: a) The bootstrap closes consistently

for many non-trivial examples, which we calculated. As for stable particles this is never

guaranteed and by no means self-evident. b) The bootstrap yields the amount of unstable

particles together with their mass. This prediction can be used to explain a mass degeneracy

of some unstable particles which can not be seen in a thermodynamic Bethe ansatz (TBA)

analysis for the concrete example of the homogeneous sine-Gordon (HSG) models, see

below. c) The bootstrap is in agreement with a general Lie algebraic decoupling rule, which

we also present below, describing the behaviour when certain resonance parameters tend

to infinity. d) The bootstrap yields the three-point couplings of all possible interactions,

that is, involving stable as well as unstable particles.

2.2 An example: The gk-HSG model

The gk-homogeneous sine-Gordon models (HSG) [20, 21], with g being a simple Lie algebra

of rank ℓ and level k, will be our standard example in what follows. In fact they have been

the first models with a well defined Lagrangian containing unstable particles which have

been the subject of a systematic analysis [22, 23, 24, 25, 26, 27, 28, 19, 29]. They can be

viewed as perturbed conformal field theories (CFTs)1

HGk-HSG = HGk/U(1)ℓ-CFT − λ

∫

d2xφ(x, t) . (2.27)

The underlying ultraviolet CFT is a Wess-Zumino-Novikov-Witten-Gk/U(1)ℓ-coset theory

[31, 32]. The correspondig Virasoro central charge c is computed with standard argu-

ments of [32] and the perturbing operator φ is identified with a primary field of conformal

dimensions ∆, ∆̄. One finds

c = ℓ
k h − h∨

k + h∨
and ∆ = ∆̄ =

h∨

k + h∨
. (2.28)

Here (h∨)h is the (dual) Coxeter number of g. For simplicity we will drop in the following

the explicit mentioning of the subalgebra U(1)ℓ which were indicated in (2.27).

The scattering matrix for gk-HSG-models with g simply laced algebras was constructed

in [22]. For k = 2 it can be brought into the simple form

Sij(θ, σij) = (−1)δij ε(σij)(σij, 2)
Iij , 1 ≤ i, j ≤ ℓ (2.29)

1For the particular case of the SU(3)2-HSG model it was shown [30] that it can be described alternatively

as a perturbation of a tensor product of two minimal CFTs.
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where I denotes the incidence matrix of g and ε(x) is the step-function, i.e. ε(x) = 1 for

x ≥ 0, ε(x) = −1 for x < 0. It is convenient to use the abbreviation

(σ, x) := tanh(θ + σ − iπx/4)/2 . (2.30)

Let us now consider the concrete case SU(3)2. We can start with the known part

of the scattering matrix (2.29) for the stable particles, and leave the remaining entries

which involve unstable particles unknown. From this we construct consistent solutions

to the bootstrap equations (2.22), (2.24) and (2.25). We can fix the imaginary parts of

the fusing angles by the requirement that for vanishing resonance parameters we want to

reproduce the masses predicted by the Breit-Wigner formula. Choosing the masses of the

stable particles to be m1 = m2 = m the one for the unstable results to m(12) =
√

2m.

This argument does not constrain the real parts of the fusing angles, such that they are

not completely fixed and still contain a certain ambiguity. The different choices of these

parameters give rise to slightly different theories. First we consider the case σ21 > 0.

u

α1

��HH
u

α2

For this choice of the resonance parameter, we then find the following bootstrap equations

S̃l(12)(θ) = S̃l1(θ + (1 − ν)σ12 + iπ/4)S̃l2(θ − νσ12 − iπ/4) (2.31)

from which we construct

S̃SU(3)(θ, σ12) =







−1 −(σ12, 2) −((1 − ν)σ12, 3)

(σ21, 2) −1 −(νσ21, 1)

−((ν − 1)σ12, 1) −(νσ12, 3) −1






. (2.32)

Here we label the rows and columns in the order {1, 2, (12)}. According to the principles

outlined above, the S̃-matrix (2.32) allows for the processes

1 + 2 → (12), 2 + (12) → 1, (12) + 1 → 2. (2.33)

The related fusing angles are read off from (2.32) as

γ
(12)
12 = − iπ

2
+ σ21, γ2

(12)1 = −3iπ

4
+ (1 − ν)σ12, γ1

2(12) = −3iπ

4
+ νσ12 (2.34)

and are interrelated through equation (2.26), which still holds even though the γ’s have

non-vanishing real parts. We can employ these fusing angles and compute the masses and

decay widths by means of the Breit-Wigner formulae (2.12) and (2.13). Taking again for

simplicity m1 = m2 = m and in addition ν = 1/2, we obtain for the first process in (2.33)

m(12) =
√

2m cosh σ21/2 and Γ(12) = 2
√

2m sinh σ21/2 . (2.35)

Employing now also in the process 2 + (12) → 1 the Breit-Wigner formula, we reproduce

in the limit σ12 → 0 the values m1 = m and Γ1 = 0. Likewise, in the last process in (2.33)

we obtain m2 = m and Γ2 = 0.

– 9 –



Integrable models with unstable particles

The asymptotic limit t → ∞ becomes meaningful when we operate on an energy scale

at which the unstable particle has not even been created yet, i.e. Γ(12) → ∞ ≡ σ21 → ∞.

In that case the theory decouples into two SU(2)2-models, i.e. free Fermions, with S11 =

S22 = −1. This is a simple version of the decoupling rule (3.3).

Next we consider a different theory with σ12 > 0.

u

α1

HH��
u

α2

Taking also in this case for simplicity ν = 1/2, we find the following bootstrap satisfied

S̃l(12)(θ) = S̃l2(θ − σ12/2 + iπ/4)S̃l1(θ + σ12/2 − iπ/4), (2.36)

which yields the S-matrix

S̃SU(3)(θ, σ21) =







−1 (σ12, 2) −(σ12/2, 1)

−(σ21, 2) −1 −(σ21/2, 3)

−(σ21/2, 3) −(σ12/2, 1) −1






. (2.37)

The S-matrix (2.37) allows for the processes

2 + 1 → (12), 1 + (12) → 2, (12) + 2 → 1, (2.38)

instead of (2.33). Now the fusing angles are read off as

γ
(12)
21 = − iπ

2
+ σ12, γ2

1(12) = −3iπ

4
− σ12

2
, γ1

2(12) = −3iπ

4
− σ12

2
(2.39)

and also satisfy (2.26). The masses and decay width are obtained again from (2.12) and

(2.13) with σ12 → σ21. As a whole, we can think of this theory simply as being obtained

from the Z2-Dynkin diagram automorphism which exchanges the roles of the particles 1 and

2. However, since parity invariance is now broken this is not a symmetry any more and the

two theories are different. In the asymptotic limit σ12 → ∞, we obtain once again a simple

version of the decoupling rule (3.3) and the theory decouples into two SU(2)2-models.

The next example, SU(4)2-HSG, is more intriguing as it leads to the prediction a

new unstable particle. Proceeding in the way as before we construct the corresponding

amplitudes S̃, for details see [19]. We found there the processes

1 + 2 → (12), (12) + 1 → 2, 2 + (12) → 1,

3 + 2 → (23), (23) + 3 → 2, 2 + (23) → 3,
(2.40)

which simply correspond to two copies of SU(3)2-HSG. It is interesting to note that the

amplitudes S̃(12)3 and S̃(23)1 contain poles at

γ
(123)
(12)3 =

σ21 − 2σ23

2
− 3iπ

4
and γ

(123)
(23)1 =

σ23 − 2σ21

2
− 3iπ

4
, (2.41)

which yield the possible processes

(12) + 3 → (123), (123) + (12) → 3, 3 + (123) → (12),

(23) + 1 → (123), (123) + (23) → 1, 1 + (123) → (23).
(2.42)
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An interesting prediction results from the consideration of the first two processes in (2.42).

Making in the first process the particle (12) and in the second the particle (23) stable, by

σ2 → σ1 and by σ2 → σ3, respectively, both predict the mass of the particle (123) as

m(123) ∼ me|σ13|/2 . (2.43)

This value is precisely the one we expect from the approximation in the Breit-Wigner

formula (2.15). Note that in one case we obtain σ13 and in the other σ31 as a resonance

parameter. The difference results from the fact that according to the processes (2.42), the

particle (123) is either formed as (1 + 2) + 3 or 3+ (2 + 1). Thus the different parity shows

up in this process, but this has no effect on the values for the mass.

In [19] we presented more examples and remarkably we found consistency in each

case. We take the closure of the bootstrap equations as a non-trivial confirmation for our

proposal.

3. Lie algebraic structure for theories with unstable particles

There exist some concrete Lagrangian formulations for integrable theories with unstable

particles, such as the aforementioned HSG-models (2.27). Inspired by the structure of

these models, we present here a slighly more general Lie algebraic picture. We keep the

discussion here abstract and supply below concrete examples. For our formulation we need

an arbitrary simply laced Lie algebra g̃ (possibly with a subalgebra h̃) with rank ℓ̃ together

with its associated Dynkin diagram (see for instance [33]). To each node we attach a simply

laced Lie algebra gi with rank ℓi and to each link between the nodes i and j a resonance

parameter σij = σi − σj , as depicted in the following g̃/ h̃-coset Dynkin diagram

u

g1

. . . u

σij

gi

��HH
u

σjk

gj

HH��
u

gk

. . . u

gℓ̃ �
�

�. . . u

σlm

gl

��HH
u

σmn

gm

HH��
u

gn

. . .

Besides the usual rules for Dynkin diagrams, we adopt here the convention that we add an

arrow to the link, which manifests the parity breaking and allows to identify the signs of

the resonance parameters. An arrow pointing from the node i to j simply indicates that

σij > 0. Since we are dealing exclusively with simply laced Lie algebras, this should not

lead to confusion. To each simple root of the algebras gi, we associate now a stable particle

and to each positive non-simple root of g̃ an unstable particle, such that

# of stable particles =

ℓ̃
∑

i=1

ℓi, # of unstable particles =
ℓ̃ (h̃ − 2)

2
. (3.1)

From the discussion above, we expect that the σ’s will be associated to unstable particles,

but we note that the

# of resonance parameters =
ℓ̃(ℓ̃ − 1)

2
(3.2)

only agrees with the amount of unstable particles for h̃ = ℓ̃ + 1, e.g. for g̃ = SU(ℓ̃ + 1).

Since the resonance parameters govern the mass of the unstable particles, this discrepancy

is interpreted as an unavoidable mass degeneracy.
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Concrete examples for this formulations are the g̃k-homogeneous sine-Gordon models

[20, 21], for which one can choose g̃ to be simply laced and g1 = . . . = gℓ̃ = SU(k). This

is generalized [34] when taking instead g̃ to be non-simply laced and gi = SU(2k/α2
i ),

with αi being the simple roots of g̃. The choice g1 = . . . = gℓ̃ = g with g being any

arbitrary simply laced Lie algebra gives the g|g̃-theories [35]. An example for a theory

associated to a coset is the roaming sinh-Gordon model [36], which can be thought of as

g̃/ h̃ ≡ limk→∞ SU(k + 1)/SU(k) with g1 = . . . = gℓ̃ = SU(2). It is clear that the

examples presented here do not exhaust yet all possible combinations and the structure

mentioned above allows for more combinations of algebras, which are not yet explored.

One is also not limited to Dynkin diagrams and may consider more general graphs which

have multiple links, i.e. resonance parameters, between various nodes. Examples for such

theories were proposed and studied in [37].

3.1 Decoupling Rule

Of special interest is to investigate the behaviour of previously defined systems when certain

resonance parameters σ become very large or tend to infinity. The physical motivation for

that is to describe a renormalization group (RG) flow, which we shall discuss in more detail

below. Here we present first the mathematical set up.

Decoupling rule: Call the overall Dynkin diagram C and denote the associated Lie

group and Lie algebra by G̃C and g̃C, respectively. Let σij be some resonance parameter

related to the link between the nodes i and j. To each node i attach a simply laced Lie

algebra gi. Produce a reduced diagram Cji containing the node j by cutting the link adjacent

to it in the direction i. Likewise produce a reduced diagram Cij containing the node i by

cutting the link adjacent to it in the direction j. Then the G̃C-theory decouples according

to the rule

lim
σij→∞

G̃C = G̃(C−Cij ) ⊗ G̃(C−Cji)/G̃(C−Cij−Cji) . (3.3)

We depict this rule also graphically in terms of Dynkin diagrams:

. . . u

gi

e

C
. . . e u

gj

. . . ⇒
σij → ∞

. . . u

gi

e

C − Cji
. . . e ⊗ e

C − Cij
. . . e u

gj

. . .

�
�

� e

C − Cij − Cji
. . . e

According to the GKO-coset construction [32], this means that the Virasoro central charge

flows as

cg̃C
→ cg̃C−Cij

+ cg̃C−Cji
− cg̃C−Cij−Cji

. (3.4)

The rule may be applied consecutively to each disconnected subgraph produced according

to the decoupling rule (3.3). Note that this rule describes a decoupling and not a fusing, as it

only predicts the flow in one direction and the limit is not reversible. From a physical point

of view this is natural as also the RG flow is also irreversible. The rule (3.3) generalizes

a rule proposed in [26], which was based on the assumption that unstable particles are

associated exclusively to positive roots of height two.
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More familiar in the mathematical literature is a decoupling rule found by Dynkin [38]

for the construction of semi-simple2 subalgebras h̃ from a given algebra g̃. For the more

general diagrams which can be related to the g̃k-HSG models the generalized rule can be

found in [39]. These rules are all based on removing some of the nodes rather than links.

For our physical situation at hand this corresponds to sending the masses of all stable

particles which are associated to the algebra of a particular node to infinity. As in the

decoupling rule (3.3) the number of stable particles remains preserved, it is evident that

the two rules are inequivalent. Letting for instance the mass scale in gj go to infinity, the

generalized (in the sense that gj can be different from Aℓ) rule of Kuniba is simply depicted

as

. . . u

gi

u

gj

C
u

gk

. . . ⇒
mj → ∞

. . . u

gi

C − Cji
⊗

C − Cjk
u

gk

. . .

Clearly this can not be produced with (3.3).

3.2 A simple example: The SU(4)2-HSG model

We illustrate the working of the rule (3.3) with a simple example. We take g̃ to be SU(4),

attach to each node simply an SU(2) algebra and to the links the resonance parameters

σ12, σ13, σ23. This corresponds to the SU(4)2-HSG model. For the ordering σ13 > σ12 >

σ23 the rule (3.3) predicts the following flow

u

α1

u

α2

u

α3

g̃ = SU(4)2 c = 2

→ σ13 u

α1

u

α2

⊗ u

α2

u

α3 �
�

� u

α2

g̃ = SU(3)⊗2

2 /SU(2)2c = 1.9

→ σ12 u

α1

⊗ u

α2

u

α3

g̃ = SU(3)2 ⊗ SU(2)2c = 1.7

→ σ23 u

α1

⊗ u

α2

⊗ u

α3

g̃ = SU(2)⊗3

2 c = 1.5

The central charges are obtained from (2.28) using (3.4). Chosing instead the ordering

σ23 > σ13 > σ12, we compute
u

α1

u

α2

u

α3

g̃ = SU(4)2 c = 2

→ σ23 u

α1

u

α2

⊗ u

α3

g̃ = SU(3)2 ⊗ SU(2)2c = 1.7
→ σ23 u

α1

u

α2

⊗ u

α3

g̃ = SU(3)2 ⊗ SU(2)2c = 1.7

→ σ13 is already decoupled

→ σ12 u

α1

⊗ u

α2

⊗ u

α3

g̃ = SU(2)⊗3

2 c = 1.5

It is important to note the non-commutative nature of the limiting procedures. For more

complicated algebras it is essential to keep track of the labels on the nodes, since only in

this way one can decide whether they cancel against the subgroup diagrams or not.

2The subalgebras constructed in this way are not necessarily maximal and regular. A guarantee for

obtaining those, except in six special cases, is only given when one manipulates adequately the extended

Dynkin diagram.
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3.3 A non-trivial example: The (E6)2-HSG model

As by now we do not have a rigorous proof of the decoupling rule (3.3), we take the support

for its validity from the working of various examples. We will check below the analytic

predictions of the rule against some alternative method. As the previous example was

a simple pedagogical one, we will consider next a non-trivial one leading to an intricate

prediction for the RG-flow. The confirmative double check below can hardy be accidental

and we take that as very strong support for the validity of (3.3).

We consider now the (E6)2-HSG model. In this case we have ℓ̃ = 6, h̃ = 12 such

that we have 6 stable particles, 30 unstable particles and 15 resonance parameters. From

the 5! possible orderings for the resonance parameters we present here only two concrete

ones, which will predict different types of flows and mass degeneracies. Note that this

degeneracy is not the unavoidable one resulting from the difference between the number of

resonance parameters and non-simple positive roots that is 30 − 15, as discussed for (3.1)

and (3.2). The degeneracies discussed here are a consequence of the particular choices of

the resonance parameters. The conventions for the labeling of our particles are indicated

in the following Dynkin diagram:

u

α1

u

α3

u

α4

uα2

u

α5

u

α6

We choose first the ordering and values for resonance parameters as

σ13 = 100 > σ34 = 80 > σ45 = 60 > σ56 = 40 > σ24 = 20 . (3.5)

According to the decoupling rule (3.3), we predict therefore the flow:

E6
36
7 ∼ 5. 14

→ σ16 = 280 SO(10)⊗2/SO(8) 5

→ σ15 = 240 SO(10) ⊗ SU(5)/SU(4) 34
7 ∼ 4. 86

→ σ14, σ36 = 180 SO(8) ⊗ SU(5) ⊗ SU(3)/SU(4) ⊗ SU(2) 319
70 ∼ 4. 56

→ σ12 = 160 is already decoupled

→ σ35 = 140 SU(5) ⊗ SU(4) ⊗ SU(3)/SU(3) ⊗ SU(2) 61
14 ∼ 4. 36

→ σ26 = 120 SU(4)⊗3 ⊗ SU(3)/SU(3)⊗2 ⊗ SU(2) 4.3

→ σ13, σ46 = 100 SU(4)⊗2 ⊗ SU(3) ⊗ SU(2)/SU(3) ⊗ SU(2) 4

→ σ25, σ34 = 80 SU(3)⊗3 ⊗ SU(2)⊗2/SU(2)⊗2 3.6

→ σ32, σ45 = 60 SU(3)⊗2 ⊗ SU(2)⊗2 3.4

→ σ56 = 40 SU(3) ⊗ SU(2)⊗4 3.2

→ σ24 = 20 SU(2)⊗6 3

Note that eight particles are pairwise degenerate and we therefore expect to find 15−8/2 =

11 plateaux in the flow. The first step which corresponds to one of these degeneracies occurs

for instance at σ14 = σ36 and we have to apply the decoupling rule twice at this point before

we get a new fixed point theory.
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Next we arrange the couplings as

σ45 = 100 > σ34 = 80 > σ13 = 60 > σ56 = 40 > σ24 = 20 . (3.6)

and compute from (3.3) the flow

E6
36
7 ∼ 5. 14

→ σ16 = 280 SO(10)⊗2/SO(8) 5

→ σ15 = 240 SO(10) ⊗ SU(5)/SU(4) 34
7 ∼ 4. 86

→ σ36 = 220 SU(5)⊗2 ⊗ SO(8)/SU(4)⊗2 33
7 ∼ 4. 71

→ σ35 = 180 SU(5)⊗2/SU(3) 158
35 ∼ 4. 51

→ σ26 = 160 SU(4)⊗2 ⊗ SU(5)/SU(3)⊗2 156
35 ∼ 4. 46

→ σ14 = σ46 = 140 SU(4)⊗2 ⊗ SU(3)⊗2/SU(2)⊗2 ⊗ SU(3) 4.2

→ σ12 = σ25 = 120 SU(4) ⊗ SU(3)⊗3/SU(2)⊗3 4.1

→ σ45 = 100 SU(4) ⊗ SU(3)⊗2/SU(2) 3.9

→ σ34 = 80 SU(3)⊗3 3.6

→ σ13 = σ32 = 60 SU(3)⊗2 ⊗ SU(2)⊗2 3.4

→ σ56 = 40 SU(3) ⊗ SU(2)⊗4 3.2

→ σ24 = 20 SU(2)⊗6 3

In this case we have only six particles pairwise degenerate and we expect to find 15−6/2 =

12 plateaux. In the next section we find that the predictions made here are confirmed even

for this involved case.

4. How to detect unstable particles?

In section 2 we described several arguments which predict the spectrum of unstable particles

and now we will present some methods which allow to test these predictions. In particular

with regard to the boostrap proposal this will be important, as it is not yet rigorously

supported. Computing renormalization group (RG) flows will allow to detect the unstable

particles. Roughly speaking, the central idea of an RG analysis is to probe different energy

scales of a theory. We can flow from an energy regime so large that the unstable particle

can energetically not exist to one in which it is formed. As a consequence, the particle

content of the theory will be altered, which is visible in form of a typical staircase pattern

of the RG scaling function.

There are various ways to compute such scaling functions, such as the evaluation of

the c-theorem [40] or an analysis by means of the thermodynamic Bethe ansatz (TBA)

[41]. In the first case we have to evaluate the expression

c(r0) =
3

2

∞
∫

r0

dr r3 〈Θ(r)Θ(0)〉 . (4.1)

The main difficulty in this approach is to evaluate the two-point correlation function

〈Θ(r)Θ(0)〉 for the trace of the energy-momentum tensor Θ depending on the radial dis-

tance r. Most effectively, one can do this by expanding it in terms of form factors, for a
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general recent introduction see e.g. [42] and references therein. It is well known that for

many, even quite non-trivial, theories such form factor expansions converge extremely fast,

see [27] for the compution of (4.1) for the SU(3)2-HSG model.

Here we will concentrate more on the TBA, which is simpler to handle in most cases.

As a prerequisite, one assumes to know all scattering matrices Sij(θ) for the stable particles

of the type i,j with masses mi,mj. Besides this dynamical interaction one also makes an

assumption on the statistical interaction between the particles, which are choosen here

to be of fermionic type. The TBA consists now of compactifying the space of this 1+1

dimensional relativistic model into a circle of finite circumference R, such that all energies

become discrete and functions of R. The function similar to (4.1), which scales now these

energies takes on the form

ceff(r) =
3 r

π2

∑

i

mi

∞
∫

−∞

dθ cosh θ ln(1 + e−εi(θ,r)) . (4.2)

One identifies the circumference R with the inverse temperature T and introduces the

scaling parameter r = m/T , with m being an overall mass scale. The εi(θ, r) are the

so-called the pseudo-energies which can be obtained as solutions of the thermodynamic

Bethe ansatz equations

rmi cosh θ = εi(θ, r) +
∑

j

[ϕij ∗ ln(1 + e−εj)](θ, r) . (4.3)

Here the ∗ denotes the convolution of two functions (f ∗ g) (θ) := 1/(2π)
∫

dθ′f(θ−θ′)g(θ′)

and the S (for the stable particles only!) enter via their logarithmic derivatives ϕij(θ) =

−id ln Sij(θ)/dθ. The main difficulty in this approach is to solve (4.3), which are coupled

non-linear integral equations and therefore not solvable in a systematic analytical way.

Now it is clear, that the two functions (4.1) and (4.2) can not be the same, but

nevertheless they contain the same qualitative information. The functions will flow through

various fixed points, at which the theory become effectively conformal field theories and the

normalizations are choosen in such a way that the values of both functions coincide with

the corresponding Virasoro central charges. When the theory is not unitary, (4.2) has to

be corrected by an additive term to achieve this. Computing then a flow from the infrared

to the ultraviolet, one passes now various CFT plateaux, where the changes are associated

to the formation of unstable particles with mass (2.15). The challenge is of course to

predict the positions, that is, the height and the on-set of the plateaux, as a function of the

scaling parameter. The on-set is related to the energy scale of the unstable particles and

thus simply determined by the formula (2.15). To predict the height is less trivial and the

proposal made in [19] is that the decoupling rule (3.3) achieves this. It is important to note

here that σ → ∞ in (3.3), means in the RG context σ ≫ all other resonance parameters.

In the follwing picture we present the numerical computation for the (E6)2-HSG model,

which precisely confirms our analytical predictions made by the decoupling rule in section

3.3
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Having confirmed the predictions of our decoupling rule with a TBA-analysis, let us

now discuss how the results of this analysis are compatible with our bootstrap proposal with

a simple example: We consider the processes (2.40), (2.42). In order to be able to interpret

the BW-formula for the production of the particle (123) from (12) + 3 or (23) + 1 one has to

“make” (12) and (23) stable, which is achieved when σ12 or σ23 is zero. One has to do that as

otherwise the BW can not be applied, it only makes sense for stable particles. The first not

obvious result here is that the resulting mass for (123) turns out to be the same from both

cases (2.42) (and in all other examples!!!). Looking at the outcome of the TBA calculation

(see [19] for the numerics on this case) one finds precisely the value (2.43) reproduced by

the TBA at the onset ln(r/2) ∼ −σ13/2 = −(σ12 + σ23)/2. Now apparently in the TBA

analysis σ12 or σ23 are not zero, which seems to contradict the previous assumptions in

the bootstrap analysis. To understand this, one should keep in mind the meaning of the

steps in the TBA. The formation of the particle (123) takes place when its mass becomes

greater than the energy scale of the RG-flow, i.e. when m exp(σ13/2) > 2m/r. Let us chose

for instance σ12 = 30, σ23 = 60, then exp(σ13/2) ∼ exp(45) ∼ 3.49 × 1019. To resolve the

apparent contradiction, it is now important to note that the other unstable particles are

formed several orders of magnitude below at exp(30) ∼ 1.06×1013 and exp(15) ∼ 3.72×106.

This means in comparison to the formation energy scale of particle (123) the parameters

σ12, σ23 can be regarded as approximately zero, which is in agreement with the assumption

in the bootstrap analysis!

This is just the same picture as put forward in the decoupling rule: In the formulation

we say σ13 → ∞, but inside the TBA analysis this is a milder statement and just means

σ13 ≫ σ12, σ23. Further quite non-obvious confirmation comes from the results when

choosing the parameters differently, i.e. in the example discussed here σ12 → −σ12. The

two pictures completely coincide. With regard to previous studies, it is very important

to note that the occurrence of the step at exp(σ13/2) ∼ 2/r had no explanation at all

before. Only the onsets at exp(σ23/2) ∼ 2/r and exp(σ12/2) ∼ 2/r could be explained as

they correspond to the formation of unstable particles from two stable ones. The additional

step (for other algebras there are far more) was a mystery pointed out first in [29]. In [19] we

provided for the first time an explanation for this feature: We predict its height and on-set,

thus explaining also why it is absent when the resonance parameters are chosen differently.
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For all other examples studied (not even all have been presented in this proceeding, see

[19] for more) this picture is completely consistent.

5. Theories with an infinite amount of unstable particles

We address now the question of how to enlarge a given finite particle spectrum of a theory to

an infinite one. In general the bootstrap (2.10), which is the central construction principle

for the S-matrix, is assumed to close after a finite number of steps, which means it involves

a finite number of particles. However, from a physical as well as from a mathematical point

of view, it appears to be natural to extend the construction in such a way that it would

involve an infinite number of particles. The physical motivation for this are string theories,

which admit an infinite particle spectrum. Mathematically the infinite bootstrap would

be an analogy to infinite dimensional groups, in the sense that two entries of the S-matrix

are combined into a third, which is again a member of the same infinite set. It appears

to us that it is impossible to construct an infinite bootstrap system involving asymptotic

states, although we do not know a rigorous proof of such a no-go theorem. Instead, we will

demonstrate that it is possible to introduce an infinite number of unstable particles into

the spectrum.

5.1 q-deformed gamma functions and Jacobian elliptic functions

In general, the S-matrix amplitudes consist of (in)finite products of hyperbolic or/and

gamma functions. Here we will argue, that to enlarge the spectrum to an infinite number

one should replace these functions by q-deformed quantities or elliptic functions. Let us

first recall some mathematical facts in this section. We start with some properties of q-

deformed quantities, which have turned out to be very useful objects as they allow for

instance to carry out elegantly (semi)-classical limits when the deformation parameter is

associated to Planck’s constant. Here we define a deformation parameter q and its Jacobian

imaginary transformed version, i.e. τ → −1/τ , as

q = exp(iπτ), q̂ = exp(−iπ/τ ), τ = iK1−ℓ/Kℓ . (5.1)

We introduced here the quarter periods Kℓ of the Jacobian elliptic functions depending on

the parameter ℓ ∈ [0, 1], defined in the usual way through the complete elliptic integrals

Kℓ =
∫ π/2
0 (1 − ℓ sin2 θ)−1/2dθ . Then

lim
ℓ→0,q̂→1

Kℓ = lim
ℓ→1,q→1

K1−ℓ = π/2, lim
ℓ→0,q̂→1

K1−ℓ = lim
ℓ→1,q→1

Kℓ → ∞ . (5.2)

It will turn out below that quantities in q̂ will be most relevant for our purposes and

therefore we state several identities directly in q̂, rather than q, even when they hold for

generic values. The most basic q-deformed objects one defines are q-deformed integers

(numbers), for which we take the convention

[n]q̂ :=
q̂n − q̂−n

q̂ − q̂−1
. (5.3)
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They have the obvious properties

lim
ℓ→0

[n]q̂ = n, (5.4)

lim
ℓ→0

[n + mτ ]q̂
[n′ + m′τ ]q̂

=

{

1 for m,m′ 6= 0

n/n′ for m = m′ = 0
. (5.5)

Next we define a q-deformed version of Euler’s gamma function

Γq̂(x + 1) :=
∞
∏

n=1

[1 + n]xq̂ [n]q̂

[x + n]q̂[n]xq̂
. (5.6)

The crucial property of the function Γq̂, which coins also its name, is

lim
ℓ→0

Γq̂(x + 1) = lim
q̂→1

Γq̂(x + 1) =
∞
∏

n=1

n

n + x

(

1 + n

n

)x

= Γ(x + 1) . (5.7)

We can relate deformations in q and q̂ through

q̂(x+τ/2−1/2)2

q̂(y+τ/2−1/2)2

Γq̂(y)Γq̂(1 − y)

Γq̂(x)Γq̂(1 − x)
=

Γq(−y/τ )Γq(1 + y/τ)

Γq(−x/τ )Γq(1 + x/τ)
. (5.8)

Frequently we have to shift the argument by integer values

Γq̂(x + 1) = q̂x−1[x]q̂Γq̂(x) . (5.9)

Relation (5.9) can be obtained directly from (5.6). As a consequence of this we also have

Γq̂(x + m) = Γq̂(x)

m−1
∏

l=0

q̂x+l−1[x + l]q̂ m ∈ Z (5.10)

Γq̂(x) = Γq̂(x − m)

m−1
∏

l=0

q̂x−l−2[x − l − 1]q̂ m ∈ Z . (5.11)

Whereas (5.9)-(5.10) hold for generic q, the following identities are only valid for q̂

Γq̂(1/2 − τ/2)Γq̂(1/2 + τ/2) = ℓ1/4Γq̂(1/2)
2 (5.12)

Γq̂(x + 2τ )

Γq̂(y + 2τ )
=

Γq̂(x)

Γq̂(y)
(5.13)

p
∏

i=1

Γq̂(xi)Γq̂(xi ± τ/2)

Γq̂(yi)Γq̂(yi ± τ/2)
=

p
∏

i=1

Γq̂2(xi)

Γq̂2(yi)
if

p
∑

i=1

xi =

p
∑

i=1

yi (5.14)

lim
q̂→1

p
∏

i=1

Γq̂(xi ± τ/2)

Γq̂(yi ± τ/2)
= 1 if

p
∑

i=1

xi =

p
∑

i=1

yi (5.15)

lim
q̂→1

1

ℓ1/4
Γq̂(

x

2Kℓ
∓ τ

2
)Γq̂(1 − x

2Kℓ
± τ

2
) = π for x 6= 0
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Most of these properties can be checked directly by means of the defining relation (5.6).

The singularity structure will be important for the physical applications. It follows from

(5.6) that the Γq̂-function has no zeros, but poles

lim
θ→θnm

Γ,p=mτ−n
Γq̂(θ + 1) → ∞ for m ∈ Z, n ∈ N . (5.16)

Next we define

{x}σ
θ :=

tanh(θ − iπx + σ)/2

tanh(θ + iπx + σ)/2
, {x}σ

θ,ℓ :=

∞
∏

n=−∞

{x}σ
θ−n log q =

sc θ− dn θ+

sc θ+ dn θ−
(5.17)

with x ∈ Q, σ ∈ R and θ± = (θ ± iπx + σ)iKℓ/π. We employed here the Jacobian elliptic

functions for which we use the common notation pq(z) with p,q ∈ {s,c,d,n} (see e.g. [43]

for standard properties). We derive important relations between the q-deformed gamma

functions and the Jacobian elliptic sn-function

sn(x) =
1

ℓ
1

4

Γq̂(
x

2Kℓ
∓ τ

2 )Γq̂(1 − x
2Kℓ

± τ
2 )

Γq̂(
x

2Kℓ
)Γq̂(1 − x

2Kℓ
)

, (5.18)

=
q

1

4
− ix

2K1−ℓ

iℓ
1

4

Γq(
1
2 + ix

2K1−ℓ
)Γq(

1
2 − ix

2K1−ℓ
)

Γq(1 − ix
2K1−ℓ

)Γq(
ix

2K1−ℓ
)

. (5.19)

These relations can be used to obtain some of the above mentioned expressions. For

instance, recalling that sn(Kℓ) = 1, we obtain (5.12). With (5.6) we recover from this the

well known identity sn(iK1−ℓ/2) = i/ℓ1/4. The trigonometric limits

lim
ℓ→0

sn(x) = lim
q̂→1

sn(x) =
π

Γ(x
π )Γ(1 − x

π )
= sin(x) (5.20)

lim
ℓ→1

sn(x) = lim
q→1

sn(x) =
1

i

Γ(1
2 + ix

π )Γ(1
2 − ix

π )

Γ(1 − ix
π )Γ( ix

π )
= tanh(x). (5.21)

can be read off directly recalling (5.2), (5.7) and presuming that (5.16) holds. We recall

the zeros and poles of the Jacobian elliptic sn(θ)-function, which in our conventions are

located at

zeros: θlm
sn,0 = 2lKℓ + i2mK1−ℓ l,m ∈ Z (5.22)

poles: θlm
sn,p = 2lKℓ + i(2m + 1)K1−ℓ l,m ∈ Z . (5.23)

We have now assembled the main properties of the q-deformed functions which we shall

use below.

5.2 Generalizing diagonal S-matrices

Here we follow [37] and propose a quite simple principle which introduces an infinite number

of unstable particles into the spectrum. We note first, that in general many scattering

matrices factorize in the following form

Sab(θ) = Smin
ab (θ)SCDD

ab (θ) . (5.24)
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Here Smin
ab (θ) denotes the so-called minimal S-matrix which satisfies the consistency rela-

tions i)–vii) of section 2. The CDD-factor [18], only satisfies i)-vi) and has its poles in the

sheet −π ≤ Im θ ≤ 0, which is the “physical one” for resonance states. We note now that

the minimal part is of the general form

Sab(θ) =
∏

x∈A

{x}σ
θ , (5.25)

with A being a finite set specific to each theory. Then we may define a new S-matrix

Ŝab(θ) =
∏

x∈A

{x}σ
θ {x}σ

θ,ℓ (5.26)

and note that the additional factor in (5.26) is just of CDD-type. Therefore (5.26) consti-

tutes a solution to the consistency relations i)–vii) of section 2, and thus a strong candidate

for a scattering matrix of a proper quantum field theory. Note that wheras (5.25) was a

finite product of hyperbolic functions, the new proposal (5.26) contains, according to the

identity (5.17) in addition elliptic functions, which lead to the desired spectrum of infinitely

many unstable particles according to the principles outlined in section 2.

5.3 Non-diagonal S-matrices

We discuss now the elliptic sine-Gordon model, which may be related to the continuum

limit of the eight-vertex model. The (anti)-soliton sector was studied many years ago in

[44]. In [45] we demonstrated that it is possible to associate a consistent breather sector

to this model. Let us recall the argument by recalling the Zamolodchikov algebra for the

soliton sector

Z(θ1)Z(θ2) = a(θ12)Z(θ2)Z(θ1) + d(θ12)Z̄(θ2)Z̄(θ1) , (5.27)

Z(θ1)Z̄(θ2) = b(θ12)Z̄(θ2)Z(θ1) + c(θ12)Z(θ2)Z̄(θ1) . (5.28)

In comparison with the more extensively studied sine-Gordon model the difference is the

occurrence of the amplitude d in (5.27), i.e. the possibility that two solitons change into

two anti-solitons and vice versa. Invoking the consistency equations i)-v) one finds [44, 45]

a(θ) = Φ(θ)

∞
∏

k=0

(

Γq̂2 [−θ̂ − 1+2k
2 λ]Γq̂2 [1 − θ̂ − 1+2k

2 λ]

Γq̂2[θ̂ − 1+2k
2 λ]Γq̂2 [1 + θ̂ − 1+2k

2 λ]
(5.29)

× Γq̂2 [θ̂ − (k + 1)λ]Γq̂2 [1 + θ̂ − kλ]

Γq̂2 [−θ̂ − (k + 1)λ]Γq̂2 [1 − θ̂ − kλ]

)

b(θ) = − sn(iθ/ν)

sn(iθ/ν + π/ν)
a(θ), (5.30)

c(θ) =
sn(π/ν)

sn(iθ/ν + π/ν)
a(θ), (5.31)

d(θ) = −
√

ℓ sn(iθ/ν) sn(π/ν)a(θ), (5.32)

Φ(θ) =
Γq̂[1 + τ

2 ]Γq̂[− τ
2 ]Γq̂[1 − θ̂ + λ

2 + τ
2 ]Γq̂[θ̂ − λ

2 − τ
2 ]

Γq̂[1 + θ̂ + τ
2 ]Γq̂[−θ̂ − τ

2 ]Γq̂[1 + λ
2 + τ

2 ]Γq̂[−λ
2 − τ

2 ]
. (5.33)
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Here we used λ = −π/Kℓν, θ̂ = iθ/2Kℓν with ν ∈ R being the coupling constant of the

model.With regard to property vii), it is clear that it is important to analyse the singularity

structure of the amplitudes (5.29)-(5.32) to judge whether there exists a breather sector.

For this we appeal to the relations (5.16), (5.22) and (5.23) and find the following pole

structure inside the physical sheet

θnm
a1,p = 2mνK1−ℓ + i2nνKℓ, θnm

a2,p = (2m + 1)νK1−ℓ + i(π − 2nνKℓ),

θlm
b1,p = 2mνK1−ℓ + i(π − 2lνKℓ), θlm

b2,p = (2m + 1)νK1−ℓ + i2lνKℓ,

θlm
c1,p = 2mνK1−ℓ + i2lνKℓ, θlm

c2,p = 2mνK1−ℓ + i(π − 2lνKℓ),

θlm
d1,p = (2m + 1)νK1−ℓ + i2lνKℓ, θlm

d2,p = (2m + 1)νK1−ℓ + i(π − 2nνKℓ).

We took l,m ∈ Z, n ∈ N and associated always two sets of poles θnm
a1,p and θnm

a2,p to a(θ),

θnm
b1,p and θnm

b2,p to b(θ) etc. One readily sees from this that if one restricts the parameter

ν ≥ π/2Kℓ all poles move out of the physical sheet into the non-physical one, where they

can be interpreted in principle as unstable particles. This was already stated in [44], where

the choice ν ≥ π/2Kℓ was made in order to avoid the occurrence of non-physical states.

This is clear from our discussion of property vii) in section 2, as we would have poles in the

physical sheet beyond the imaginary axis, which when interpreted with the Breit-Wigner

formula leave the choice that either mc̄ < 0 or Γc̄ < 0, i.e. we either violate causality or we

have Tachyons. The restriction on the parameters makes the model somewhat unattractive

as this limitation eliminates the analogue of the entire breather sector which is present in

the sine-Gordon model, such that also in the trigonometric limit one only obtains the

soliton-antisoliton sector of that model, instead of a theory with a richer particle content.

For this reason we relax here the restriction on ν and note that the poles

θn0
b1,p = θn0

c2,p for 0 < n < nmax = [π/2νKℓ], n ∈ N (5.34)

are located on the imaginary axis inside the physical sheet and are therefore candidates

for the analogue of the nth-breather bound states in the sine-Gordon model. We indicate

here the integer part of x by [x]. In other words, there are at most nmax − 1 breathers for

fixed ν and ℓ. The price one pays for the occurrence of these new particles in the elliptic

sine-Gordon model is that one unavoidably also introduces additional Tachyons into the

model as the poles always emerge in “strings”. It remains to be established whether the

poles (5.34) may really be associated to a breather type behaviour.

Let us now see if the poles on the imaginary axis inside the physical sheet can be

associated consistently with breathers. We proceed similarly as for the sine-Gordon model

[46], even though in the latter approach the following ansatz is inspired by the classical

theory and here we do not have a classical counterpart. We define the auxiliary state

Zn(θ1, θ2) :=
1√
2

[

Z(θ1)Z̄(θ2) + (−1)nZ̄(θ1)Z(θ2)
]

. (5.35)

This state has properties of the classical sine-Gordon breather being chargeless and having

parity (−1)n. Choosing thereafter the rapidities such that the state (5.35) is on-shell, we

can speak of a breather bound state

lim
(p1+p2)2→m2

bn

Zn(θ1, θ2) ≡ lim
θ12→θ+θbn

12

Zn(θ1, θ2) = Zn(θ) . (5.36)
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Here θbn

12 is the fusing angle related to the poles in the soliton-antisoliton scattering ampli-

tudes. We compute now with the help of (5.27) and (5.28) the exchange relation

Zn(θ1)Z(θ2) = Sbns(θ12)Z(θ2)Zn(θ1) , (5.37)

where

Sbns(θ) =
sn( iθ

ν − π
2ν + nKℓ)

sn( iθ
ν + π

2ν + nKℓ)
[ℓsn2 π

ν
sn2

(

iθ

ν
+

π

2ν
+ nKℓ

)

− 1]ā (5.38)

and

ā =
Γq̂2[1 + θ̂ + λ

4 − n
2 ]Γq̂2 [−θ̂ − λ

4 − n
2 ]Γq̂2 [−θ̂ + λ

4 + n
2 ]Γq̂2 [θ̂ + λ

4 − n
2 ]

Γq̂2 [1 − θ̂ + λ
4 − n

2 ]Γq̂2[θ̂ − λ
4 − n

2 ]Γq̂2 [θ̂ + λ
4 + n

2 ]Γq̂2 [−θ̂ + λ
4 − n

2 ]

×Φ13Φ23

n−1
∏

l=1

[θ̂ − n
2 + λ

4 − kλ + l]2q̂2 [−θ̂ + n
2 − λ

4 − kλ − l]2q̂2

[−θ̂ − n
2 + λ

4 − kλ + l]2
q̂2 [θ̂ + n

2 − λ
4 − kλ − l]2

q̂2

×
∞
∏

k=0

[θ̂ − n
2 + λ

4 − kλ]q̂2 [−θ̂ + n
2 − λ

4 − kλ]q̂2

[−θ̂ − n
2 + λ

4 − kλ]q̂2 [θ̂ + n
2 − λ

4 − kλ]q̂2

×
∞
∏

k=0

[θ̂ + n
2 + λ

4 − kλ]q̂2 [−θ̂ − n
2 − λ

4 − kλ]q̂2

[−θ̂ + n
2 + λ

4 − kλ]q̂2 [θ̂ − n
2 − λ

4 − kλ]q̂2

Where Φij = Φ(θij) with θij being the difference of the on-shell rapidities. What is remark-

able here and can not be anticipated a priori, is that all off-diagonal terms vanish, thus

as (5.37) expresses in the soliton breather scattering there is no backscattering. Similarly,

but more lengthy, we compute the scattering amplitude between the nth-breather and

mth-breather

Zn(θ1)Zm(θ2) = Sbnbm
(θ12)Zm(θ2)Zn(θ1) (5.39)

where

Sbnbm
(θ) =

[

1 − ℓsn2 π

ν
sn2

(

iθ

ν
+ (n + m)Kℓ +

π

ν

)]

(5.40)

×
[

1 − ℓsn2 π

ν
sn2

(

iθ

ν
+ (n + m)Kℓ

)]

sn(iθ/ν − π/ν + (n + m)Kℓ)

sn(iθ/ν + π/ν + (n + m)Kℓ)
ã
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and

ã = Φ13Φ14Φ23Φ24
Γq̂2(1 + m

2 + n
2 + θ̂ + λ

2 ) Γq̂2(−m
2 − n

2 − θ̂ − λ
2 )

Γq̂2(1 + m
2 + n

2 − θ̂ + λ
2 )Γq̂2(−m

2 − n
2 + θ̂ − λ

2 )

×
∞
∏

k=1

n−1
∏

l=1

[m2 + n
2 − l − θ̂ − k λ + λ]q̂2 [−m

2 − n
2 + l + θ̂ − k λ]q̂2

[m2 + n
2 − l + θ̂ − k λ + λ]q̂2 [−m

2 − n
2 + l − θ̂ − k λ]q̂2

×
∞
∏

k=0

n−1
∏

l=1

[m2 + n
2 − l + θ̂ − λ

2 − k λ]q̂2 [−m
2 − n

2 + l − θ̂ − λ
2 − k λ]q̂2

[m2 + n
2 − l − θ̂ − λ

2 − k λ]q̂2 [−m
2 − n

2 + l + θ̂ − λ
2 − k λ]q̂2

(5.41)

×
∞
∏

k=1

m−1
∏

l=0

[m2 + n
2 − l − θ̂ − k λ + λ]q̂2 [−m

2 − n
2 + l + θ̂ − k λ]q̂2

[m2 + n
2 − l + θ̂ − k λ + λ]q̂2 [−m

2 − n
2 + l − θ̂ − k λ]q̂2

×
∞
∏

k=0

m−1
∏

l=0

[m2 + n
2 − l + θ̂ − λ

2 − k λ]q̂2 [−m
2 − n

2 + l − θ̂ − λ
2 − k λ]q̂2

[m2 + n
2 − l − θ̂ − λ

2 − k λ]q̂2 [−m
2 − n

2 + l + θ̂ − λ
2 − k λ]q̂2

.

The latter expression (5.41) is tailored to make contact to the expressions in the literature

corresponding to the trigonometric limit. Also for this amplitude the backscattering is

zero.

The matrix Sbnbm
(θ) also exhibits several types of poles. a) simple and double poles

inside the physical sheet beyond the imaginary axis, b) double poles located on the imagi-

nary axis, c) simple poles in the non-physical sheet and d one simple pole on the imaginary

axis inside the physical sheet at θ = θb = iν(n + m)Kℓ which is related to the fusing

process of two breathers bn + bm → bn+m. To be really sure that this pole admits such

an interpretation, we have to establish according to (2.11) that the imaginary part of the

residue is strictly positive, i.e.

−i lim
θ→θb

(θ − θb)Sbnbm
(θ) > 0 . (5.42)

The explicit computation shows that this is indeed the case, see [45].

Furthermore, It is very interesting to check if also (2.10) is satisfied for the fusing

process bn + bm → bn+m. For consistency, all amplitudes have to satisfy the bootstrap

equations

Slbn+m
(θ) = Slbn

(θ + iνmKℓ)Slbm
(θ − iνnKℓ) , (5.43)

for l ∈ {bk, s, s̄} ; k,m + n < nmax. Indeed, we verify with some algebra that (5.43) holds

for the above amplitudes (5.38) and (5.40).

Finally, we carry out various limits. Our formulation in terms of q-deformed quantities

and elliptic functions is useful to make this task fairly easy. We state our results here only
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schematically and refer the reader for details to [45]. We find

elliptic sine-Gordon
1/ν→2nKℓ/π+2imK1−ℓ/π
−−−−−−− −→ elliptic D

(1)
n+1-ATFT

|
|

ℓ → 0

|
↓

ւ
m 6= 0, ℓ → 0

↓
free theory

↑
1/ν → i∞

ր

|
|

m = 0, ℓ → 0

|
↓

sine-Gordon −−−−−−− −→
1/ν→n

minimal D
(1)
n+1-ATFT

Thus we can view the elliptic sine-Gordon model as a master theory for several other

models. In the limit ℓ → 0 we recover now all sectors, including the breathers, of the sine-

Gordon model. The diagonal limit 1/ν → 2nKℓ/π + 2imK1−ℓ/π is interesting as it yields

a new type of theory, which we refer to as elliptic SO(2n + 2) ≡ D
(1)
n+1-affine Toda field

theory (ATFT). To coin this name for these theories seems natural as in the trigonometric

limit we obtain from it the ordinary minimal D
(1)
n+1-ATFT.

6. Conclusions

We reviewed the general analytical scattering theory related to integrable quantum field

theories in 1+1 space-time dimensions. We made a proposal for a construction principle of

an S-matrix like object which describes the scattering between two unstable particles or an

unstable particle and a stable one. We tested this proposal with various examples and found

a remarkable agreement with the outcome of the thermodynamic Bethe ansatz in what

concerns the particle content and the RG flow of the theories. We described the general

Lie algebraic structure of theories with unstable particles and propose a decoupling rule

which predicts the RG flow when some of the parameters in the theory become very large.

Alternatively, we tested these analytical prediction with the TBA. Finally, we discussed

how one can construct theories with and without backscattering which contain an infinite

number of unstable particles.
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