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Abstract: We construct a Lax operator for the G2-Calogero-Moser model by means of

a double reduction procedure. In the first reduction step we reduce the A6-model to a

B3-model with the help of an embedding of the B3-root system into the A6-root system

together with the specification of certain coupling constants. The G2-Lax operator is

obtained thereafter by means of an additional reduction by exploiting the embedding of

the G2-system into the B3-system. The degree of algebraically independent and non-

vanishing charges is found to be equal to the degrees of the corresponding Lie algebra.

1. Introduction

The Calogero-Moser models [1, 2, 3, 4, 5, 6, 7, 8] constitute a large class of well studied

interacting many particle systems. The models are very universal in the sense that they

can be cast into a form in which the potential term includes a sum over all roots α of some

root system ∆ and the functional dependence of the potential is V (x) ∼ 1/ sn2(x), with sn

being an elliptic function together with its various limits 1/ sinh2(x), 1/ sin2(x) and 1/x2.

Often it is useful to treat the latter cases independently for their own sake. Due to their

universal nature the models find a wide range of applications in physics, as for instance

to characterize anyons on the lowest Landau level [9], to describe certain properties of

quantum Hall droplets [10] and in various ways in conformal [11, 12, 13, 14] and boundary

[15] conformal field theories.

The Hamiltonian for an n-particle Calogero-Moser system reads

H =
p2

2
− 1

2

∑

α∈∆

g2
αV (α · q) gα ∈ iR, q, p ∈ Rn, (1.1)

with n being the dimensionality of the space in which the roots α are realized. At this point

we impose only the restrictions gα = g−α on the coupling constant, even though later on we
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equate more of them for reasons to be explained. One of the most prominent feature of these

models is their integrability, meaning here the existence of a sufficient number of conserved

quantities (integrals of motion) Ik in involution. A standard technique to construct these

charges, the so-called isospectral deformation method, goes back almost forty years [16]. It

consists of formulating Lax pair operators L and M as functions of the dynamical variables

qi and pi for 1 ≤ i ≤ n, which satisfy the Lax equation L̇ = [L,M ], upon the validity of

the classical equation of motion resulting from (1.1). The Lax operator is then the starting

point for the construction of conserved charges of the form Ik = tr(Lk)/k, with I2 ∼ H, of

classical r-matrices [17, 18, 19, 20, 21, 22], spectral curves [23, 24, 25, 26] and various other

important quantities. For root systems ∆, which can be associated with a Lie algebra g,

i.e. crystallographic ones1, a natural Ansatz is to expand L and M in terms of the elements

H,Eα of g

L = p · H +
∑

α∈∆

gαf(α · q)Eα and M = m · H +
∑

α∈∆

gαh(α · q)Eα. (1.2)

Alternatively, one may also expand L and M in terms of other non-commuting objects,

such as Coxeter transformations, and perform a similar analysis [28, 29]. Substitution of

these operators into the Lax equation yields various constraining equations, which for a

given potential determine the functions f(x) and h(x) in L and M as defined in equation

(1.2). We choose here as convention the Cartan-Weyl basis tr(HiHj) = δij , tr(EαE−α) = 1,

which is consistent with the well-known commutation relations (e.g. [30])

[Hi,Hj] = 0, [Hi, Eα] = αiEα, [Eα, E−α] = α · H, [Eα, Eβ ] = εα,βEα+β. (1.3)

Then by direct substitution it follows that the Lax equation holds once the functions

fα(x) = gαf(x) and hα(x) = gαh(x) satisfy

g(x) = f ′(x), ṗ =
∑

α∈∆

αfα(α·q)h−α(−α·q), γ ·m =
∑

α,β∈∆
α+β=γ

εα,β

fα(α · q)hβ(β · q)
fγ(γ · q) . (1.4)

Assuming further that I2 = H and the classical equation of motions resulting from (1.1),

one obtains three additional equations

f(x)f(−x) = −V (x), ṗ = −1

2

∑

α∈∆

αg2
αV ′(α · q) and f(x) = ±f(−x). (1.5)

For the stated potentials it is straightforward to use the factorizing condition in (1.5) to

determine f(x), i.e. 1/ sn(x), 1/ sinh(x), 1/ sin(x) and 1/x, and therefore g(x) by taking its

derivative. Thus to establish the integrability of the system (1.1) reduces to the question of

whether the third set of equations in (1.4) admits a solution for the vector m and therefore

guarantees the existence of the operator M . As these equations are in general highly

1For non-crystallographic root systems one may exploit the fact that they are embedded into crystallo-

graphic ones and use a reduction procedure to obtain a meaningful Lie algebraic operator [27].
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overdetermined, the answer to this question depends crucially on the structure of the Lie

algebra. As was observed long time ago [31], for given potentials as in (1.1) the relation

f(x)f ′(y) − f ′(x)f(y) = f(x + y) [V (x) − V (y)] (1.6)

holds, such that the equations may be simplified further. Then the last set of equations in

(1.4) reduces to

gγ(γ · m) =
∑

α,β∈∆
α+β=γ

εα,βgαgβV (α · q) =
∑

α∈∆

εα,γgαgα+γV (α · q). (1.7)

Clearly

m =
∑

α∈∆

ℓ
∑

i=1

εα,γi

gαgα+γi

gγi

V (α · q)λi, (1.8)

with λi being a fundamental weight, is a solution to (1.7) when γi is taken to be a simple

root. However, for (1.8) to be a proper solution one also has to verify whether it solves

(1.7) for the remaining roots. In summary, we can say that if the system (1.7) can be

solved for the vector m for a particular Lie algebra g, then the system (1.1) is classically

integrable. The reverse statement does not hold.

2. The G2-Lax operator

It turns out that only when the algebra g in (1.2) is taken to be Aℓ one obtains directly,

meaning that all quantities in (1.1) belong to Aℓ, a solution for the Lax operator with

the condition that the corresponding equation of motion holds. In all other cases one

needs to device alternative methods. The expressions for the Bℓ, Cℓ and Dℓ-algebras were

obtained [32, 7, 8] from A2ℓ-theories by specific transformations of the dynamical variables

and a subsequent constraint on certain coupling constants gα. For the remaining algebras

different types of techniques have been developed [32, 7, 8, 26, 28, 29]. Surprisingly for the

Lie algebras E6,7,8, F4 and G2 no Lax pair was known until fairly recent [26].

In particular, the latter, the G2-Calogero-Moser model, constitutes a standard simple

example, since it can be viewed as the classical three-body problem with a two and a three-

body interaction term [33]. For a specific realization of the roots (see below), the potential

term in the rational case simply reads

V (q̃) =
g̃2
s

2

∑

1≤i<j≤3

1

(q̃i − q̃j)2
+

g̃2
l

2

∑

1≤i<j≤3
i,j 6=k

1

(q̃i + q̃j − 2q̃k)2
, (2.1)

with g̃s, g̃l being coupling constants. It appears to be rather surprising that despite the

simplicity of this model, apart from the expressions in [26], a general simple formula for

the Lax operator along the line of the original work of [32, 7, 8] may not be found in the

literature. It will be the purpose of this paper to provide such a simple expression.

– 3 –
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2.1 Direct computation

Let us commence by directly analyzing equation (1.7) for G2. For the explicit calculation

we require first the roots of G2. We recall the general fact, see e.g. [34, 35, 36], that the

entire root system can be generated by h − 1 successive actions of the Coxeter element σ

on bi-coloured simple roots, i.e. γ = ± αi, with h being the Coxeter number. It turns

out to be convenient to abbreviate the roots accordingly, that is we define σpγi =: αi,p for

1 ≤ i ≤ ℓ =rank g and 0 ≤ p ≤ h − 1.

For G2 we have ℓ = 2, h = 6 and the 2 × 6 = 12 roots are computed to

i�p 0 1 2 3 4 5

1 −α̃1 −(2α̃1 + α̃2) −(α̃1 + α̃2) α̃1 2α̃1 + α̃2 α̃1 + α̃2

2 α̃2 −(3α̃1 + α̃2) −(3α̃1 + 2α̃2) −α̃2 3α̃1 + α̃2 3α̃1 + 2α̃2

The roots α̂i,p of the ∆̂G2
-root system.

In addition, we require the structure constants εα,β for the analysis of (1.7). The square

of the latter can be fixed by means of the well-known formula ε2
α,β = α2n(m + 1)/2, where

the integers n,m are determined by the so-called α-string through β, i.e. the largest values

for n,m such that β + nα and β − mα are still roots, see e.g. [37]. The overall signs are

in general not fixed and are subject to convention. However, some consistency relations

have to hold, resulting from the anti-symmetry of the commutator, the reality condition

and the Jacobi identity when α + β = γ

εα,β = −εβ,α = εβ,−γ = −ε−γ,β = −εα,−γ = ε−γ,α = (2.2)

−ε−α,−β = ε−β,−α = −ε−β,γ = εγ,−β = ε−α,γ = −εγ,−α. (2.3)

We choose here the short roots α̃1,p to have length α̃2 = 2 and the long roots α̃2,p to have

length α̃2 = 6. As complete lists of structure constants are difficult to find in the literature,

we present here a consistent choice for the 12 × 12 = 144 structure constants, with 60 of

them non-vanishing

α̃i,p�α̃j,q α̃1,0 α̃1,1 α̃1,2 α̃1,3 α̃1,4 α̃1,5 α̃2,0 α̃2,1 α̃2,2 α̃2,3 α̃2,4 α̃2,5

α̃1,0 0 µ −2 0 2 µ 0 0 0 −µ −µ 0

α̃1,1 −µ 0 µ 2 0 −2 0 0 0 0 µ −µ

α̃1,2 2 −µ 0 µ −2 0 −µ 0 0 0 0 µ

α̃1,3 0 −2 −µ 0 −µ 2 µ µ 0 0 0 0

α̃1,4 −2 0 2 µ 0 −µ 0 −µ µ 0 0 0

α̃1,5 −µ 2 0 −2 µ 0 0 0 −µ µ 0 0

α̃2,0 0 0 µ −µ 0 0 0 0 −µ 0 µ 0

α̃2,1 0 0 0 −µ µ 0 0 0 0 µ 0 −µ

α̃2,2 0 0 0 0 −µ µ µ 0 0 0 µ 0

α̃2,3 µ 0 0 0 0 −µ 0 −µ 0 0 0 µ

α̃2,4 µ −µ 0 0 0 0 −µ 0 µ 0 0 0

α̃2,5 0 µ −µ 0 0 0 0 µ 0 −µ 0 0

The G2-structure constants εi,p,j,q with µ =
√

3.
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In order to obtain the previous table we only fixed five signs by convention and deter-

mined the remaining ones by means of the relations (2.2) and (2.3).

Having assembled all necessary data, we can present a simple argument which demon-

strates that it is not possible to solve the constraint (1.7) directly. Choosing all coupling

constants gα̃ to be either gs or gl for α̃ to be a short or long root, respectively, we may for

instance add up the equation (1.7) for the three choices γ = α̃1,0, γ = α̃1,2 and γ = α̃1,4

and find after cancellation of gs

(α̃1,0 + α̃1,2 + α̃1,4) · m = 0 = 2
√

3gl [V (α̃1,0 · q) − V (α̃2,0 · q) + V (α̃1,4 · q) − V (α̃2,4 · q)] .

Clearly, the right hand side is not zero in general, and hence we can not solve the constraint

(1.7) directly. One reaches the same conclusion by taking the expression in (1.8) and trying

to verify (1.7) for γ to be a non-simple root.

However, if we switch off the two particle interaction, i.e. we take gs = 0 in (2.1), we

may construct a particular solution. Taking for instance α̃1 = ε1 − ε2, α̃2 = −2ε1 + ε2 + ε2

as concrete realization for the simple roots of G2 in R3, with εi ·εj = δij , and setting gs = 0,

we can solve (1.7) by

m1 = 0, (2.4)

m2 =
gl√
3

[V (α̃2,0 · q) + V (α̃2,4 · q) − 2V (α̃2,5 · q)] , (2.5)

m3 =
gl√
3

[2V (α̃2,4 · q) − V (α̃2,0 · q) − V (α̃2,5 · q)] . (2.6)

To find a general Lax operator which involves all terms of the potential one needs to device

other techniques.

2.2 The G2-Lax operator from double reduction

The construction procedure is summarized by the following Dynkin diagrams:

α6α5α4α3α2α1
vvvvvv

ω, τ−→ v v v

��
@@

α̂1 α̂2 α̂3 ω̂−→ v v��
@@

α̃1 α̃2

In the first step we start by folding the A
(1)
6 -root system to the A

(2)
6 -root system by means

of a map ω. Subsequently we constrain some of the coupling constants through a map τ ,

which amounts to an elimination of some particular roots of A6, such that we obtain two

copies of a B3-root system. From this system we obtain the G2-root system, by the action

of a further map ω̂.

The L-operator for the G2-Calogero-Moser model then reads

L(p̃, q̃) = ω−1ω̂−1p̃ · H +
6

∑

i=1

6
∑

p=0

τ(gi,p)f(ω̂ωαi,p · q̃)Eαi,p
(2.7)

= ω−1ω̂−1p̃ · H +

6
∑

i=1

6
∑

p=0

τ(gi,p)f(αi,p · ω−1ω̂−1q̃)Eαi,p
(2.8)

– 5 –



G2-Calogero-Moser Lax operators from reduction

with Hi, Eαi,p
∈ A6. We shall now specify the maps ω, ω̂, τ in detail, construct the

corresponding M -operator and show that the Lax equation holds upon the validity of the

G2-equation of motion.

2.2.1 Reduction of the root systems

Let us precisely see how the root systems are embedded into each other as ∆̃G2
⊃ ∆̂B3

⊃
∆A6

. We label the 42 roots of A6-are as

i�p 0 1 2 3 4

1 α1 α2 + α3 α4 + α5 α6

2 −α2 α1 + α2 + α3 α2+α3+α4+α5 α4 + α5 + α6 −α5

3 α3 α1 + α2 + α3 + α4 + α5 α2 + α3 + α4 + α5 + α6 α4

4 −α4 α3 + α4 + α5 α1+α2+α3+α4+α5+α6 α2 + α3 + α4 −α3

5 α5 α3 + α4 + α5 + α6 α1 + α2 + α3 + α4 α2

6 −α6 α5 + α6 α3+α4 α1 + α2 −α1

The roots α̂i,p of the ∆̂A6
-root system.

We did not report values of p ≥ 4, i.e. powers of the Coxeter element, for those roots

which can be obtained simply by a multiplication with −1 from a root of another orbit of

the Coxeter element. For instance α1,4 = −α6,1, α1,5 = −α6,2, etc. Let us now specify the

action of the folding map ω, which acts on the simple roots of A6

αi 7→ ω(αi) =

{

α̂i for i = 1, 2, 3

α̂7−i for i = 4, 5, 6.
(2.9)

Comparing the entire root system resulting in this manner with the (ℓ = 3)× (h = 6) = 18

roots of B
(1)
3

i�p 0 1 2 3 4 5

1 α̂1 α̂2 + 2α̂3 α̂1 + α̂2 −α̂1 −(α̂2 + 2α̂3) −(α̂1 + α̂2)

2 −α̂2 α̂1 + α̂2 + 2α̂3 α̂1 + 2α̂2 + 2α̂3 α̂2 −(α̂1 + α̂2 + 2α̂3) −(α̂1 + 2α̂2 + 2α̂3)

3 α̂3 α̂1 + α̂2 + α̂3 α̂2 + α̂3 −α̂3 −(α̂1 + α̂2 + α̂3) −(α̂2 + α̂3)

The roots α̂i,p of the ∆̂B3
-root system.

it is easy to see that the map (2.9) reduces the A6-root system to two copies of a B3-root

system plus 6 additional roots. We marked the 3 positive roots in the table of ∆A6
, which

are not mapped to ∆̂B3
via ω in bold and underlined the roots which are mapped to short

roots in ∆̂B3
. The unmarked roots are therefore mapped to long roots.

Having specified the map ω : ∆A6
→ ∆̂B3

acting on the roots, it is important to see

how this reduction is translated to the action on the dynamical variables. For this purpose

we construct its “inverse” map ω−1 : ∆̂B3
→ ∆A6

, defined via the inner product relation

ω(αi) · α̂j = αi · ω−1(α̂j), 1 ≤ i ≤ 6, 1 ≤ j ≤ 3. (2.10)

– 6 –
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It is easy to verify that this is guaranteed by the map

α̂i 7→ ω−1(α̂i) = αi + α7−i, 1 ≤ i ≤ 3, (2.11)

when taking the conventions α2 = 2, α̂2
1 = α̂2

2 = 2 and α̂2
3 = 1. Now we may utilize this

map to compute the reduction map when acting on the dynamical variables q, p

q → ω−1(q̂) = ω−1
(

∑3

i=1
ŷiα̂i

)

= (y1, y2 − y1, y3 − y2, 0, y2 − y3, y1 − y2,−y1), (2.12)

where we used the aforementioned Euclidean realization for the A6 root system in R7. To

make contact with the literature, we defined a further set of variables through the relation

yi =
∑i

k=1
q̂k, such that (2.12) becomes

q → (q̂1, q̂2, q̂3, 0,−q̂3,−q̂2,−q̂1). (2.13)

This is the reduction map as employed in [32] (see also [8]).

Likewise, we reduce next the B3-root system to the G2-root system by means of the

map ω̂ : ∆̂B3
→ ∆̃G2

α̂i 7→ ω̂(α̂i) =

{

α̃1 for i = 1, 3

α̃2 for i = 2.
(2.14)

The “inverse” ω̂−1 : ∆̃G2
→ ∆̂B3

is obtained similarly as before, but now demanding

ω̂(α̂i) · α̃j = α̂i · ω̂−1(α̃j), 1 ≤ i ≤ 3, 1 ≤ j ≤ 2. (2.15)

We find

α̃1 7→ ω̂−1(α̃1) = α̂1 + 2α̂3 and α̃2 7→ ω̂−1(α̃2) = 3α̂2, (2.16)

with the additional conventions α̃2
1 = 2 and α̃2

2 = 6. The reduction map, when acting on

the dynamical variables q̂, p̂, is now evaluated as

q̂ → ω−1(q̃) = ω−1
(

∑2

i=1
ỹiα̂i

)

= (ỹ1, 3ỹ2 − ỹ1, 2ỹ1 − 3ỹ2) = (−q̃
′

1, q̃
′

2, q̃
′

3), (2.17)

where we realized the B3-roots in R3 as α̂1 = ε1 − ε2, α̂2 = ε2 − ε3 and α̂3 = ε3. The

introduction of the variables q̃
′

i translates into the usual G2 constraint q̃1 + q̃2 + q̃3 = 0,

which corresponds to considering the three particle system in the center of mass frame. In

fact, it will be convenient to introduce yet another set of variables, namely q̃
′

1 = q̃2 − q̃3,

q̃
′

2 = q̃3 − q̃1 and q̃
′

3 = q̃1 − q̃2 to make proper contact with (2.1).

Let us now see how to utilize these maps in order to reduce the corresponding poten-

tials.

2.2.2 Reduction of the potentials

Our starting point is the A6-potential term in the form

VA6
(q) =

1

2

6
∑

i=1

6
∑

p=0

g2
i,pV (αi,p · q). (2.18)

– 7 –
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Below we confirm the known fact that the Lax equation dictates that all coupling constants

have to be taken to be the same, i.e. gi,p = g. Then VA6
is mapped into a B3-potential of

the form

VB3
(q̂) =

1

2

6
∑

i=1

6
∑

p=0

τ(gi,p)
2V (ωαi,p · q̂) =

ĝ2

2

5
∑

p=0

[

2
∑

i=1

V (α̂i,p · q̂) + 2V (α̂3,p · q̂)
]

, (2.19)

by means of the reduction map ω as specified above (2.9) and the map τ acting on the

coupling constants as

gi,p 7→ τ(gi,p) =











0 for g1,5, g3,5, g5,5, g2,2, g4,2, g6,2

ĝ for g1,1, g1,2, g2,1, g2,3, g3,0, g3,3, g4,0, g4,4, g5,4, g5,6, g6,5, g6,6
ĝ√
2

otherwise.

(2.20)

The map τ serves here to eliminate the aforementioned additional six roots of A6 which

have no counterpart in B3 and at the same time it establishes a relationship between the

coupling constants depending on whether the potential involves roots which are mapped

to long or short roots. This relation is dictated by the Lax pair construction, and coincides

with the one found by Olshanetsky and Perelomov in [32], or [8] p. 181. Note that taking

merely the invariance of the Coxeter transformation as a guiding principle one could choose

the coupling constants in front of the term involving long or short roots to be independent,

see e.g. discussion in [27]. However, integrability demands the dependence of the coupling

constants to be as stated in (2.20), such that one has only one coupling constant at ones

disposal for the Bℓ-theories.

Next we map the B3-potential to the G2-potential with the help of ω̂ and find

VG2
=

g̃2

2

5
∑

p=0

[

2
∑

i=1

V (ω̂α̂i,p · q̃) + 2V (ω̂α̂3,p · q̃)
]

=
g̃2

2

5
∑

p=0

[3V (α̃1,p · q̃) + V (α̃3,p · q̃)] . (2.21)

In this last reduction step we did not need to specify any additional map acting on the

coupling constants as the embedding is now on-to-one. For consistency we re-named,

however, ĝ to g̃.

2.2.3 Constraints from the Lax operator

Having convinced ourselves that the potentials can be reduce properly, we still have to

establish that the Lax operator exists and is indeed of the form (2.7). We commence by

explicitly solving the constraint (1.7) for A6. In principle there are now 42 × 42 possible

structure constants εi,p,j,q, with 420 of them non-vanishing. We only report here our

conventions for the signs of the 35 essentials and leave it to the reader to obtain the

remaining ones by means of the equations (2.2) and (2.3)

ε1,0,1,1 = ε1,0,2,2 = ε1,0,3,2 = ε1,1,1,2 = ε1,1,2,3 = ε1,1,3,3 = ε1,2,1,3 = ε1,2,2,4 = ε1,3,1,4 = (2.22)

ε1,3,2,5 = ε1,3,3,5 = ε1,4,1,5 = ε1,4,2,6 = ε1,5,1,6 = ε1,5,2,0 = ε1,5,3,0 = ε1,6,1,0 = ε1,6,2,1 = (2.23)

ε1,6,3,1 = ε2,0,1,1 = ε2,0,2,2 = ε2,1,1,2 = ε2,1,2,3 = ε2,2,1,3 = ε2,2,2,4 = ε2,3,1,4 = ε2,3,2,5 = (2.24)

ε2,4,1,5 = ε2,4,2,6 = ε2,5,1,6 = ε2,5,2,0 = ε2,6,1,0 = ε2,6,2,1 = ε3,0,1,2 = ε3,2,1,4 = 1. (2.25)
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In fact, we verified that these choices coincide with the constants obtained directly from

(1.3) when using the vector representation of A6. With (2.22)-(2.25) and the above men-

tioned realization for the simple roots, the constraint (1.7) may be solved by

mA6

i = g

7
∑

k=1
k 6=i

VA6
(qk − qi), (2.26)

which is known for some time [8]. Next we may solve (1.7) for the reduced systems and

find

mB3

i =
√

2ĝ

7
∑

k=1
k 6=i

τkiVA6
(ω̂−1(q̂k) − ω̂−1(q̂i)) (2.27)

with τki = 1 except for τ4i = 2, τ (8−i)i = 0 and

mG2

i =
√

2g
7

∑

k=1
k 6=i

τkiVA6
(ω−1ω̂−1(q̃k) − ω−1ω̂−1(q̃i)). (2.28)

Having presented explicit solutions to the equation (1.7), we have established the existence

of the operators L and M . In particular (2.7) and the corresponding equation for M satisfy

the Lax equation up to the validity of the G2 equations of motion.

2.2.4 Conserved Charges

It is instructive to consider an explicit matrix representation for the L-operator. Using the

standard vector representation of A6 it follows directly form (2.7)

L =
λ√
2



























√
2

λ
p̃32 f(q̃12) f(q̃31)

√
2f(q̃32) f(q̃13,2) f(q̃3,12) 0

f(q̃21)
√

2
λ

p̃31 f(q̃23,1)
√

2f(q̃31) f(q̃32) 0 f(q̃3,12)

f(q̃13) f(q̃1,23)
√

2
λ

p̃12

√
2f(q̃12) 0 f(q̃32) f(q̃13,2)√

2f(q̃23)
√

2f(q̃13)
√

2f(q̃21) 0
√

2f(q̃12)
√

2f(q̃31)
√

2f(q̃32)

f(q̃2,13) f(q̃23) 0
√

2f(q̃21)
√

2
λ

p̃21 f(q̃23,1) f(q̃31)

f(q̃12,3) 0 f(q̃23)
√

2f(q̃13) f(q̃1,23)
√

2
λ

p̃13 f(q̃12)

0 f(q̃12,3) f(q̃2,13)
√

2f(q̃23) f(q̃13) f(q̃21)
√

2
λ

p̃23



























(2.29)

where we abbreviated p̃ij := p̃i−p̃j, q̃ij := q̃i−q̃j, q̃ij,k := q̃i+q̃j−2q̃k and q̃k,ij := 2q̃k−q̃i−q̃j.

By simple matrix multiplication we compute from this the integrals of motion of the form

Ik = tr(Lk)/k

I1 = 0, I2 = H, I3 = 0, I4 =
1

4
I2
2 , I5 = 0, I6 6= 0, I7 = 0, (2.30)

I8 = I2I6 −
5

96
I4
2 , I9 = 0, I10 =

3

4
I2
2I6 −

1

20
I5
2 , I11 = 0, (2.31)

I12 =
5

12
I3
2I6 +

1

2
I2
6 − 19

576
I6
2 , I13 = 0, . . . (2.32)

Thus we find non-vanishing and algebraically independent charges Ik only for k being a

degree of G2, that is 2 and 6, see e.g. [34]. Computing the L-operator of the B3-Calogero-

Moser model we verify the same property.
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3. Conclusions

We have constructed a simple expression for the L-operator of the G2-Calogero-Moser

model. We established that the constraint (1.7) may indeed be solved and therefore that

the L and M -operator do exist. The operators are expanded in terms of H,Eα ∈ A6.

The Lax equation constructed from these operators, with coefficients subject to the stated

reduction maps, holds up to the validity of the G2 equations of motion. To find a solution

to (1.7) and thus guaranteeing the integrability of the model, we found that we are only

permitted to have one coupling constant in the G2-theory, instead of two, what might

be expected from demanding invariance under the Coxeter group. In our approach this

feature is inherited from the B3-theory. Such a behaviour was also observed in [26]. It

would be interesting to investigate if this limitation can be overcome by other techniques

or to establish that this is really an intrinsic feature of the model. Furthermore, from

the explicit computations of numerous integrals of motion, we found that they are only

algebraically independent and non-vanishing if their degree is equal to the degree of the

corresponding Lie algebra.

In our discussion we did not appeal to the explicit form of the potential and only

require the relation (1.6) to be satisfied. This means that the models covered here are of

the general form V (x) ∼ 1/ sn2(x) including a dependence of spectral parameter µ. It would

be interesting to investigate the properties of the spectral curves R(k, µ) = det [kI − L(µ)]

in the spirit of [23, 24, 25, 26], resulting from the L-operator presented here.
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