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On finite-amplitude patterns of convection in a 
rectangular-planform container 
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Department of Mathematics, City University, Northampton Square, London EClV OHB, UK 

Raphael, PO Box 2250, Haifa 31021, Israel 

(Received 15 February 1995 and in revised form 11 September 1995) 

This paper considers the development of finite-amplitude patterns of convection in 
rectangular-planform containers. The horizontal dimensions of the container are 
assumed to be large compared with the critical wavelength of the motion. An 
interaction between rolls parallel and perpendicular to the lateral boundaries is 
modelled by a coupled pair of nonlinear amplitude equations together with appropriate 
conditions on the four lateral boundaries. At Rayleigh numbers above a critical value 
a steady-state solution is established with rolls parallel to the shorter lateral sides, 
consistent with the predictions of linear theory. At a second critical value this solution 
becomes unstable to cross-rolls near the shorter sides and a new steady state evolves. 
This consists of the primary roll pattern together with regions near the shorter sides 
where there is a combination of rolls parallel and perpendicular to the boundary. 

Analytical and numerical methods are used to describe both the evolution and 
steady-state structure of the solution, and a comparison is made with the results of full 
numerical simulations and experiments. 

1. Introduction 
Convective patterns in fluid layers heated from below have been the subject of many 

theoretical, numerical and experimental studies. In a shallow container of rectangular 
planform it is known from linear theory that the main roll pattern at the onset of 
convection aligns with axes parallel to the shorter lateral sides of the container (Davis 
1967). Weakly nonlinear effects were first incorporated using a multiple-scale approach 
by Newell & Whitehead (1969) and Segel(1969), and later Brown & Stewartson (1977) 
discussed the correct form of the boundary conditions for rolls parallel and 
perpendicular to the lateral walls. In any shallow container of rectangular planform 
with perfectly insulated walls, it appears that at sufficiently high Rayleigh numbers 
close to the onset of convection wholly two-dimensional solutions will not be realized 
in practice even in the region of flow distant from the lateral walls perpendicular to the 
primary roll pattern. The reason for this is that the region of reduced amplitude close 
to the lateral walls aligned parallel to the primary roll pattern becomes susceptible to 
an instability in the form of cross-rolls first analysed by Schluter, Lortz & Busse (1965) 
and in the context of the multiple-scale approach by Newell & Whitehead (1969). Such 
rolls require less space to adjust to the sidewall boundary conditions and therefore fill 
the low-amplitude zone of the two-dimensional solution. 

Experimental observations described by Koschmieder (1 993) and numerical 
simulations based on a model equation have confirmed the appearance of cross-rolls 
perpendicular to the primary roll pattern along the shorter lateral sides of a rectangular 
container. These rolls can be expected to affect the wavelength of the main roll pattern 



112 P. G. Daniels and M .  Weinstein 

predicted by a purely two-dimensional theory (Cross et al. 1983) and the local three- 
dimensional motion was therefore examined in detail by Daniels & Weinstein (1992). 
They found that in the steady state this three-dimensional motion consists of a 
nonlinear combination of rolls parallel and perpendicular to the boundary, with the 
latter confined to a region inside a critical transition line whose position depends on the 
precise nature of the boundary condition applied at the wall. This theory was based on 
an isolated infinitely long wall in which the roll pattern is not modulated along the 
length of the wall. For the case where the motion is fully confined to a rectangular 
domain by four lateral walls, modulation effects along the walls cannot be ignored. The 
present paper considers this situation and aims to describe the nonlinear steady-state 
structure that emerges in the slightly supercritical regime. 

The analysis is based on a model equation introduced by Swift & Hohenberg 
(1977) for which numerical simulations have been carried out by Greenside & 
Coughran (1984). In $2 the overall amplitude equations governing weakly nonlinear 
solutions are set out and are then reduced to a coupled pair of second-order partial 
differential equations for the amplitudes of rolls parallel and perpendicular to the 
lateral boundaries in the main bulk of the rectangular container. Boundary conditions 
for these equations are obtained in the manner described by Daniels (1977) and Brown 
& Stewartson (1977). For a certain Prandtl number the same set of equations and 
boundary conditions also governs Rayleigh-Benard convection between rigid 
horizontal boundaries and modifications for other Prandtl numbers do not alter the 
properties of the solution in a qualitative way. Thus the results presented here are also 
directly applicable to the physically realistic case of a fluid layer heated from below. 

Analytical properties of the system are considered in $93-5, focusing on the case 
where null conditions are applied at the lateral boundaries, equivalent to perfectly 
insulated or perfectly conducting walls in the Rayleigh-Benard problem. Results are 
obtained which confirm the initial onset of rolls parallel to the shorter lateral 
boundaries and then, at a second critical point, the development of perpendicular rolls 
near these boundaries. The structure of the steady-state solution just beyond the 
second critical point is analysed in 94 using the method of matched asymptotic 
expansions. This analysis reveals that the perpendicular rolls are confined to a region 
close to the wall but that the amplitude of the main roll pattern is influenced 
significantly throughout the rectangular domain. Beyond the second critical point, a 
steady-state solution structure is envisaged consisting of the primary roll pattern 
together with regions of finite extent near the shorter sides where cross-rolls are 
present. This structure and the manner in which the transition lines which delineate the 
internal boundaries evolve at large times are described in $5.  Confirmation of the 
structure is provided by full numerical solutions of the system, which are obtained 
using an explicit finite difference scheme and are described in $6. A detailed comparison 
is also made with the analytical predictions of $4. The results are discussed in relation 
to experimental work and the numerical simulations of Greenside & Coughran (1984) 
in $7. 

2. Formulation 
The model equation previously studied by Pomeau & Manneville (1980) is 

where qf is a function of x, y and t ,  V2 = i32/ax2+i32/i3y2, x and y denote Cartesian 
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coordinates and t denotes time. This equation contains the essential ingredients of 
diffusion and cubic nonlinearity which characterize the Oberbeck-Boussinesq system 
and E is a parameter equivalent to the excess of the Rayleigh number above its critical 
value for an infinite layer. Here a finite domain 0 < x < L, 0 < y < A4 is assumed 
where both L and M are large compared with unity and on the lateral boundaries 

conditions which imitate those associated with rigid impermeable walls. 
The linearized form of equation (2.1) admits spatially periodic solutions when E is 

greater than zero and the weakly nonlinear development of such solutions can be 
considered by writing 

(2.4) 
where d and &? are complex, slowly varying functions of x, y and t ,  and C.C. denotes 
complex conjugate. The functions d and &? represent the amplitudes of x-rolls and y- 
rolls (perpendicular and parallel to the x-direction respectively) and, provided these 
amplitudes are small, they satisfy as a first approximation, the equations 

$ - {dei” + Bei”} + c.c., 

given by Daniels & Weinstein (1992). 
These equations contain all possible leading-order variations with x, y and t and can 

be used as a basis for discussing the evolution of the system on lengthscales of order 
L and a timescale of order L2. It is convenient to set 

and 
x =  L X ,  y =  LY, t=+L2r  (2.7) 

2 2 

d3 d3 
d = -L-lA(X, Y,  r), &? = - L-lB(X, Y, 7), 

in which case for the regime where 
6 = &L2 (2.9) 

is finite, it follows from (2.5) and (2.6) that the system is governed to leading order by 
the coupled pair of amplitude equations 

aA a2A 
- = -+SA-A(IA12+21B12), 

a22 

aB a2B 
- = -+SB-B(IB12+21A12). a7 ap 

(2.10) 

(2.11) 

Here finite values of S are equivalent to an Order-L-’ band of values of e above the 
critical value for an infinite layer, e = 0. It is important to recognize that although the 
scalings (2.7) lead to the absence of Y- and X-derivatives in (2.10) and (2.11) 
respectively, both A and B will in general vary with both Xand Y through the nonlinear 
interaction. 
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Boundary conditions for the system (2.10), (2.11) can be derived by considering a 
linearized version of (2.1) in the manner described by Daniels & Weinstein (1992), 
leading to the requirement that 

A = O  at X = O  and X = l ,  

B=O at Y=O and Y = a ,  
and similarly 

(2.12) 

(2.13) 

where a = M / L  is the aspect ratio of the rectangular planform. The absence of 
conditions on B at X = 0, 1 and A at Y = 0, a is consistent with the form of equations 
(2.10), (2.1 1). A necessary adjustment to the amplitude of rolls perpendicular to the 
boundaries in order to accommodate the full boundary conditions (2.2), (2.3) occurs 
primarily within boundary layers of thickness x - L'12 and y - L'Iz where the fourth- 
order spatial derivatives in (2.5) and (2.6) come into play. These boundary layers are 
discussed by Brown & Stewartson (1977) and Daniels & Weinstein (1992) and are 
generally passive, allowing the amplitude and gradient in amplitude of rolls 
perpendicular to the boundary to reduce to zero at the boundary. Thus in the context 
of the full amplitude equations (2.5), (2.6), a solution would have to be found subject 
to the additional conditions d = a d / a y  = 0 at y = 0,M and L%? = aL%?/ax = 0 at 
x = 0, L, whereas the reduced system (2.10)-(2.13) is free of this added complication. 

The system (2.10)-(2.13) also governs Rayleigh-Btnard convection in a rectangular 
container with rigid horizontal boundaries and either perfectly insulating or perfectly 
conducting lateral walls. In this case, 6 is equivalent to an order-L-2 band of values of 
the Rayleigh number above the critical value for an infinite layer and each of the 
coefficients of 2 in the equations (2.10) and (2.11) is replaced by a Prandtl-number- 
dependent coefficient whose value varies from 1.23 for infinite Prandtl number to 14.3 
for a Prandtl number of zero. For this range of values there is likely to be no qualitative 
difference in the behaviour of solutions as compared with those of (2.10)-(2.13). A full 
derivation of the equivalent Rayleigh-Btnard system based on results obtained 
previously by, for example, Schluter et al. (1965), Cross (1980) and Daniels & Ong 
(1990) is given by Sivapragasam (1995). 

Daniels & Weinstein (1992) considered an infinitely long isolated wall at X = 0, 
allowing the parameter 6 to be scaled out of the equations (2. lo), (2.1 1) and solutions 
for A and B to be found independent of Y in the semi-infinite domain X 2 0 subject 
to A = h at X = 0 (including the case h = 0) and A + #I2 as X +  cc. Such solutions 
cannot be valid for the finite rectangular domain where the boundary conditions (2.12), 
(2.13) apply, although they may relate to the limiting form of the solution in the finite 
domain as 6- cc in a manner to be discussed further in $7. In particular it is clear that 
if B is non-zero, (2.12), (2.13) and (2.10) imply that both B and A must depend on Y,  
an essential feature of this investigation not present in the analysis of Daniels & 
Weinstein (1992). 

3. Onset of convection 
One steady-state solution of (2.10)-(2.13) is A = B = 0 but this state of no motion 

becomes unstable when 6 exceeds a critical value and convective rolls then develop. 
There are clearly steady-state solutions for which only one set of rolls is present. For 
example, with B = 0, solutions of equation (2.10) subject to (2.12) appear as 
bifurcations at 6 = n2n2 (n  = 1,2,. . .). The leading branch of solutions is given by 
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where U = (6/(rn+ 1))'l'X and m is determined from the boundary conditions by the 
relation 

(3.2) 

Here sn is the Jacobian elliptic function and K is the complete elliptic integral of the 
first kind (see for example Abramowitz & Stegun 1965, p. 569). This set of solutions 
bifurcates from the zero solution at 6 = n2 and except near X = 0 and X = 1 
approaches the uniform profile [A(  - as 6-t co, equivalent to rolls of constant 
amplitude filling most of the container. Solutions of this type are discussed by Segel 
(1969) and Daniels (1977). Higher branches correspond to taking integer multiples of 
the right-hand side of (3.2) but are likely to represent unstable flow patterns. The real 
parameter a, which may depend on Y ,  is arbitrary as far as the steady-state system is 
concerned. Physically, this is equivalent to a lack of knowledge of the precise lateral 
position of individual rolls in the container. In practice for the full system (2.1)-(2.3) 
the phase of the solution in the final steady state is determined by higher-order effects 
in the expansion in inverse powers of L on a timescale t = 0(L3) ,  longer than that 
encompassed by (2.10)-(2.13), and in the manner explained by Daniels (1978). Within 
the context of the present system (2.10)-(2.13) the form of a( Y )  will be determined by 
whatever initial conditions are specified at 7 = 0. Thus, for example, if A and B are 
specified as real initially then they will remain so for all T > 0. 

In a similar way, steady-state solutions of (2.10k(2.13) for B remain arbitrary to 
within a multiplicative factor e'P, where /3 may depend on X .  With A = 0, solutions for 
B emerge as bifurcations at 6 = Yt'n'/a' (n  = 1,2,. . .) and can also be expressed in terms 
of Jacobian elliptic functions. Clearly if a < 1, x-rolls appear ahead ofy-rolls, consistent 
with the well-known result obtained numerically by Davis (1967) and experimentally 
by Chen & Whitehead (1968) that, in large-planform rectangular systems, convection 
occurs first in the form of rolls parallel to the shorter sides of the container. 

It is worth noting that solutions such as (3.1), (3.2) are also applicable generally on 
the boundaries Y = 0 and Y = a because B always vanishes there (by (2.13)) even when 
it is non-zero elsewhere in the domain. Similarly, solutions for B can be written down 
analytically on the boundaries X = 0 and X = 1. 

= 2( 1 + rn)l/' K(m). 

4. Emergence of orthogonal rolls near the lateral boundaries 
Consider the case where the aspect ratio a < 1. As 6 is increased above the value n', 

the steady-state motion in the main body of the container will consist of x-rolls whose 
amplitude is independent of y but varies with x across the width of the container, as 
given by (3.1). However, this finite-amplitude solution will itself become unstable to y- 
rolls in regions where the amplitude of x-rolls is sufficiently low, as pointed out by 
Pomeau & Zaleski (1981). In the present system this can be seen by considering a small 
perturbation to the steady-state solution IAl = R ( X )  given by (3.1) which allows for a 
cross-roll disturbance of the form 

B = B,(X, Y )  e'(x)7, B, 4 1. (4- 1) 
Then it is readily shown from (2.11) and (2.13) that the highest growth rate 
corresponds to an eigenfunction 

B, = &(X)  sin (n Y/a ) ,  
with 

n' 
a' 

fT = 6---2R'(X). 
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Thus the solution (3.1) is unstable to y-rolls in any region where its amplitude R is less 
than {(~Y-n~/a~)/2}~’~. Since R vanishes at the lateral walls x = 0 and x = L, y-rolls can 
be expected to develop there when 6 exceeds the critical value n2/a2 and then to spread 
inwards as 6 increases. This process is counterbalanced by the increase in amplitude of 
the x-roll pattern with 6 and it is interesting to conjecture what steady-state structure 
the solution will adopt at general values of 6 greater than n2/a2.  The following analysis 
for values of 6 slightly greater than n2/u2 provides insight into this structure. 

In view of the results (3.1) and (4.3) it is expected that as 6+ n2/u2 +, the domain 
subdivides into an outer region 0 < X < 1, 0 ,< Y d a, an inner region near the 
boundary x = 0 where 0 d Y ,< a and X is of order ( ~ Y - n ~ / u ~ ) ~ ~ ~ ,  and a similar inner 
region near the boundary x = L. It is convenient to introduce a small parameter 

(4.4) 

and in the outer region the solution for B is zero (to algebraic orders in s> while 

A = eia{A,(X, Y )  + SA,(X, Y )  + PA,(x, Y )  + P/,A,(x, Y )  + . . .>, F+ 0, (4.5) 

where a is an arbitrary real function of Y and Ai are real functions of X and Y. 
Successive terms are generated either by nonlinear effects, Sitself or the inner solution 
to be discussed below. The leading-order approximation A ,  satisfies 

a2A, n2 
ax a 
-++,-A; = 0, 

with boundary conditions A ,  = 0 at X = 0 and X = 1, and the relevant solution is given 
by (3.1) and (3.2) with 6 replaced by n2/u2,  namely 

where 
n / a  = 2( I +m)l” K(rn). 

(4.7) 

As X+O, this solution has the form 

where 
A ,  = p l X + p u , X + p u , X +  ..., (4.9) 

p1 = 4(2m)’/’P(m), p, = -n2p1/6u2, ,us = (p~-n2p3/a2)/20. (4.10) 

Further terms Ai ( i  = 1,2,. . .) satisfy 

(4.1 1) 

where x1 = -A, ,  xz = 3A,A: -Al  and x3  = 0. The solutions for A ,  and A ,  must vanish 
at X = 0 and X = 1 but A ,  is non-zero there and the relevant boundary conditions are 
obtained by consideration of the inner region. 

In the inner region near x = 0, the solution is expressed in terms of a local coordinate 
X defined by 

x = $-1/2x, (4.12) 
with 

(4.13) 

(4.14) 

A = eia {P2 &+ P2 A, + P2 2, + . . .>, 
B = ,iB($1/2 B 0 + $3’2 B 1 + 85 /2  B 2 + ... >, 



Finite-amplitude patterns of convection in a rectangular container 117 

where /3 is an arbitrary function of X and A,, B,, ... are real functions of X and Y. 
Substitution into (2.9) shows that A, is a linear function of X and the only solution 
which vanishes at X = 0 and matches with (4.5) as Z+ co is 

A, = p l X .  
From (2.1 l), B, must satisfy 

giving 

a2B,, 7c2 - 

aY a 
--++I, = 0, B, = 0 (Y = O,a), 

B, = b,(X) sin (7c Y/a ) ,  

(4.15) 

(4.16) 

(4.17) 

where b, is a function of X to be determined. 
In (2.10), terms of order 61/', together with the boundary condition at X = 0, give 

A, = p 3 F + v 1 X ,  (4.18) 

where v1 = C?A,/aX(O, Y).  In (2.1 l), terms of order 6'' give 

a'B, 7c2 - -++, = B0(B:+24- I), B, = 0 (Y = 0,a). aY a 

This system has a solution only if 

IE@;+2A;-l)dY = 0, 

(4.19) 

(4.20) 

which gives either b, = 0 or 

b, = 2(1-2p?P)l/'/2/3, X < X,, (4.21) 

where 1, = 1/2/2,u1. The only feasible solution for X >  X ,  is b, = 0 and from the 
earlier discussion it is envisaged that for X < X,, the solution (4.21) represents the 
stable steady-state form. Thus in the region near the wall, 0 < X < X,, x- and y-rolls 
of comparable amplitude coexist, while outside the transition line X = X ,  only x-rolls 
are present. The nature of the abrupt change in amplitude of y-rolls in the 
neighbourhood of the transition line is discussed in detail in 95.  

In (2.10), terms of order give 

(4.22) 

which shows that the solution for 2' is influenced by the presence of the y-rolls. This 
equation must be integrated separately on each side of the transition line and this gives 

(4.23) 
having made use of the fact that A, = 0 at X = 0, and 

A ,  - = p a F - ~ ( p , + ~ ) P + w l X + w ,  X >  X,, 
(4.24) 

where w is an arbitrary function of Y and from matching with the outer solution, 
w1 = aA,/aX(O, Y). Continuity of X2 and i3X2/i3X at X = X,, now gives 

(4.25) w1 = w1 - :,u;l sin2 (7c Y / a )  - 
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(4.26) 

The solution for A, is of particular interest because it shows how the amplitude of the 
x-rolls varies with Y throughout the inner region and that this variation extends, via 
the solution for w above, into the region outside the transition line. This variation in 
turn influences the outer solution through the matching condition 

A,((), r)  = w ,  (4.27) 

which provides one boundary condition for the outer function A,. By symmetry, the 
other boundary condition is 

A3(l, Y )  = 0 (4.28) 

and it follows that there is an order-p'2 variation with Y in the amplitude of the main 
x-roll pattern throughout the container, associated with the outer term A,(X, Y) .  

The general solution for A ,  can be expressed in the form 

au 
asn 

3 -  lau A - c -(U,m)+c, 

but only the even part of the solution is generated by the conditions (4.27) and (4.28), 
giving el = w and 

w 

" = m{2(1 +m)dK/dm+K(m)j' 
(4.30) 

Solutions for A ,  and A ,  can also be expressed in terms of Jacobian elliptic functions 
but are independent of Y and are just equivalent to the order-Sand order-2 terms 
obtained by expanding the solution given by (3.1) and (3.2) about the point S = n2/a2. 
Thus the above results show that across the centre of the container, x = $L, the x-roll 
amplitude can be approximated by 

(4.31) 
26m '1' 4 2  (S- n2/a2)5/2 sin2 (n Y/a)  

I A '  = (G) -360m2{2(1 +m)dK/dm+K(m)j{K(m)j4 

as S+n2/a2+. The deficit in amplitude of a given x-roll at its mid-point, Y = $a, 
compared with its maximum amplitude near each lateral wall, Y = 0, a, changes from 
a value of 

(4.32) 

near the boundaries x = 0 and x = L to the value 

(6 - 7CZ/a2)5 /2  (4.33) d 2  
D1/z - 360m2{2( 1 + m) dK/dm + K(m)j {K(m)j4 

given by (4.3 1) at x = $L. The variation of the main properties of the solution with the 
aspect ratio a is shown in table 1. 

The analysis can be extended to obtain further properties of the solution. For 
example, B, can be obtained as 

(4.34) 
a2b3 
32n2 

B, = b,(B) sin (n Y / U )  + 2 sin (3n Y/U>, 
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m a 

0 1 
0.1 0.929 
0.2 0.864 
0.3 0.804 
0.4 0.747 
0.5 0.692 
0.6 0.637 
0.7 0.581 
0.8 0.519 
0.9 0.442 
1.0 0 

1u1 

0 
4.651 
6.968 
9.101 

11.304 
13.750 
16.654 
20.385 
25.779 
35.669 
00 

xn A , ( X = B )  

00 0 
0.152 1.442 
0.101 2.099 
0.077 2.655 
0.063 3.180 
0.051 3.708 
0.042 4.271 
0.035 4.911 
0.027 5.710 
0.020 6.918 
0 00 

~ 8-5/20 

CE 

n 

0.00581 
0.00259 
0.001 52 
0.00098 
0.00067 
0.00045 
0.000 30 
0.000 19 
0.000 10 
0 

85i2D1,2  

0.02248 
0.004 5 1 
0.001 56 
0.00066 
0.00030 
0.000 14 
0.00006 
0.00002 
0.000 0 1 
0 

00 

TABLE 1. Properties of the small-$solution for various aspect ratios in the range 0 < a < 1 

where solvability of the equation for B2 leads to the requirement that 

a'b; 8p1 P ( p 3  P + vl) b, =-- 
647~' 3bo 

(4.35) 

This in turn leads to a correction to the location of the transition line where B falls to 
zero so that from (4.21) and (4.39, 

27/4 
B - eip-p:/28i12(X T -X)l/'sin (n Y/a),  X+ 3, -, (4.36) 

4 3  

where XT = X,, + 8X1 + . . . ($+ 0) defines the location of the transition line and 

(4.37) 

In crystal growth terminology this transition line is known as a grain boundary and 
its location and dynamics are of some significance. The emergence of a steady-state 
structure with stationary transition lines near each of the shorter lateral boundaries is 
in contrast to the result for the semi-infinite problem studied by Daniels & Weinstein 
(1992) where, with A = 0 on X = 0, the transition line continues to move slowly away 
from the wall at large times. Further discussion of this point is given in $7. 

5. General steady-state structure and evolution of the transition lines 
The results of $4 suggest a stable steady-state configuration for 6 > 7c2/a2 in which, 

for a container of aspect ratio a < 1, both x-rolls and y-rolls coexist, with the y-rolls 
limited to regions within transition lines X = X ,  and X = 1 - XT near each of the 
lateral boundaries x = 0 and x = L. Near each transition line the amplitude of the y- 
roll pattern falls rapidly, leading to a discontinuity in the gradient of B. Confirmation 
that this is an acceptable steady-state configuration would require consideration of a 
local structure near the transition line where it can be expected that the second-order 
derivative of 98 with respect to x which appears in (2.6) plays a significant role on a 
lengthscale in X of order LP1I3. In the present paper, attention is focused on the 
properties of (2.10t(2.13) and it is possible to describe the way in which the local 
structure evolves near X ,  by considering the form of the solution as 7 + 00. 

At general values of 6 > n2/a2 a steady-state structure is envisaged in which the 
central zone X, < X < 1 - X ,  contains a solution of (2.10) in which B = 0 and A is a 
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function of both X and Y. The dependence on Y is due to the requirement that A and 
L?A/i3X are continuous at the transition lines X = X,, 1 -A',. The solutions in X < X ,  
and X > 1 - X ,  must satisfy the full steady-state versions of (2. lo), (2.11) with both A 
and B dependent on X and Y,  and B approaching zero as X+X,- and 
X +  (1 - X,) + . Unlike the Y-independent situation studied by Daniels & Weinstein 
(1 992) the nonlinear problems in these side zones cannot be solved analytically. 
However, it is possible to consider the manner in which the steady-state solution is 
achieved as 7- t  co in the neighbourhood of the transition lines, generalizing the 
analysis of Daniels & Weinstein (1992) to the case where the roll amplitudes are 
dependent on Y. 

Consider the transition line at X = X ,  and assume that locally 

A = eia{Xo( Y) + (x- x,) A;( Y) + . . .>, X +  x,, (5.1) 
where the precise forms of the real functions A", and 2, are determined by the outer 
problems described above. As 7 +  co, a solution for B near X ,  is sought in the form 

B = eiP{7-l/' B " J ~ ,  Y )  +T-3/2 B",(r, Y )  + . . .>, ( 5 4  

where 
satisfies 

= ( X - X , ) T .  Then substitution into (2.11) shows that at leading order i0 

(5.3) 
_ _  a%, - 

a In  
-+SBo-2A~B0 = 0, E0 = 0 (Y= 0 , ~ )  

and at second order 

~ + SB, - 2Ai B, = 7 --+& + B": + 47X0 Xl B0, 
(5.4) 

a2E1 - - ti a& 
a p  a7 

B", = 0 ( Y  = 0,a). 

The definition of 7 and the chosen magnitude of B ensure that effects of both 
nonlinearity and spatial variation contribute on the right-hand side of (5.4). From 
(5.3) the solution for go can be written in the form 

(5.5) 
where 

The existence of a solution of this eigenvalue problem effectively defines the location 
of the transition line X =  X,. Multiplication of (5.3) and (5.4) by B", and B", 
respectively, subtraction and integration from Y = 0 to Y = a shows that the system 
(5.4) has a solution for B", only if 

B"0 = B"(7) F( y>, 

Ff '+SF-2Z;F=0,  F=O (Y=O,a) .  (5.6) 

where di (i = 1,2,3) are positive constants defined by 

(5 .8)  

A solution of (5.7) is required for which 

B"+o as 7+co (5.9) 
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and for which 
B” - 2( - d, V/d2)l/’ as 11 --f - co . (5.10) 

These conditions are consistent with the requirement that B vanishes in the central zone 
X ,  < X < 1 - X ,  and attains a finite-amplitude form in the side zone X < X,. 
The required solution which avoids a singularity at 7 = 0 and decays exponentially as 
7+00 is 

B”h) = (4/d2>”2 B(3>, (5.11) 
where 

(5.12) 

and this provides a smooth transition between the side zone and the central zone at 
large times. As 7 + 00, the width of the transition zone approaches zero ( X -  X ,  - 7-’) 

and locally the amplitude of y-rolls is small (of order 7-lj’) with a form proportional to 
( X ,  - X)l/’ as X +  X ,  - . 

The above solution can be quantified in the case where S is close to x2 /a2  because it 
follows from 94 that 

A ,  z (6/2)’/2, A; z /A1 (5.13) 
and 

F z sin (7c Y/a), dl z ;a, d, z ;a, d, % (8/8)liZ,u, a, (5.14) 

where 8= S-7c’/a2. Thus 

w 

(5.15) 

(5.16) 

As 7 + 00 the transition region accommodates a smooth adjustment from the parabolic 
form (4.21) as ij - co to an exponentially small form as f +  00. As $+O, the width of 
the transition zone, X-X,, is of order 8-lb-l which is small compared with the width 
of the side zone provided 7 $ 8-l $ 1. 

At general values of S > 7c2/a2 the results of this section show that the y-roll 
amplitude falls rapidly to zero within a lengthscale in X of order 7-l, so that the 
adjustment occurs across a region which narrows as 7 + co. This behaviour continues 
until the width of the transition zone is comparable with the scale of order L-’/, on 
which the derivatives in x come into play in (2.6) and at this stage a local steady-state 
configuration can be expected to emerge. 

6. Numerical results 

of the form 

The system was discretized onto a uniform grid in X and Y and an explicit scheme 
used to follow the evolution in time, using a time step A7 satisfying the stability 
criterion for the corresponding linear diffusion equations. For most computations, step 
lengths AX = 0.02 and AY = 0.02 were used, with A7 = 0.0001, and checks on 
accuracy were made using other values. 

Figures 1-4 show results for an aspect ratio a = 0.6 and various values of 6. In 

Some solutions of (2.10)-(2.13) were computed numerically from initial distributions 

A = sinnX, B = sin(zY/a) at 7 = 0. (6.1) 



122 P. G. Daniels and M .  Weinstein 
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x 

FIGURE 1. Profiles of A and B shown by solid and dashed lines respectively on the centreline 
Y = 0.3 at various times 7 for S = 20 and an aspect ratio a = 0.6. 

6 -  

0.5 1 .o 
x 

FIGURE 2. Profiles of A and B shown by solid and dashed lines respectively on the centreline 
Y = 0.3 at various times 7 for S = 40 and an aspect ratio a = 0.6. 

figure 1, the value S = 20 is above the critical value 7c2 at which an x-roll pattern is 
expected to emerge but below the value 7c2/a2 % 27.4 at which y-rolls should persist near 
the lateral walls X = 0 and X = 1. The numerical computation confirms the growth of 
the x-roll amplitude, and the one-dimensional solution (3.1) evolves at sufficiently large 
times. In practice this steady state is achieved by the time 7 reaches a value of about 
0.4, and at this point the amplitude A is virtually independent of Y ;  the profile on the 
centreline, Y = 0.3, is shown in figure 1. 

Figure 2 shows the solution for S = 40, at which point the critical value for the 
persistence of y-rolls near the lateral walls is exceeded. The numerical results confirm 
that the y-roll amplitude increases near X = 0 and X = 1, and decreases to zero in the 
central portion of the container, with transition lines centred near X z 0.1 and X z 0.9 
as 7 increases. Steepening transition zones surround these lines in the manner predicted 
by the analysis of $ 5  and elsewhere a steady state is again achieved by the time T 
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FIGURE 3. Profiles of A and B shown by solid and dashed lines respectively at various values of X 
when 7 = 0.4 for 8 = 40 and an aspect ratio a = 0.6. 
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FIGURE 4. Results for 6 = 100 and an aspect ratio a = 0.6 giving (a) profiles of A and B shown by 
solid and dashed lines respectively on the centreline Y = 0.3 at various times 7 and (b)  profiles of A 
at various values of X when 7 = 0.4. 

reaches a value of about 0.4. Figure 3 shows the dependence of the solution on Y,  and 
unlike the previous case (6 = 20), the solution for A remains dependent on Y 
throughout the container. This dependence is weak in the central region 0.1 < X < 0.9, 
as expected from the analysis of $4. 

Results for 6 = 100 shown in figure 4 display further evidence of the Y-dependence 
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of the solution. This is again weaker near the centre, X = 0.5, but is quite significant 
near the transition line located at X z 0.12. At T = 0.4, the steady-state profile of A 
across the central portion of the container indicates the attainment of a plateau where 
A z S1/', corresponding to an x-roll pattern of constant amplitude throughout most of 
the container. 

Figure 5 shows how the extent of the region of cross-rolls near X =  0 varies as a 
function of 6 for the steady-state solution with a = 0.6. For convenience the value of 
X at which A = ( 6 - 7 ~ ~ / a ~ ) ~ ' ~ / 2 / 2  on Y = a / 2  is used as a measure of the location of 
the transition line, since this provides an approximation to the line along which B falls 
to zero, and is readily estimated from the numerical data. It is seen that the region 
expands rapidly just beyond the critical point 6 z 27.4 but then contracts again beyond 
8 = 100, never occupying more than about 12 % of the total area of the planform when 
a = 0.6. Also shown in figure 5 is the steady-state amplitude deficit 

Dl/Z = A x =  I/', Y=O - 4 x =  l/Z, Y = a / 2  (6.2) 

for a = 0.6, which reaches a maximum near 6 = 65 and then decreases to zero as 
S-t cc . Figure 6 shows a detailed comparison of the computed location of the transition 
line and amplitude deficit near the critical point with the asymptotic results derived in 
$4. Here it was necessary to compute solutions up to 7 = 3 in order to achieve a 
reasonable steady state and the results indicate excellent agreement with the asymptotic 
analysis. 

Numerical solutions were also obtained for other values of a. In particular, results 
were obtained for a = 0.2, 0.8, 0.9 and 0.96 which had the same qualitative features as 
those for a = 0.6. Detailed investigation of the solution for a = 0.9 just beyond the 
second critical point, 6 = n2/a2 z 12.2, confirmed that the reduction in amplitude of 
the primary roll pattern with Y at X = $ (as measured by Dl jZ)  is actually larger than 
that at X = 0 (as measured by Do). The asymptotic solution of $4 suggests that this 
should be the case for values of a greater than about 0.8, although it was necessary to 



Finite-amplitude patterns of convection in a rectangular container 125 

0.05 

0 
0 

0 
0 

0 

/ 

27 28 29 30 31 32 
6 

FIGURE 6. The computed and asymptotic solutions of figure 5 near the critial point S = 27.4156, 
shown by solid and dashed lines respectively. Note that here (b)  shows lOD,,,. 

x 
FIGURE 7. Steady-state profiles of A and B shown by solid and dashed lines respectively on the 

centreline Y = 0.5 for S = 40 and an aspect ratio a = 1. 

take a value of S quite close to the critical value (12.5, for example) in order to observe 
this behaviour. For a = 0.96, the transition lines are located further into the interior of 
the container than for a = 0.6, with X, FZ 0.25 for 6 = 40 and X, z 0.2 for 6 = 100. The 
special case of a square container is particularly interesting (see Edwards 1988) and 
here for S = 40 the initial distributions (6.1) evolved to a symmetric steady-state 
solution in which A(X,  Y )  = B( Y ,  X), with a common value of about 2.15 at the centre 
of the container (see figure 7). 
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7. Discussion 
A model of the interaction between orthogonal rolls has been used as a basis for 

describing patterns of convection in shallow rectangular containers. The initial onset 
of rolls parallel to the shorter lateral boundaries is confirmed, and then, at a second 
critical point, the emergence of perpendicular rolls close to these boundaries. These 
local cross-rolls influence the speed of the primary roll pattern in the central part of the 
container, causing a small reduction in amplitude in the middle portion of each roll. 
The nature of this variation is determined analytically for values of the control 
parameter close to the critical point and numerically in other cases. The results of this 
weakly nonlinear theory are in good agreement with the full numerical simulations of 
the model equation (2.1) by Greenside & Coughran (1984). They obtained steady-state 
results for two small values of E ,  namely 0.03 and 0.1, with L = 2 9 . 2 ~  and a = 0.667. 
From (2.9), these cases are equivalent to 6 = 63.11 and S = 210.4 respectively. 
Computations for the present system with these parameter values were carried out and 
the values of X at which A = ( S - ~ ~ / a ~ ) ~ / ~ / 2 / 2  on Y = a / 2  used to estimate the 
location of the transition line, yielding X = 0.17 and X = 0.15 respectively. These 
correspond to values of x equal to 15.6 and 13.8, which compare well with the extent 
of the y-rolls shown in figure 9 of Greenside & Coughran (1984). 

Experimental work in which detailed observations have been made of roll patterns 
in rectangular boxes includes that by Stork & Muller (1972) and Kirchartz & Oertel 
(1988). Gollub, McCarriar & Steinman (1982) used an automated laser-Doppler 
scanning technique to carry out an extensive study of pattern evolution in a large 
Rayleigh-Benard cell with a = 2/3 whose ratio of the largest horizontal dimension to 
the fluid depth was 29.2. Many of the complex roll patterns observed in their 
experiments were also observed in a qualitative sense in the numerical simulations of 
Greenside & Coughran (1984), although most of the experiments were carried out at 
Rayleigh numbers two or more times the critical value, well beyond the small values 
of c referred to above and the scope of the present theory. Further experimental work 
is needed to confirm the roll structures predicted in the slightly supercritical case. One 
feature of the numerical simulations and experiments at higher Rayleigh numbers is the 
occurrence of rolls at varying angles to the lateral boundaries. At slightly supercritical 
Rayleigh numbers the cross-roll instability suggests that an orthogonal pattern will be 
preferred and the present theory only incorporates rolls parallel and perpendicular to 
the lateral walls. 

In the present paper attention has been focused on the regime equivalent to Rayleigh 
numbers order Lpz in excess of the critical value for an infinite layer, and also on the 
case where the lateral boundary conditions are null. Further work is needed to consider 
both lateral forcing at the boundaries and higher Rayleigh number regimes where 
phase winding effects may be significant. These have been considered in the case of 
purely two-dimensional rolls for the Rayleigh-BCnard problem with stress-free upper 
and lower surfaces by Cross et al. (1983), where it is found that the lateral boundaries 
play an important role in selecting the wavelength of the roll pattern in the main body 
of the container. It remains to be seen how the more complicated three-dimensional 
motion near the lateral walls identified here affects the wavelength selection mechanism 
and in what range of Rayleigh numbers phase winding effects become significant. This 
will require an investigation of the structure of the present solution as S+cc  and 
incorporation of fully complex amplitude functions A and B, along with a more 
detailed appraisal of the local structures around the lateral walls, in the corners and 
along the transition lines. Preliminary investigations suggest that the asymptotic 
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structure of the solution as $+GO is quite complicated and it is expected that the 
boundary layers of thickness X - 8-1’z which develop near the shorter lateral walls will 
have some features in common with the semi-infinite problem analysed by Daniels & 
Weinstein (1992). They showed that with A = h on X = 0 then in the limit as h + 0 the 
layer moves away from the wall, and so for the case h = 0 it is interesting to conjecture 
how higher-order effects, perhaps associated with the residual Y-dependence of the 
solution as 8+ GO, may act to maintain a steady-state configuration and determine the 
location of the transition line as 8+ 00. It is hoped to report on this important limiting 
case in a future paper. 
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