
Rajarajan, M., Adamsky, F., Khan, H., Khayam, S. A. & Jager, R. (2011). Destabilizing BitTorrent's

clusters to attack high bandwidth lechers. Paper presented at the 18th ACM Conference on

Computer and Communications Security (CCS 2011), 17 Oct 2011 - 21 Oct 2011, SWISSÔTEL

Chicago, Chicago, IL, USA.

City Research Online

Original citation: Rajarajan, M., Adamsky, F., Khan, H., Khayam, S. A. & Jager, R. (2011).

Destabilizing BitTorrent's clusters to attack high bandwidth lechers. Paper presented at the 18th ACM

Conference on Computer and Communications Security (CCS 2011), 17 Oct 2011 - 21 Oct 2011,

SWISSÔTEL Chicago, Chicago, IL, USA.

Permanent City Research Online URL: http://openaccess.city.ac.uk/621/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. Users may download and/ or print

one copy of any article(s) in City Research Online to facilitate their private study or for non-

commercial research. Users may not engage in further distribution of the material or use it for any

profit-making activities or any commercial gain. All material in City Research Online is checked for

eligibility for copyright before being made available in the live archive. URLs from City Research

Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised to

check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/2707933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk
http://www.city.ac.uk/

POSTER: Destabilizing BitTorrent’s Clusters to Attack High
Bandwidth Leechers

Florian Adamsky
City University London

London, England
florian.adamsky.1@city.ac.uk

Hassan Khan
SEECS, NUST

Islamabad, Pakistan
hassan.khan@seecs.nust.edu.pk

Muttukrishnan Rajarajan
City University London

London, England
r.muttukrishnan@city.ac.uk

Syed Ali Khayam
SEECS, NUST

Islamabad, Pakistan
ali.khayam@seecs.nust.edu.pk

Rudolf Jäger
THM University of
Applied Sciences

Campus Friedberg, Germany
rudolf.jaeger@iem.thm.de

ABSTRACT
BitTorrent protocol incentivizes sharing through its choking
algorithm. BitTorrent choking algorithm creates clusters of
leechers with similar upload capacity to achieve higher over-
all transfer rates. We show that a malicious peer can exploit
BitTorrent’s choking algorithm to reduce the upload utiliza-
tion of high bandwidth leechers. We use a testbed com-
prising of 24 nodes to provide experimental evidence of a
distributed attack in which the malicious peers increase the
download time for high bandwidth leechers by up to 16 %
and increases average download time of the swarm by up
to 15 % by using distributed and loosely-coupled malicious
peers which comprise only 4.7 % of the swarm. The coun-
termeasures of this attack are a part of our ongoing research
work.

1. INTRODUCTION
BitTorrent is one of the most popular P2P protocols and

it comprises the largest share of P2P traffic on the Inter-
net [5]. Consequently, BitTorrent is a target of many at-
tacks launched by anti-P2P companies which are working
closely with the music, television and film industries [4]. Ac-
tive measurement based studies on live torrents on Internet
prove the existence of such attacks [2].

In this paper we show that a malicious peer can exploit the
incentive-based sharing mechanism of BitTorrent to attack
high bandwidth leechers. The incentive-based sharing mech-
anism of BitTorrent is based on the choking algorithm which
creates clusters of leechers with similar upload capacity and
results in higher overall data transfer rates among leechers
with higher bandwidth. A malicious peer can launch an at-
tack to destabilize the clusters in a swarm to decrease intra-
cluster communication, which results in decrease in data
transfer among high bandwidth leechers and increases the
average download time of the swarm.

We provide empirical evidence of the efficacy of this attack
using a testbed of 24 nodes. In our experimental evaluations,
we first demonstrate that the malicious peer can successfully
destabilize clusters of leechers with similar bandwidth. This

Copyright is held by the author/owner(s).
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
ACM 978-1-4503-0948-6/11/10.

destabilization of clusters results in up to 6 % decrease in
intra-cluster communication. We then show that a set of
distributed and loosely-coupled malicious nodes which com-
prises only 4.7 % of the swarm results in an up to 16 % in-
crease in download time for high bandwidth leechers and an
up to 15 % increase in average download time of the swarm.
The aim of this paper is to expose a weakness in BitTorrent
protocol’s choking algorithm so that the research community
can find countermeasures to this attack.

2. BACKGROUND
In this section we first introduce the BitTorrent terminol-

ogy used in this paper. We then briefly discuss the BitTor-
rent’s choking algorithm.

Swarm: All the peers sharing a torrent are called a swarm.

Leecher: A peer is a leecher when it is downloading content
of a torrent.

Seeder: A peer is seeder when it has downloaded all the
content and is sharing the content with other leechers.

Peer Set: Each peer maintains a list of other peers that it
knows about within a swarm. This list is known as
peer set.

Active Peer Set: Active peer set for a peer is the subset
of its peer set that it can send data.

Interested and Choked: A peer P is interested in peer Q
when peer Q has some contents that peer P does not
have. Peer P is choked by peer Q when peer Q does
not want to send data to peer P .

With the necessary terminology chalked out, we now dis-
cuss the choking algorithm. A leecher determines its active
peer set through the choking algorithm. The choking algo-
rithm works in rounds of 10 seconds and during its execution
in each round, the choking algorithm works in the following
way [1]:

1. The leecher orders the peers in its peer set according
to their upload rate and ignores peers who have not
sent any data to it.

2. The leecher then unchokes n− 1 peers, where n is the
number of parallel uploads the leecher is allowed.

3. After every three executions of choking algorithm, a
peer is chosen at random and optimistically unchoked.

The choking algorithm works in a tit-for-tat-ish way and
favors the leechers who upload. Consequently, leechers will
more frequently unchoke other leechers with similar upload
capacities. This reciprocation of data rates results in con-
vergence towards good clustering by grouping of leechers
with similar upload capacity. Good clustering ensures that
the leechers with high upload bandwidth are rewarded with
higher download rates and they are able to complete their
downloads more quickly. Finally, the choking algorithm has
been shown to converge towards good clustering shortly af-
ter the beginning of the download [3]. We refer interested
readers to [1] for a detailed description of the choking algo-
rithm.

3. EXPERIMENTAL SETUP
We perform experiments using private torrents in our test-

bed consisting of 24 nodes and a controller and monitor
node. The nodes are desktop machines which are running
BitTorrent client Transmission1 v. 2.3 over CentOS 5.3. We
selected Transmission client since it provides a powerful com-
mand-line interface (CLI) which can be used to throttle traf-
fic using shell scripts. In order to simultaneously control all
the nodes, we make use of the parallel-ssh 2 client. We wrote
several scripts to monitor and record the status of each peer
at every second. This information includes nodes in peer
set, nodes in active peer set, interested and choked states
for each of the peers in the active peer set, and upload and
download rate with each of the peers in the active peer set.
The controller executes the experiments and monitors each
of these nodes.

In our experiments, we divide the peers into three differ-
ent classes based on their upload and download rate lim-
its. The fast class has peers with 2000 kbps bandwidth
(class 1), the medium class has peers with 1500 kbps band-
width (class 2), and the slow class has peers with 1000 kbps
bandwidth (class 3). It should be noted that these band-
width limits are for both the upload rate and the download
rate. During our experiments, each peer class had same
number of peers and the upload and download bandwidth
within each of these peer classes were not changed. A file
of 887 MiB was seeded by a seeder and all the peers joined
the torrent at the same time. This created a flash crowd
scenario which resulted in reproducible results. To create a
more realistic scenario, on every node some random HTTP
background traffic was also generated. Finally, every leecher
disconnected after receiving a complete copy of the file and
only the initial seeder stayed connected for the complete
duration of the experiment. Finally, every experiment was
repeated 10 times and the average values for these experi-
ments are reported in subsequent sections.

1http://www.transmissionbt.com/
2http://code.google.com/p/parallel-ssh

4. ATTACK DETAILS AND EXPERIMEN-
TAL EVALUATION

We now show how a malicious peer can exploit the cluster-
ing algorithm to increase the download time for high band-
width leechers. Legout et al. [3] showed that the cluster-
ing produced by the choking algorithm favors leechers with
higher upload bandwidth. The malicious leecher (we use the
term malicious peer and malicious leecher interchangeably)
perturbs the clustering produced by the choking algorithm.
To this end, the malicious leecher Lar provides high upload
bandwidth whenever it is optimistically unchoked by the at-
tackee leecher Lae. Furthermore, Lar keeps on providing the
Lae with high upload bandwidth for a few rounds. Conse-
quently, Lae adds Lar to its active peer set and changes the
state of one of the existing leechers Lex from unchoked to
choked. After providing high upload bandwidth for a few
rounds to Lae, Lar drops its upload bandwidth significantly.
Meanwhile, Lex has found another leecher which it has un-
choked and added to its active peer set. Now it would be at
least three more rounds before Lae and Lex could transfer
data among themselves (using optimistic unchoke). Since
data transfer between Lae and Lex would have resulted in
the most optimum data exchange between the two, the ma-
licious leecher managed to trick them into forming cluster
with a peer which probably did not belong to the same clus-
ter as Lae or Lex. Continued attacks by Lar on the high
bandwidth leechers destabilizes the clusters and results in
longer download times for the higher bandwidth leechers.

Figure 1: Affect of attack on intra- and inter-cluster
activity. Arrows show the direction of data trans-
fer. Seeder is omitted for simplicity (results without
malicious peer are given in black; results with 1 ma-
licious peer are given in red)

We first demonstrate that the malicious peer destabilizes
the high bandwidth cluster. To this end, we first allow all
the peers to download the file without any malicious peer
and note the intra- and inter-cluster activity (data trans-
fer). We then introduce a malicious peer and repeat the
same experiment. The malicious peer behaves like a high
bandwidth leecher for 35 seconds with an upload bandwidth
of 2000 kbps and after 35 seconds (one optimistic unchoke
cycle + grace period) malicious peer drops its bandwidth to

1 2

0

5

10

15

20

12.76

16.36

0.99 1.21

−1.46 −1.68

Number of mailcious peers

%
in
cr
ea
se

in
d
ow

n
lo
a
d
ti
m
e

Class 1

Class 2

Class 3

Figure 2: Increase/decrease in download time for
different peer classes when malicious peers are in-
troduced

20 kbps. To compare the results of these experiments, we
first plot the percentage of intra- and inter-cluster activity
without the malicious peer in Figure 1 (the values without
malicious peer are displayed in black color). Due to space
constraints, we plot the results with the malicious peer in
the same figure using red color. Figure 1 shows that without
the malicious peer, the intra-cluster activity is much more
than the inter-cluster activity. However, after introducing
the malicious peer, the intra-cluster activity drops by up to
6 % and the inter-cluster activity increases by up to 6 %.

We now determine the affect of destabilization of clusters
on different classes of leechers with respect to file download
time. To this end, we first download the file without any
malicious peer and compare the download time for different
classes of leechers when malicious peers are introduced. It
can be observed from Figure 2 that when malicious peers are
introduced, the download time for the fast leechers increases
by up to 16 %. This is because the fast leechers are no longer
transferring data with peers of similar (higher) bandwidth.
Similarly the affect on medium leechers is a mere increase
of 1 % in download time. This happens because the mali-
cious peer forces the medium leechers to not only communi-
cate with the fast leechers but also to communicate with the
slow leechers, therefore, for the medium leechers the com-
munication with slow leechers almost neutralizes their data
exchange with the fast leechers. Finally, the slow leechers
are able to download the file in 1.5 % less time. This is be-
cause, the slow leechers are now communicating more with
the leechers of higher bandwidth.

5. FUTURE WORK
In this paper we demonstrated a malicious peer which at-

tacks on a swarm and results in increased download time for
fast leechers. While countermeasures is a part of our ongoing
research work, a simple yet less elegant solution would be
to keep a blacklist of IP addresses which are mounting such
attack and during random selection of choking algorithm,

such peers are not chosen. As additional future work, we
are planning to test this attack in PlanetLab. We also plan
to investigate the affect of increasing the number of ma-
licious peers and the affect of scaling of this attack when
more malicious peers are added to the swarm.

6. REFERENCES
[1] B. Cohen. The Bittorrent Protocol Specification, Feb.

2008. http://bittorrent.org/beps/bep_0003.html.

[2] P. Dhungel, D. Wu, X. Hei, B. Schonhorst, and K. W.
Ross. A Measurement Study of Attacks on BitTorrent
Leechers. IPTPS, 2008.

[3] A. Legout, N. Liogkas, E. Kohler, and L. Zhang.
Clustering and sharing incentives in BitTorrent
systems. In Proceedings of the 2007 ACM
SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems,
pages 301–312, New York, USA, 2007. ACM.

[4] Media Defender, March 2011.
http://www.mediadefender.com.

[5] E. Van Der Sar. BitTorrent Traffic Surges After
LimeWire Shutdown. http://goo.gl/UIRmS, March
2011.

