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On the boundary-layer structure of cavity flow in
a porous medium driven by differential heating

By P. G. DANIELS AND M. PUNPOCHA†
Centre for Mathematical Science, City University, Northampton Square, London EC1V 0HB, UK

(Received 3 March 2004 and in revised form 19 January 2005)

This paper describes the boundary-layer structure of flow through a porous medium
in a two-dimensional rectangular cavity driven by differential heating of the upper sur-
face. The lower surface and sidewalls of the cavity are thermally insulated. In the limit
of large Darcy–Rayleigh number, the solution involves a horizontal boundary layer
near the upper surface where the main thermal gradients occur. For a monotonic temp-
erature distribution at the upper surface, these drive fluid to the colder end of the cav-
ity where it descends within a narrow vertical boundary layer before returning to the
horizontal layer. The horizontal and vertical layers form an interactive system which is
solved by a combination of asymptotic analysis and numerical computation. A com-
plete solution is obtained for the case of a quadratic temperature distribution at the
upper surface. The solution of the interactive boundary-layer system determines the al-
most constant temperature in the core region below the horizontal and vertical layers,
which contains relatively weak variations in both the thermal and velocity fields.

1. Introduction
Porous media play an important role in many areas of current application, including

geothermal energy systems, oil and gas recovery, and the spread of pollutants in
groundwater. In many cases of practical interest, the Darcy–Rayleigh number R,
which characterizes the importance of buoyancy forces relative to frictional forces, is
large. In a previous paper (Daniels & Punpocha 2004), steady-state solutions have
been found for the motion generated within a two-dimensional rectangular cavity
of aspect ratio L (width/height) by differential heating of the upper surface. If the
heating is monotonic and the other three walls of the cavity are thermally insulated,
a single-cell circulation is generated, the centre of which moves towards the upper
cold corner of the cavity as the Darcy–Rayleigh number increases. The aim of the
present work is to obtain an asymptotic description of the boundary-layer structure
that emerges in the limit as R → ∞. The main ingredients of this structure are a
horizontal boundary layer at the upper surface where the main thermal variations
occur and a vertical boundary layer at the top of the sidewall adjoining the colder
end of the upper surface. Fluid driven along the upper surface within the horizontal
layer enters the vertical layer where it descends and then returns to the horizontal
layer. Exactly how this is accomplished is an important feature of the structure to be
identified here.

There have been various previous studies of boundary-layer flows in porous media.
Similarity solutions of the boundary-layer equations on a heated horizontal wall

† Present address: Department of Mathematics, King Mongkut’s Institute of Technology,
Bangkok 10800, Thailand.
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have been discussed by Cheng & Chang (1976) and Chang & Cheng (1983), whilst
boundary-layer flows on a heated vertical wall have been studied by Cheng &
Minkowycz (1977), Merkin (1980), Ingham, Merkin & Pop (1982), Joshi & Gebhart
(1984) and Ingham & Brown (1986). For confined flows, most previous work relates
to the situation where motion is driven by maintaining the sidewalls of a rectangular
cavity at different constant temperatures. Weber (1975) and Walker & Homsy (1978)
considered the large Darcy–Rayleigh number structure (R → ∞ at fixed L) for the
side-heated cavity with insulated upper and lower surfaces, where vertical boundary
layers of thickness O(R−1/2) control a horizontal stratified flow across the main core
region. Blythe, Daniels & Simpkins (1982) analysed the structure of the vertical
boundary layers near the corners, leading to the identification of a double structure
along the horizontal surfaces consisting of layers of thickness O(R−1/4) and O(R−5/16)
(Daniels, Blythe & Simpkins 1982) and enabling the asymptotic solution to be
completed to leading order as R → ∞ throughout the cavity. A numerical solution
of the vertical boundary-layer problem was obtained by Daniels (1983). Further
asymptotic structures for shallow cavities (L = O(R) and L =O(R1/2) as R → ∞) have
been discussed by Daniels, Blythe & Simpkins (1986, 1989) and for tall cavities
(L =O(R−1) and L = O(R−1/2) as R → ∞) by Ansari & Daniels (1993, 1994).

Although the present investigation is motivated partly by applications to differential
heating in groundwater flows and geothermal energy systems, it is also designed
to provide fundamental insight into general flow structures in cavities where the
horizontal surfaces are thermally conducting. Structures of the kind identified in the
insulating case by Daniels et al. (1982) are then no longer relevant. The simplest
situation to consider initially is where only the upper surface is thermally conducting,
with the other three acting passively as thermal insulators. The problem is formulated
in § 2 and numerical results for large values of R are briefly discussed. In § 3, the main
features of the proposed asymptotic structure of the solution as R → ∞ are set out.
This is based on an interaction between a horizontal boundary layer and a vertical
boundary layer over a depth of order R−1/3 near the upper surface of the cavity.
For a monotonic temperature distribution along the upper surface, the vertical layer,
of width order R−2/3, occurs only at the colder end of the cavity. Similar structures
have been described by Phillips (1991) in the context of geothermal energy reservoirs,
where the flow is driven from below by a buoyancy source. Section 4 is concerned
with the solution of the combined horizontal/vertical-layer system for depths small
compared with R−1/3, whilst § 5 considers depths much greater than R−1/3. The latter
analysis reveals that virtually all of the fluid entrained into the vertical layer from
the horizontal layer is returned to the horizontal layer, so that the entire leading-
order circulation occurs within the two boundary layers near the upper surface. One
implication of this is that the horizontal boundary-layer system is not parabolic (or
near-parabolic) in one direction, a fact which must be taken into account in a full
numerical solution of the combined horizontal/vertical-layer system described in § § 6
and 7. The vertical layer also presents an interesting challenge numerically, because
for certain external conditions the streamwise velocity field decays in an oscillatory
fashion, generating reverse flow within the layer. The results are discussed in § 8.

2. Formulation
A rectangular two-dimensional cavity 0 � x∗ � d, 0 � z∗ � h is filled with a fluid-

saturated porous medium. The upper boundary z∗ = h is held at temperature

T ∗ = T ∗
0 + �T S(x∗/d), (2.1)
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where the function S(x∗/d) varies monotonically from zero at x∗ = 0 to 1 at x∗ = d . The
vertical walls x∗ = 0 and x∗ = d and the bottom wall z∗ =0 are thermally insulated.
Subject to Darcy’s law and the Oberbeck–Boussinesq approximation, steady two-
dimensional motion is governed by the non-dimensional equations

∇2ψ = −R
∂T

∂x
, (2.2)

∇2T =
∂(T , ψ)

∂(x, z)
, (2.3)

where ψ(x, z) is the streamfunction non-dimensionalized by the thermal diffusivity
κ , T (x, z) is the temperature measured relative to T ∗

0 and non-dimensionalized by
�T , (x, z) are Cartesian coordinates non-dimensionalized by h and R is the Darcy–
Rayleigh number defined by

R = Kgβ̄�T h/κν, (2.4)

where K is the permeability, β̄ is the coefficient of thermal expansion, ν is the kine-
matic viscosity and g is the acceleration due to gravity. The non-dimensional velocity
components in the x, z directions are given by

u =
∂ψ

∂z
, w = −∂ψ

∂x
, (2.5)

respectively.
The cavity walls are assumed to be impermeable, so that the boundary conditions

are

ψ =
∂T

∂x
= 0 on x = 0, L, (2.6)

ψ =
∂T

∂z
= 0 on z = 0 (2.7)

and

ψ = 0, T = S(x/L) on z = 1. (2.8)

Solutions of the problem defined by (2.2), (2.3) and (2.6)–(2.8) depend on the Darcy–
Rayleigh number R and the aspect ratio L = d/h, and also on the specific form of the
temperature profile S(x/L), which is taken to be regular at x =0. Note that because
the bottom wall and sidewalls of the cavity are thermally insulated, the total heat flux
through the upper surface is zero:∫ L

0

∂T

∂z
(x, 1) dx = 0. (2.9)

Numerical solutions of the above problem have been reported by Daniels &
Punpocha (2004) for a wide range of Darcy–Rayleigh numbers and aspect ratios,
and for both quadratic and cosine temperature distributions at the upper surface.
These show that as the Darcy–Rayleigh number increases, a boundary-layer structure
emerges, with the main variation in temperature occurring near the upper surface and
driving a single-cell circulation about a point near the upper cold corner. The results
are qualitatively similar for different forms of S. Figure 1 shows results obtained for
the quadratic profile

S(x/L) = 1 −
(

1 − x

L

)2

, (2.10)
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Figure 1. Numerical solutions showing the isotherms and streamlines in a square cavity
(L =1) at R = 5000. (b) and (c) show the isotherms at intervals of 0.1 and 0.01, respectively,
the latter in the range 0.23 to 0.24 only.
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Figure 2. Schematic diagram showing the main features of the solution structure in the limit
R → ∞ and the leading-order scaled variables in each region.

with R = 5000 and L = 1. These indicate that most of the core region below the upper
thermal layer is at a near-constant temperature of about 0.23 to 0.24.

The aim of the present work is to find an asymptotic solution of the problem in
the limit as R → ∞.

3. Boundary-layer structure
The main features of the asymptotic structure as R → ∞ are horizontal and vertical

layers of thickness R−1/3 and R−2/3, respectively, as in the discussion by Phillips (1991,
p. 263) of plume flows in porous media driven by a distributed buoyancy source.
Figure 2 shows a schematic diagram of the flow domain. Near the upper surface there
is a horizontal boundary layer in which

T (x, z) = θ̄ (X, Z) + · · · , ψ(x, z) = R1/3L1/3φ̄(X, Z) + · · · , (3.1)
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where

x = LX, 1 − z = R−1/3L2/3Z (3.2)

and θ̄ and φ̄ satisfy the equations

∂2φ̄

∂Z2
= − ∂θ̄

∂X
, (3.3)

∂2θ̄

∂Z2
=

∂φ̄

∂X

∂θ̄

∂Z
− ∂φ̄

∂Z

∂θ̄

∂X
, (3.4)

with boundary conditions

φ̄ = 0, θ̄ = S(X) on Z = 0, (3.5)

φ̄ =
∂θ̄

∂X
= 0 on X = 1, (3.6)

∂φ̄

∂Z
→ 0,

∂θ̄

∂Z
→ 0 as Z → ∞. (3.7)

Here, (3.5) are the conditions at the upper surface whilst (3.6) assumes that the
boundary conditions at the hotter sidewall apply directly to the horizontal boundary-
layer solution. This is partly because satisfaction of φ̄ = 0 at X = 1 also implies
satisfaction of ∂θ̄/∂X = 0 at X = 1, from (3.3). The conditions (3.7) at the bottom edge
of the layer assume that the horizontal flow tends to zero and that the temperature
approaches a constant value to be determined. A further discussion of (3.7) is given
at the end of this section. Note that the scalings used in (3.1) and (3.2) allow the
parameter L to be removed from the system (3.3)–(3.7).

At the colder sidewall there is a vertical boundary layer which entrains fluid from
the horizontal layer. Here

T (x, z) = θ(ξ, Z) + · · · , ψ(x, z) = R1/3L1/3φ(ξ, Z) + · · · , (3.8)

where

x = R−2/3L1/3ξ (3.9)

and θ and φ satisfy the equations

∂2φ

∂ξ 2
= −∂θ

∂ξ
,

∂2θ

∂ξ 2
=

∂φ

∂ξ

∂θ

∂Z
− ∂φ

∂Z

∂θ

∂ξ
(3.10)

and boundary conditions

φ = θ = 0 on Z = 0, (3.11)

φ =
∂θ

∂ξ
= 0 on ξ = 0, (3.12)

φ → φ∞(Z), θ → θ∞(Z) as ξ → ∞. (3.13)

Here, the condition (3.11) on θ at the upper surface follows because the function
S(x/L) is of order R−2/3 on the small lateral scale of the vertical boundary layer,
whilst (3.12) is the boundary condition on the sidewall. The profiles φ∞ and θ∞ at
the edge of the vertical layer are to be determined as part of the solution and must
match with the solution in the horizontal layer, requiring that

φ∞(Z) = φ̄(0, Z), θ∞(Z) = θ̄ (0, Z). (3.14)
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Note also that inclusion of the factor L1/3 in (3.9) ensures that the parameter L

does not appear in (3.10)–(3.14), so that the entire system comprising (3.3)–(3.7) and
(3.10)–(3.14) is independent of L.

The horizontal and vertical boundary-layer systems interact through the matching
conditions (3.14) and cannot be solved independently. In § § 4 and 5, solutions of the
combined system are sought for small Z and large Z, respectively, and then in § § 6
and 7, a full numerical solution is described.

In order to assist in the numerical computations and to justify use of the boundary
conditions (3.7), it is helpful to consider some general properties of the horizontal
and vertical boundary-layer systems. A key consideration is the form of the external
profiles φ∞ and θ∞. The numerical computations of figure 1 suggest that both φ∞ and
θ∞ may attain local maxima at finite values of Z, with the position of the maximum of
φ∞ (equivalent to the centre of the eddy) below that of θ∞. Clearly a local maximum of
φ∞ is inevitable if, as will be shown below, φ∞ → 0 at the lower edge of the horizontal
boundary layer. The occurrence of a maximum of θ∞ is also supported by an exact
solution of the horizontal boundary-layer system (3.3)–(3.7), in the case where S is
given by (2.10), reported by Daniels & Punpocha (2004):

φ̄ = (1 − X)φ0(Z), θ̄ = θ1(Z) − (1 − X)2θ0(Z). (3.15)

This represents a flow in the negative x-direction in which fluid is entrained by the
horizontal boundary layer at Z = ∞ and transported to the vertical boundary layer.
The function φ0 satisfies

φ′′′
0 + φ0φ

′′
0 − 3

2
φ′2

0 = 0, φ0(0) = 0, φ′′
0 (0) = −2 (3.16)

and, provided φ′
0(0) = 1.447, approaches a finite limiting value φ0(∞) = 1.141 as Z → ∞

with exponential decay. For other positive values of φ′
0(0), solutions of (3.16) terminate

with an inverse square singularity at a finite value of Z (rather than approaching
either a constant value or the alternative limiting form φ0 ∼ 12Z−1 as Z → ∞) and are
therefore discarded. The function θ0 is given by θ0 = −φ′′

0/2 and θ1 is the solution of
θ ′′
1 + φ0θ

′
1 = 0 rendered unique by requiring that the total heat flux into the horizontal

boundary layer at the upper surface be zero,

∫ 1

0

∂θ̄

∂Z
(X, 0) dX = 0, (3.17)

a consequence of (2.9). As Z → ∞, θ1 approaches the constant value 0.229 with
exponential decay.

The profiles φ0(Z) and θ1(Z) − θ0(Z) at X = 0 are shown in figure 3. It can be
confirmed that these do not lead to a consistent solution in the vertical boundary
layer, as follows. In general, the vertical boundary-layer equations, (3.10), possess
solutions with exponential decay of the form

θ ∼ θ∞ + Re
∑
λ

A e−λ(Z)ξ , φ ∼ φ∞ + Re
∑
λ

B e−λ(Z)ξ as ξ → ∞, (3.18)

where A= λB and λ is a root of the quadratic equation

λ2 − λφ′
∞ + θ ′

∞ = 0 (3.19)

with positive real part. Solutions of this kind were discussed by Gill (1966) in relation
to the boundary-layer flow in a cavity heated from the side. In the present problem
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Figure 3. The functions φ0 and θ1 − θ0.

the roots for λ are given by

λ = λ± = 1
2

(
φ′

∞ ±
(
φ′2

∞ − 4θ ′
∞
)1/2)

. (3.20)

Thus, if φ′
∞ > 0 and θ ′

∞ > 0, both roots have positive real part, and it is possible that
both φ∞ and θ∞ can be specified in the vertical boundary-layer solution as ξ → ∞
(since the two wall conditions φ = ∂θ/∂ξ =0 at ξ = 0 may be satisfied by appropriate
choice of A+ = λ+B+ and A− = λ−B−). However, if θ ′

∞ < 0 (as in the region Z > 0.96 of
figure 3), λ+ is positive and λ− is negative, and then at most one of the external profiles
θ∞ and φ∞ can be specified when solving the vertical boundary-layer equations.

Thus, the solution (3.15) is only expected to provide a reasonable approximation
in the upper part of the horizontal boundary layer and although it predicts a core
temperature θ̄ ∼ 0.229 as Z → ∞ in good agreement with the numerical computation
of figure 1, in other respects its behaviour at large Z is not a reliable indication of
the actual behaviour. In order to determine the correct asymptotic structure of the
solution as Z → ∞ in § 5, it is necessary to investigate the relationship between the
external profiles θ∞ (with θ ′

∞ < 0) and φ∞ generated within the vertical boundary layer.
Analytical insight can be gained by considering asymptotic solutions for which

φ∞ → a, θ∞ ∼ b + cZ−1 as Z → ∞, (3.21)
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so that the leading terms are consistent with (3.15) (where a = φ0(∞) = 1.141 and
b = θ1(∞) = 0.229). The algebraic correction to θ∞ involving c � 0 is chosen to ensure
a full balance of terms in the vertical boundary-layer equations; for (3.15) there
would be an exponentially small correction as Z → ∞, which can be considered as the
limiting case c → 0. The relevant solution of the vertical boundary-layer equations is

φ ∼ F̃ (η̃), θ ∼ b + Z−1G̃(η̃), Z → ∞, (3.22)

where the balance of terms in (3.10) requires that η̃ = ξ/Z = O(1). Substitution into
(3.10) gives

G̃′′ + F̃ ′G̃ = 0, F̃ ′′ = −G̃′ (3.23)

and the requirements that G̃(∞) = c and F̃ ′(∞) = 0 give F̃ ′ = c − G̃ and thence

G̃′′ + G̃(c − G̃) = 0, (3.24)

to be solved subject to

G̃′ = 0 on η̃ = 0, G̃ → c as η̃ → ∞. (3.25)

One integration of (3.24) and use of (3.25) gives

G̃′2 = 1
3
(G̃ − c)2(2G̃ + c). (3.26)

Inspection of the phase plane then shows that a solution for G̃ consistent with (3.25)
is possible with G̃ varying from −c/2 at η̃ = 0 to c at η̃ = ∞. This solution can be
found by one further integration of (3.26) to give

G̃ = 1
2
c
(
3 tanh2

(
c1/2η̃/2

)
−1

)
(3.27)

and the corresponding solution for F̃ ′ is

F̃ ′ = 3
2
c sech2

(
c1/2η̃/2

)
, (3.28)

which indicates a downward vertical velocity (F̃ ′ > 0) reaching a maximum value
(F̃ ′ = 3c/2) at the sidewall η̃ = 0. The solution for F̃ is

F̃ = 3c1/2 tanh
(
c1/2η̃/2

)
(3.29)

and the value of c is finally fixed by requiring that F̃ (∞) = a in which case

a = 3c1/2. (3.30)

This confirms that for a specified external form φ∞, the corresponding variation of θ∞
can be calculated from the vertical boundary layer (or vice versa) consistent with the
fact that for θ ′

∞ < 0 only λ+ is available in (3.20). More specifically, it indicates that φ

and {(θ − b)Z}1/2 adopt the same orders of magnitude as Z → ∞, equivalent to the fact
that a full balance of terms is maintained in the vertical boundary-layer equations
as Z → ∞. This still allows for a whole family of possible solutions for orders of
magnitude of φ and θ − b different from those assumed in (3.22) and the correct
orders of magnitude must be determined by matching with a consistent structure in
the horizontal boundary layer. It will be shown in § 5 that this leads, essentially, to
the requirement that as Z → ∞ both c and a are small in the above analysis (with
a ∼ c1/2) and the vertical-layer width η̃(∼ c−1/2) is large. Since a is asymptotically
small, this implies that all of the fluid descending in the vertical boundary layer is
detrained back into the horizontal boundary layer, which must therefore contain a
two-way flow satisfying φ̄ → 0 as Z → ∞.
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k̂ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
â 0.000 0.129 0.237 0.325 0.432 0.628 0.979 1.606 2.902 6.861 ∞

Table 1. Values of â.

4. Solution for small Z
In this section, solutions of the combined system (3.3)–(3.7)and (3.10)–(3.14) are

considered for small values of Z. It is expected that

φ∞ ∼ a∞Z + · · · , θ∞ ∼ b∞Z + · · · as Z → 0, (4.1)

where the coefficients a∞ and b∞ are positive and are determined by the horizontal
boundary-layer solution. Thus, the vertical boundary-layer solution is expected to
have the form

φ = Zf (ξ ) + · · · , θ = Zg(ξ ) + · · · as Z → 0. (4.2)

Substitution into (3.10) gives

f ′ = b∞ − g, g′′ = f ′g − fg′, (4.3)

and from (3.12) and (3.13) the boundary conditions are

f = g′ = 0 on ξ = 0, (4.4)

f → a∞, g → b∞ as ξ → ∞. (4.5)

This implies that f satisfies the system

f ′′′ + ff ′′ + f ′(b∞ −f ′) = 0; f = f ′′ = 0 on ξ =0, f → a∞ as ξ → ∞. (4.6)

As ξ → ∞, it is expected that

f ∼ a∞ + Re(k+ e−ν+ξ + k− e−ν−ξ ), (4.7)

where

ν± = 1
2

(
a∞ ±

(
a2

∞ − 4b∞
)1/2)

(4.8)

are positive if a2
∞ > 4b∞, and complex conjugates with positive real part if a2

∞ < 4b∞.
This is merely the limiting form of result (3.20) as Z → 0. The constants k± in (4.7)
must be chosen to ensure f = f ′′ = 0 at ξ = 0.

One method of computing f is to let

f (ξ ) = b1/2
∞ f̂ (ξ̂ ), ξ = b−1/2

∞ ξ̂ (4.9)

and then solve the system

f̂ ′′′ + f̂ f̂ ′′ + f̂ ′(1 − f̂ ′) = 0; f̂ = f̂ ′′ = 0, f̂ ′ = k̂ on ξ̂ = 0, (4.10)

for different values of the constant k̂. The solution was computed outwards from
the origin using a fourth-order Runge–Kutta scheme to obtain f̂ (∞) = â(k̂). Values
of â for various values of k̂ in the range 0 < k̂ � 1 are shown in table 1 and typical
solutions for the function f̂ are shown in figure 4. For k̂ � 1, f̂ continues to increase
with ξ̂ and a constant limit is not achieved as ξ̂ → ∞.

From (4.6), it is required that a∞ = b1/2
∞ â(k̂) so that for given values of a∞ and b∞

the relevant value of â is determined by

â = a∞b−1/2
∞ (4.11)
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Figure 4. The function f̂ for various values of k̂. (a) k̂ = 0.3. (b) k̂ = 0.5. (c) k̂ = 0.7.

(d) k̂ = 0.9.

and (in principle) the corresponding value of k̂ is determined from table 1. Note the
oscillatory behaviour of the solution for f̂ for â < 2, consistent with the existence of
complex conjugate roots of (4.8) in this case. As the entrainment velocity decreases,
or the negative thermal gradient increases (â → 0) this spatial oscillation is a manifesta-
tion of the Darcy–Rayleigh instability, but for the computations reported here, the
value of â is sufficiently large to avoid any significant oscillatory behaviour (see
§ 7). Note also that as k̂ approaches the value 1, f̂ approaches the exact solution
f̂ = ξ̂ of (4.10) and in this case â → ∞.

For the horizontal boundary-layer solution (3.15), a∞ = φ′
0(0) = 1.447 and b∞ =

(φ′
0(0))2/2 = 1.047, so that this solution corresponds to the case â =

√
2 where the

behaviour at the edge of the vertical boundary layer is oscillatory. Note also that
for the marginal case â = 2, the two roots ν± in (4.8) are equal and then the two
exponentials in (4.7) are replaced by the form (k+ + k−ξ ) e−ν+ξ .

The solution for small Z obtained here confirms that both of the external profiles
φ∞ and θ∞ can be specified at the edge of the layer, consistent with the observations
made in § 3.

5. Solution for large Z

In this section, solutions of the combined system (3.3)–(3.7) and (3.10)–(3.14) are
considered for large values of Z. In the vertical boundary layer, a generalization of
(3.22) is assumed in which

φ ∼ Z−αF (η), θ ∼ b + Z−βG(η) as Z → ∞, (5.1)
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with η = ξ/Zγ and where α, β and γ are constants to be determined. A balance of
terms in both equations (3.10) requires α = γ − 1 and γ = β − α from which it follows
that

2α = β − 1. (5.2)

This is equivalent to the balance between φ and {(θ − b)Z}1/2 discussed at the end
of § 3; the solution (3.22) corresponds to the special case α = 0, β = 1, γ =1. Now
consider the horizontal boundary layer where in order to match with (5.1) it must be
assumed that

φ̄ ∼ Z−αp(X), θ̄ ∼ b + Z−βq(X) as Z → ∞. (5.3)

A balance of terms in the horizontal boundary-layer equation (3.3) requires

β = α + 2. (5.4)

From (5.2) and (5.4), it now follows that α = 1 and β = 3, and also that γ = 2. For
these values of α and β , a full balance also occurs in the horizontal boundary-layer
equation (3.4), so that there is a balance between conduction and convection as Z → ∞
in both the vertical and horizontal layers.

Proceeding on the assumption that

φ∞ ∼ p0Z
−1, θ∞ ∼ b + q0Z

−3 as Z → ∞, (5.5)

where p0 and q0 are constants to be determined, substitution of (5.1) into (3.10) with
α = 1, β = 3, γ =2 shows that the vertical boundary-layer functions F and G satisfy
the equations

F ′ = q0 − G, G′′ = FG′ − 3F ′G. (5.6)

Elimination of G then shows that F satisfies the third-order system

F ′′′ − FF ′′ − 3F ′(q0 − F ′) = 0, (5.7)

with boundary conditions

F = F ′′ = 0 on η = 0, F ′ → 0 as η → ∞. (5.8)

The constant q0 is assumed positive and can be eliminated using the transformation

F (η) = q
1/2
0 F̂ (η̂), η = q

−1/2
0 η̂, (5.9)

to obtain

F̂ ′′′ − F̂ F̂ ′′ + 3F̂ ′(F̂ ′ − 1) = 0, (5.10)

F̂ = F̂ ′′ = 0 on η̂ = 0, F̂ ′ → 0 as η̂ → ∞. (5.11)

The solution of this system is expected to yield the numerical value of F̂ (∞) = µ, say,
in which case (5.9) and (5.5) together imply that p0 and q0 are related by the equation

p0 = µq
1/2
0 . (5.12)

However, it is not obvious that a solution exists for which F̂ approaches a constant
value as η̂ → ∞, given that F̂ = η̂ is one solution of (5.10) which satisfies both
conditions at the origin, but does not have the required behaviour at large η̂.
Computations using a shooting method based on a fourth-order Runge–Kutta scheme
and starting from the two conditions at the origin together with F̂ ′(0) = k̂0 were
inconclusive and generally approach the singular form

F̂ ∼ 6(η̂ − η̂0)
−1 as η̂ → η̂0−, (5.13)
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with the value of η̂0 depending on k̂0. Nevertheless, there are solutions for which

F̂ ∼ µ + µ1 e−c1η̂ + µ2 e−2c1η̂ as η̂ → ∞. (5.14)

Substitution into (5.10) shows that if µ > 0, a non-zero solution for c1 is possible with

c1 = 1
2

(
−µ + (µ2 + 12)1/2

)
(5.15)

and

µ2 = µ2
1c1

(
4c2

1 + 2µc1 − 3
)−1

. (5.16)

If (5.14) were assumed to hold for all η̂ and the two boundary conditions applied
at η̂ = 0, then the arbitrary constants µ and µ1 are determined as µ = 27/

√
858 and

µ1 = −4µ/3 (with c1 =
√

39/22 and µ2 = µ/3). The actual solution was found using
this as an initial guess and shooting backwards from a suitably large value η̂∞ of η̂

using a fourth-order Runge–Kutta scheme. At η̂ =0, the required zeros of F̂ (0) and
F̂ ′′(0) were located by Newton iteration. This gave

µ = 2.598, (5.17)

with F̂ ′(0) = 1.125. The solution for F̂ is shown in figure 5, along with F̂ ′, F̂ ′′ and the
corresponding temperature profile

Ĝ = 1 − F̂ ′, (5.18)

where G = q0Ĝ(η̂). Note that Ĝ(0) = −0.125, so that the wall temperature at x = 0 is
an increasing function of Z, which is physically plausible. The solution for F̂ was
checked by computing outwards from F̂ = F̂ ′′ = 0, F̂ ′ =1.125 at η̂ = 0; the effect of
changing F̂ ′(0) by a small amount, either up or down, is to provoke the onset of the
singularity (5.13). This is delayed to higher values of η̂ by a fine adjustment of F̂ ′(0),
but the solution is extremely sensitive to its value, making the backward shooting
method a much better option.

Next consider the horizontal boundary layer. With α = 1 and β = 3, substitution of
(5.3) into (3.3), (3.4) shows that the functions p(X) and q(X) satisfy the equations

2p = −q ′, 12q = pq ′ − 3p′q. (5.19)

The boundary conditions (3.6) are equivalent to the requirement that

p = q ′ = 0 on X = 1. (5.20)
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Elimination of p in (5.19) gives a second-order equation for q which can be integrated
once to give

q ′2 = 48q − Cq2/3, (5.21)

where C is a constant. Since q ′ = −2p = −2p0 at X =0 and q = q0 at X = 0 it follows
that

C = 48q
1/3
0

(
1 − 1

12
µ2

)
, (5.22)

where p0 has been replaced in terms of q0 using (5.11). Since µ = 2.598, it follows
that C is positive. Another integration of (5.21), making use of the fact that q = q0 at
X = 0, gives ∫ q

q0

(
48q − Cq2/3

)−1/2
dq = −X, (5.23)

where it is assumed that q ′ � 0 so that p > 0 in (5.19), consistent with the fact that the
streamfunction should be positive. The integral can be evaluated by the substitution

v =

(
q

q0

)1/3

− 1 + 1
12

µ2 (5.24)

to obtain

3(q0/48)1/2

∫ v

µ2/12

(
v + 1 − 1

12
µ2

)
v−1/2 dv = −X. (5.25)

From the boundary condition (5.20) at X = 1, together with (5.21), it follows that

q(1) =
(

1
48

C
)3

=
(
1 − 1

12
µ2

)3
q0, (5.26)

so that v = 0 at X = 1. Setting X = 1 in (5.25) now determines the value of q0 as

q0 = 16µ−2
(
1 − 1

18
µ2

)−2
= 6.068 (5.27)

and from (5.12) the corresponding value of p0 is

p0 = µq
1/2
0 = 6.400. (5.28)

The complete solution for q(X) is given implicitly from (5.25) as(
1
12

q0

)1/2
v1/2

(
v + 3 − 1

4
µ2

)
= 1 − X, (5.29)

where q is related to v by (5.24), and is shown in figure 6. The corresponding solution
for p(X) is then given from (5.19) and (5.21) as

p = (12q0)
1/2v1/2

(
v + 1 − 1

12
µ2

)
(5.30)

and is also shown in figure 6. It is noted from (5.26) that q(1) = 0.508 so that the wall
temperature at x =L given by (5.3) is a decreasing function of Z, consistent with the
maximum value (θ̄ =1) which occurs at the upper corner x = L, z = 1.

The asymptotic structure found here provides a consistent solution as Z → ∞ across
both the horizontal and vertical boundary-layer regions. The structure is consistent
with the requirement that the net vertical heat flux (which vanishes for any horizontal
section of the cavity) is zero and supports the idea that the main circulation, at the
order R1/3 level of the streamfunction, is completed within these layers. However,
the slow algebraic decay of the streamfunction indicates that the depth of the layers
is numerically large on the vertical scale R−1/3, explaining why the circulation at
R = 5000 in figure 1 still extends significantly throughout the cavity. The width of
the vertical boundary layer, on the horizontal scale R−2/3, increases as the square
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of its depth, consistent with the divergent behaviour of the streamlines near the
colder sidewall in figure 1. The downward velocity in the vertical boundary layer
is inversely proportional to the cube of the depth, the reduction being achieved by
the detrainment of fluid back into the horizontal boundary layer. As far as the
temperature is concerned, the correction to the constant value b as Z → ∞ is negative
near the cold sidewall and positive elsewhere, with the precise point at which T = b

occurring within the vertical boundary layer. Since q(X) is a decreasing function
of X, isotherms with T >b emanating from within the vertical boundary layer turn
upwards near the base of the horizontal boundary layer, consistent with the behaviour
observed in figure 1.

6. Numerical scheme
A numerical scheme for solving the combined boundary-layer system (3.3)–(3.7)

and (3.10)–(3.14) is now described.
In the horizontal layer, the equations (3.3), (3.4) are of parabolic type, but not in one

direction. This can be understood by considering their forms near X = 0. If locally the
functional relation between θ̄ and φ̄ is written as θ̄ = F̄ (φ̄), so that ∂θ̄/∂X = F̄ ′∂φ̄/∂X,
then for Z < Z0 (where F̄ ′ > 0, since θ̄ and φ̄ are both increasing functions of Z)
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equation (3.3) is parabolic in the negative X direction. If Z1(>Z0) is defined as the
value of Z at which φ∞ reaches its maximum value, then for Z0 < Z < Z1, F̄

′ < 0 (since
θ̄ decreases as φ̄ increases) and so (3.3) is locally parabolic in the positive X direction;
for Z >Z1, F̄

′ > 0 (since θ̄ and φ̄ both decrease with Z) and so (3.3) is parabolic
in the negative X direction. The heat equation (3.4) is parabolic in the negative X

direction for Z <Z1 (since ū= −∂φ̄/∂Z < 0 there) and the positive X direction for
Z >Z1 (where ū > 0).

Thus both equations (3.3), (3.4) are parabolic in the negative X direction for Z <Z0,
while for Z > Z0 they are parabolic in opposite directions. This corresponds precisely
with the ability of the vertical boundary layer to accept specification of both φ∞
and θ∞ in Z <Z0, but only one of these in Z > Z0. These considerations mean that
it is impractical to solve the horizontal boundary-layer equations using a parabolic
marching scheme and instead the solution was allowed to evolve to a steady state by
solving the artificial time-dependent system

∂φ̄

∂t
=

∂2φ̄

∂Z2
+

∂θ̄

∂X
,

∂θ̄

∂t
=

∂2θ̄

∂Z2
− ∂φ̄

∂X

∂θ̄

∂Z
+

∂φ̄

∂Z

∂θ̄

∂X
, (6.1)

with φ̄ and θ̄ regarded as functions of X, Z and time t . The boundary conditions
applied in the Z direction are

φ̄ = 0, θ̄ = S(X) on Z = 0 (6.2)

and

φ̄ ∼ (Z + D)−1p(X), θ̄ ∼ b + (Z + D)−3q(X) as Z → ∞, (6.3)

where p(X) and q(X) are the functions determined in § 5. Note that a constant
D is incorporated as a possible origin shift in the Z direction – the asymptotic
solution found in § 5 is actually an exact solution of the equations and the origin shift
represents a correction to the solution as Z → ∞ which, like b, can be expected to
depend on the precise form of S(X). It is important to allow for this if the system is
to be solved on a finite domain in the Z direction, because of the slow decay of the
streamfunction. The other boundary conditions used in the solution of (6.1) are

φ̄ =
∂θ̄

∂X
= 0 on X = 1 (6.4)

and

θ̄ = θ∞(Z) on X = 0 for Z > Z0. (6.5)

The equations (6.1) were discretized on a uniform mesh in X and Z in the region
0 � X � 1, 0 � Z � Z∞ where Z∞ is a suitably large outer boundary. An explicit finite-
difference scheme was used, based on central differences in X and Z and a forward
difference in time. This allows new values of φ̄ and θ̄ to be determined at successive
time steps at all internal grid points. New values of φ̄ and θ̄ on Z = 0 and Z = Z∞ are
determined using (6.2) and (6.3). New values of φ̄ and θ̄ on X = 1 are obtained using
(6.4), with a quadratic extrapolation based on two internal grid points in the case of
θ̄ . No conditions are applied on θ̄ and φ̄ for Z � Z0 at X = 0 and new values are set
there by using a quadratic extrapolation of the solution at three internal grid points.
The same method is used to set the new values of φ̄ at X =0 in Z > Z0; the values of
the temperature in Z >Z0 are fixed by (6.5).

In order to carry out the horizontal boundary-layer calculation, values of b, D, Z0

and the function θ∞ for Z >Z0 must be specified, together with initial forms for φ̄

and θ̄ at t = 0. Further details of this are given below.
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The next stage of the numerical scheme is to take the new steady-state profiles
φ∞ and θ∞ (the latter for Z � Z0 only) and use these as boundary conditions for φ

and θ at the edge of the vertical boundary layer. The steady-state vertical boundary-
layer equations (3.10) are predominantly parabolic in the Z direction, although small
upward velocities can occur near the edge of the layer if the outward exponential decay
is oscillatory which, according to (3.20), is the case in Z <Z0 if θ ′

∞ >φ′2
∞/4. Apart from

this difficulty, it was found that the most stable way of solving the vertical boundary-
layer system was to march the solution in Z from the initial profile (3.11) at Z =0.
The vertical boundary layer widens considerably downstream, with ξ ∼ (Z + D)2 as
Z → ∞ according to the asymptotic structure of § 5 modified to incorporate the origin
shift D. For this reason, a coordinate transformation (ξ, Z) → (s, Z) where s = ξδ(Z)
was used, enabling the solution to be computed on a uniform grid in s and Z over
the finite domain 0 � s � s∞, 0 � Z � Z∞. The function δ(Z) is chosen to be unity
at Z = 0 and to have an asymptotic behaviour proportional to Z−2 as Z → ∞ to
accommodate the spreading of the layer as Z increases. Further details are given in
§ 7. The governing equations (3.10) become

δ
∂2φ

∂s2
+

∂θ

∂s
= 0, δ

∂2θ

∂s2
+

∂φ

∂Z

∂θ

∂s
− ∂φ

∂s

∂θ

∂Z
= 0, (6.6)

where φ and θ are now regarded as functions of s and Z. These are solved subject to

φ = θ = 0 on Z = 0, (6.7)

φ =
∂θ

∂s
= 0 on s = 0, (6.8)

together with

φ → φ∞, θ → θ∞ as s → ∞ for Z � Z0 (6.9)

and

φ → φ∞,
∂φ

∂s
→ 0 as s → ∞ for Z > Z0. (6.10)

The equations (6.6) were converted into first-order form by introducing additional
variables Φ = ∂φ/∂s and Θ = ∂θ/∂s and then the system discretized using the Crank–
Nicolson method. The edge conditions (6.9) and (6.10) are applied at s = s∞. At each
downstream step, the nonlinear discretized system was solved using Newton iteration.
For Z >Z0, the solution yields the edge profile θ∞ and the limiting value b = θ∞(∞)
to be used in the boundary conditions (6.5) and (6.3) for the next computation of the
horizontal boundary layer.

The computation can lead to a change in Z0 depending on the behaviour of θ̄ at
X = 0. In practice, an adjustment to Z0 was made before each solution of the horizontal
layer to ensure that ∂θ̄(0, Z)/∂Z remained zero at Z = Z0 −. Such adjustments were
limited to a change of at most one step length in the Z direction at any given stage.
Before each computation of the horizontal layer, an adjustment was also made to
the value of D. This was done by calculating ∂φ̄/∂Z at X = 0 and Z =Z∞ from
the previous computation of the horizontal layer. The correct asymptotic behaviour
requires that

∂φ̄

∂Z
(0, Z) ∼ −(Z + D)−2p0, (6.11)

where p0 = 6.400. This was used together with a relaxation factor of 1/2 to calculate
a new estimate for D, which was then used in the outer conditions (6.3) applied at
Z = Z∞. The updated value of D was used in the thermal condition one iteration of
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the horizontal layer after its use in the streamfunction condition. This ensures that the
thermal condition applied at Z = Z∞ is consistent with that applied in (6.5) at X = 0.

7. Numerical results
In this section, numerical results are described for the quadratic profile (2.10). The

entire scheme was started by using

φ̄ = (1 − X)φ∞(Z), θ̄ = θ∞(Z) + (1 − (1 − X)2) e−Z (7.1)

as the initial state at t = 0 in the horizontal layer, with Z0 = 0.95 and φ∞ and θ∞
defined by

φ∞ = 1.447Z − 0.980Z2 + 0.338Z3, (7.2)

θ∞ = 1.047Z − 1.164Z2 + 0.430Z3, (7.3)

for Z � Z0 and by

φ∞ = 6.400(Z + D)−1 − 0.840 e−1.083(Z−Z0), (7.4)

θ∞ = 0.215 + 6.068(Z + D)−3 + 0.075(Z − Z0) e−(Z−Z0) (7.5)

for Z >Z0, with D = 3. These were chosen to be consistent with the known asymptotic
forms as Z → ∞, to agree with the main properties of the approximate solution (3.15)
for small Z, and to produce a relatively smooth join at Z0. It is essential to start
the scheme with a reasonably good initial guess in order to ensure that the vertical
boundary-layer solution can be computed all the way to Z =Z∞. The initial state
(7.1) was also used for subsequent computations of the horizontal boundary layer,
but with φ∞ and θ∞ replaced by their latest approximations.

Various checks were carried out to test the dependency of the numerical solution on
the various step sizes involved and on the implementation of the boundary conditions
and initial conditions. These indicated reasonable accuracy and consistency, with the
algebraic decay in Z and a limitation on s∞ to avoid numerical instability of the
vertical boundary layer probably the main sources of error. With regard to the latter,
the value of φ′

∞θ ′−1/2
∞ in the region Z <Z0 ranged upwards from about 1.4 at Z = 0,

equivalent to â > 1.4 in (4.11). This in turn corresponds to k̂ > 0.67 so that, as can be
seen from the solution for k̂ = 0.7 in figure 4, the impact of flow reversal at the edge
of the layer is small. The most accurate computations were performed with step sizes
�Z =0.05, �X = 0.05 and �s =0.1, and with outer boundaries set at Z∞ =10 and
s∞ = 6. In the horizontal layer, stability limitations of the explicit scheme necessitated
the use of a small time step �t =0.001, and 105 time steps were used to ensure a
steady-state solution was achieved. This typically emerged, to six significant figures, at
around t = 60. In the vertical layer, the Crank–Nicolson scheme worked efficiently and
a tolerance of 10−7 was applied to the Newton increments at each downstream step.
However, it was necessary to choose the transformation function δ(Z) carefully, both
to avoid instability associated with reverse flow at the edge of the layer and to ensure
a sufficiently large outer boundary at all values of Z. After some experimentation,
the function

δ(Z) = (1 + δ0Z
2)−1 (7.6)

was found to be suitable with δ0 a parameter set to the value 1 initially; the properties
δ(0) = 1 and δ ∼ δ−1

0 Z−2, Z → ∞ are in line with the asymptotic behaviours discussed
in § § 4 and 5. It was found convenient to recompute the solution in the region
Z <Z0 and adjust δ0 until the value of Φ = ∂φ/∂s at s = s∞ was zero (to at least
six decimal places) at Z = Z0 −. Since δΦ = θ∞ − θ , and the left-hand side is zero at
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Iteration θ∞max φ∞max b D

0 0.3128 1.2416 0.21462 3.000
1 0.3105 0.8267 0.21185 4.413
2 0.3060 0.9217 0.21221 3.318
3 0.3083 0.8805 0.21284 4.127
4 0.3075 0.8938 0.21312 3.460
5 0.3082 0.8861 0.21308 3.904
6 0.3078 0.8907 0.21319 3.578
7 0.3081 0.8874 0.21318 3.790
8 0.3080 0.8894 0.21320 3.642
9 0.3081 0.8881 0.21321 3.737

10 0.3080 0.8889 0.21321 3.675
11 0.3081 0.8884 0.21321 3.716
12 0.3080 0.8887 0.21321 3.690
13 0.3080 0.8885 0.21321 3.706
14 0.3080 0.8886 0.21321 3.695
15 0.3080 0.8886 0.21321 3.702
16 0.3080 0.8886 0.21321 3.698

Table 2. Convergence of the numerical scheme showing the main properties of the solution
for each complete iteration of the horizontal/vertical-layer system.
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Figure 7. Convergence of the origin shift D with successive iterations of the
horizontal/vertical-layer system.

s = s∞ for Z > Z0, this ensures a smooth transition in the value of θ∞ across Z = Z0.
The remainder of the vertical boundary-layer solution is then computed from Z =Z0

to Z = Z∞.
Table 2 shows the behaviour of some of the main properties of the solution as

a function of successive horizontal/vertical boundary-layer iterations, and serves to
illustrate the rate of convergence of the scheme. Although the main features of the
temperature and streamfunction fields settled down relatively quickly for moderate
values of Z, the origin shift D needed 15 iterations to achieve convergence to within
± 0.01 (see also figure 7) and approached the final value

D = 3.700. (7.7)
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In the final converged state, the value of δ0 in (7.6) was 0.894. At the edge of the
vertical layer, the temperature attains a maximum value of

θ∞max = 0.308 at Z = Z0 = 1.00 (7.8)

and the streamfunction attains a maximum value of

φ∞max = 0.889 at Z = Z1 = 2.10. (7.9)

The predicted core temperature is

b = lim
Z→∞

θ∞ = 0.213. (7.10)

The profiles θ∞ and φ∞ are shown in figure 8. Velocity and temperature profiles at
various values of X in the horizontal boundary layer are shown in figure 9, and
isotherms and streamlines in figure 10. Similar information for the vertical boundary
layer is shown in figures 11 and 12.

8. Discussion
Numerical and asymptotic solutions of the combined horizontal/vertical boundary-

layer system have been found, which determine the main properties of the temperature
and flow fields in the cavity for general values of the aspect ratio L as R → ∞. Although
the numerical results of § 7 are restricted to the quadratic profile, (2.10), at the upper
surface, the boundary-layer solutions for other monotonic profiles S(X) are expected
to have the same qualitative features. In particular, the leading-order algebraic decay
of the horizontal and vertical boundary-layer solutions as Z → ∞, which dictates
the variation of the flow and temperature fields away from the upper surface, is
determined locally and is thus independent of the precise form of S. This is because
the heat equation (3.4) is parabolic in the negative X direction only in the upper
part of the horizontal boundary layer where u < 0. Had the system been parabolic
in this direction throughout the layer, the decay of the solution at large Z would be
expected to relate to the temperature profile S(X) at Z = 0. However, for the problem
studied here, the heat equation is parabolic in the opposite direction in the lower part
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of the layer where u > 0 and is more strongly influenced by information conveyed
by the vertical boundary layer at X = 0. The precise form of S does influence the
core temperature, quantitative properties of the solution within the boundary layers
at finite Z and the origin shift D. According to the results of § 7, for the quadratic
profile (2.10), the temperature maximum at the end of the horizontal boundary layer
is T = 0.308 and occurs at a height

z = 1 − R−1/3L2/3Z0, (8.1)

where Z0 = 1.00. For a square cavity (L =1) and a Darcy–Rayleigh number R = 5000,
(8.1) gives z = 0.94 which compares well with the numerical results of figure 1, as
does the maximum value of T . According to the results of § 7, the streamfunction
maximum at the end of the horizontal layer occurs at

z = 1 − R−1/3L2/3Z1, (8.2)

where Z1 = 2.10. Again, with L =1 and R = 5000 this gives z = 0.88 which compares
well with the position of the centre of the eddy in figure 1 (z = 0.90). The value of
the streamfunction at this point given by the results of § 7 is

ψ ∼ R1/3L1/3φ∞max, (8.3)

where φ∞max = 0.889. With L = 1 and R = 5000 this gives ψ = 15.2 compared with a
value of 13.9 given by the numerical results of figure 1. Corresponding maximum val-
ues of ψ for R = 5000 and L =0.25, 0.5, 2 and 4 computed numerically by Daniels &
Punpocha (2004) are 7.7, 10.4, 18.1 and 22.7, respectively, in reasonable agreement
with the values 9.6, 12.1, 19.2 and 24.1 predicted by (8.3).

Further evidence of the validity of the limiting structure proposed here is provided
by the fact that the algebraic decay of the horizontal and vertical boundary-layer
solutions as Z → ∞ is consistent with a solution in the core region 0 � x � L, 0 � z < 1
of the form

T = b + R−1θ̃ (x, z) + · · · , ψ = φ̃(x, z) + · · · , (8.4)

as R → ∞, where θ̃ and φ̃ are order-one functions of x and z. The leading-order core
temperature has the constant value b determined by the boundary-layer system, this
being consistent with the conditions of thermal insulation on the sidewalls and lower
surface of the cavity. Substitution of (8.4) into the full governing equations (2.2) and
(2.3) shows that θ̃ and φ̃ satisfy the equations

∇2φ̃ = −∂θ̃

∂x
, ∇2θ̃ =

∂(θ̃ , φ̃)

∂(x, z)
, (8.5)

which are, in fact, the full equations with the Darcy–Rayleigh number scaled out. On
the sidewalls, the appropriate boundary conditions are

φ̃ =
∂θ̃

∂x
= 0 on x = 0, L (8.6)

and on the lower wall

φ̃ =
∂θ̃

∂z
= 0 on z = 0. (8.7)
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Finally, the solution must match with the boundary-layer forms (5.3) and (5.1), req-
uiring that

φ̃ ∼ L(1 − z)−1p(x/L), θ̃ ∼ L2(1 − z)−3q(x/L) as z → 1 for 0 < x � L (8.8)

and that

φ̃ ∼ L(1 − z)−1F (η), θ̃ ∼ L2(1 − z)−3G(η) as z → 1 for 0 � η < ∞, (8.9)

where η = Lx/(1 − z)2. The vertical boundary layer acts as a source of fluid at the
upper corner (x = 0, z = 1) of the core, generating a weak circulation in the core
(associated with order-one values of the streamfunction) which transports fluid to the
lower edge of the horizontal boundary layer. The main circulation, at the order R1/3

level of the streamfunction, is completed within the horizontal and vertical layers
themselves. As far as the temperature is concerned, relative to the constant value b,
there is an order R−1 variation in the core which, from the forms of G and q(X)
determined in § 5, is negative near the sidewall x = 0 and positive elsewhere. This
is consistent with the pattern of isotherms computed from the full set of equations
and boundary conditions at R =5000 in figure 1. The isotherm T = b on which θ̃ =0
emanates from the bottom of the vertical boundary layer and intersects the lower
boundary of the cavity. Because of the singular nature of the core problem (8.5)–(8.9),
its solution will require a careful numerical treatment and this is not attempted here.
It appears, however, that this region will complete the overall asymptotic structure
in the limit of large Darcy–Rayleigh number and have a solution which matches
consistently with both the horizontal and vertical boundary-layer regions.

Corrections to the boundary-layer solutions arising from the core are of relative
order R−2/3 and are therefore at the same level as corrections in the horizontal layer
arising from the neglected second-order z derivatives there and in the vertical layer
from the influence of the temperature profile at the upper surface of the cavity. This
explains why the leading terms found in the present work give a reasonably good
approximation when R = 5000. Using the value Z∞ = 10 as a rough guide to the depth
of the boundary layers suggests that for this depth to be small compared with the
depth of the cavity requires 10R−1/3L2/3 	 1 which, for a square cavity, is equivalent
to R 
 1000.

The structure identified here is expected to be relevant in other more complex cavity
flows where the horizontal surfaces are thermally conducting. The present theory
for flow driven from above by a buoyancy sink applies equally to flows driven from
below by a buoyancy source (via the transformation T → 1 − T , ψ → ψ, x → L − x,

z → 1 − z), of interest in relation to motions generated within geothermal energy
reservoirs. The sidewall conditions ψ = ∂T /∂x = 0 assumed here are the same as
those applicable on the plane of symmetry of a two-dimensional plume driven by
symmetrical heating from below, as discussed by Phillips (1991, § 7.6). In this plume
problem, the ambient temperature is generally viewed as specified at a level below that
of the heat source and there is a net upward heat flux through the system, whereas,
in the problem studied here, the net vertical heat flux is zero and the ambient core
temperature is determined as part of the solution. Near the sidewall, where the vertical
thermal gradient is negative, the flow studied here is equivalent to that of a plume, but
for general plume flows with net upward heat flux, the large Z structure is expected
to be different from that of § 5. It is hoped to consider the structure of such flows in
future work.

The authors are grateful to the referees for their helpful comments.
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