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Abstract—We demonstrate how visual interactive graphics can 
support both spatial and aspatial model sensitivity analysis, 
using a Venezuela-based earthquake CAT model as a case 
study. We identify the model inputs that drive the model’s 
estimated losses using interactive maps, treemaps to give 
overviews and linked barcharts, spineplots and maps to 
explore the effects of specific input combinations on the 
estimated loss outputs. Interactively linking these methods 
allow them to be integrated into the workflows of analysts. 

Keywords: interactive visualizisation, sensitivity, spatial, 
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I.  INTRODUCTION 
Catastrophe (CAT) models used by the insurance 

industry are important tools for estimating potential financial 
losses incurred from large natural disasters of different perils 
including flood, earthquake and hurricane (Grossi et al., 
2005). They do this by taking insurance portfolios that 
include both spatial and aspatial information about their risks 
their exposure – the physical entities that comprise the risk – 
and model the likely financial loss from an event set – a 
representative set of events with different return periods 
(probability of occurring within a fixed period). 

There are usually multiple CAT models available from 
different modelling companies depending on peril and 
location. Differences between estimated modelled losses for 
the same portfolio can be significant and vary by model and 
model version. Insurance companies need to compare these 
different views of their risk in order to understand the 
implications of changes in portfolios. This can be difficult as 
CAT model outputs are affected by multiple input 
parameters and the specific details of how the models work 
are not published. 

The insurance broker Willis, help their clients assess their 
risk and advise them how to manage it. Willis’ Model 
Sensitivity Analysis (MSA) programme supports this role by 
enabling the major CAT models to be run thousands of times 
with systematic perturbations in selected model input values. 
The resulting sets of model inputs with corresponding 
outputs helps to identify those model inputs that drive losses 
and help determine implications for changes in a client’s 
portfolio. However, wading though the thousands of results 
that these generate to answer these questions is a time-
consuming and laborious process. 

We demonstrate how interactive visualisation (Gehegan, 
2005) can be used as a visual interface to MSA data using a 
Venezuela earthquake CAT model as a case study. Willis 
were particularly interested in the effects of different 
assumptions about the spatial distribution of exposure made 
by the models. We address this question as well as studying 
the effects of varying other model inputs on estimated losses. 

II. DATA 
Our dataset comprised 12,160 records of MSA data for 

earthquakes in Venezuela from one of the commercial CAT 
models, with all combinations of: 

• 5 building construction codes: masonry, reinforced 
concrete, steel and unknown; 

• 4 building occupancy codes: commercial, industrial, 
residential and unknown; 

• 4 year-built codes: 1900, 1948, 1968 and unknown; 

• 4 number of storey codes: 1, 4, 8 and unknown; 

• 19 CRESTA zones (geographical units); 

• 2 methods of geographical disaggregation. 

The portfolio for each combination of inputs was kept 
constant. Although this is unrealistic in terms of client 
portfolios, it allows the correspondence between model 
inputs and model outputs to be studied. 

A. Building codes 
The building codes are CAT model specific 

categorisations of building types. CAT models do not require 
there to be a full set of input parameters and will treat 
missing values as “unknown”, assigning a value which it 
considers regionally representative (of course, this may result 
in estimated losses that are inappropriate for the portfolio). 

B. CRESTA zones 
CAT models run at a variety of spatial scales depending 

on peril (e.g. high resolution is particularly important for 
flood) and location (models tend to be better developed in 
regions with a well-developed insurance industry). Most 
models accept data at CRESTA level (Cresta, 2010) – 
standard spatial units for aggregating insurance data – but 
models increasingly accept data at higher resolutions. 
Characteristics of zones vary, but are usually related to 



population density and are based upon existing regional 
boundaries. Venezuela has 19 CRESTA zones (Fig. 1). 

C. Spatial disaggregation 
The CAT model in our case study takes exposure data at 

CRESTA level. Since the model operates at a higher 
resolution than this, the model disaggregates the exposure 
data, perhaps on population and building inventory data. We 
consider the effects of two of the CAT model’s spatial 
disaggregation methods – A and B – which (internally) affect 
the earthquake events (Fig. 1, top centre) that contribute to 
the losses and the soil type associated with the exposure. 

III. SPATIAL UNITS AND POPULATION OF STUDY AREA 
Our interactive graphics allow us to study characteristics 

of population and the CRESTA zones through zoom, pan 
and details on demand. 

Fig. 11 (left) shows the outlines of the CRESTA zones 
where circles represent settlements (>1000 population) with 
diameters proportional to population and an elevation model. 
Locations of earthquake epicentres are shown in Fig. 1 (top 
centre), coloured by magnitude. These graphics show that 
population and earthquake risk are located in similar areas. 

CRESTA zones vary in size greatly. The largest (zone 
19) covers about half of Venezuela (~460,000km2), but it has 
most of its population in one small part (Fig. 1, top right). In 
stark contrast, the six smallest zones – less than 80km2 in 
area (the smallest of which is ~10km2) – do not extend 
beyond the settlements on which they are centred. Examples 
can be seen around Caracas in Fig. 2. Some of the larger 
zones have non-contiguous parts on the mainland and the 
three zones of central Caracas are defined on the basis of 
geology – their names include the phrases “shallow 
sediment”, “deep sediment” and “bedrock”. 

IV. INTERACTIVE SELECTION OF MODEL INPUTS 
We used interactive bar charts (Hummel, 1996; Theus, 

2002) for both selecting model inputs and for displaying the 
estimated losses. The grey bars in Fig. 3 indicate the total 
estimated loss associated with the value and are sorted by 
loss. Fig. 3 (left) shows that the model using disaggregation 

                                                             
1  For colour: http://gicentre.org/papers/slingsby_visual_2010.pdf 

method A, estimates highest losses for masonry buildings, 
but that occupancy type and year-built have little effect. 
Losses by area (CRESTA zone) vary greatly. The red 
portions of the bars indicate how much of each loss is 
associated with the selected inputs – masonry in this case. 
Changing to spineplots (Fig. 3 centre) shows that this is 
about half the losses of each other inputs in this particular 
MSA result set, but that there is some variation around this; 
e.g. proportionally more for 8 storey buildings. Estimated 
losses for disaggregation method B are shown in Fig. 3 
(right; bars are similarly scaled). It shows that the only 
differences are between CRESTA zones – perhaps not 
surprising since differences are down to spatial 
disaggregation. Zone 1 drops from first to sixth place, 
incurring a mere fraction of the losses of method A. The loss 
distribution between zones is different for method B, with a 
large discrepancy between the top two zones and the others. 
This allows zone 10 to move from 7th place to 3rd even with 
though with a lower loss estimate in absolute terms. 

The question is whether these patterns are unique to 
masonry. The barchart in Fig. 4 (left) shows losses incurred 
from ‘unknown’ construction type, built in 1900 with 
‘unknown’ number of floors. Barcharts have been scaled to 
the maximum selected portion to allow values to be 
compared more easily. For ‘unknown’ construction, losses 
differ between different occupancy types – this was not the 
case for masonry buildings. Fig. 4 (right) indicates a 
different loss ratio in occupancy types for 8 storey buildings. 

Willis analysts typically manually sift through MSA 
results to find those that are most significant before studying 

 
Figure 1.  CRESTA zones in Venezuela with elevation model and settlements (left; settlements as circles with diameter to population), with events (centre; 60% 
random sample of earthquake epicentres coloured by magnitude with details-on-demand box) and with population density and settlements (right).  In all figures, 
population data from CIESIN (2004), elevation data from USGS (1996), CRESTA boundary data from GfK GeoMarketing and other data from the CAT model. 

 
Figure 2.  Zoomed-in detail for the area area Caracas. 



how this varies spatially using maps. Maps are used to 
illustrate how changes in a client’s portfolio might affect 
losses. Our interactive interface supports this workflow. 

The huge variation in CRESTA zone size makes the 
smallest zones difficult to resolve on conventional maps. 
Inset maps can address this, but many of the small zones are 
scattered around the country requiring multiple inset maps, 
In Fig. 4 (bottom) we use a Gastner cartogram (Gastner and 
Newman, 2004) to show each zone at a similar size. 
Although this results in huge geometrical distortions, enough 
spatial cues are retained to make zones recognizable whilst 
retaining spatial contiguity. 

V. OVERVIEW SUMMARIES USING TREEMAPS 
Although our interactive tool represents a more 

streamlined version of the current workflow, sifting through 
each input combination is laborious and time-consuming.   

We try to address this problem in Fig. 5 by showing all 
6080 combinations concurrently in a treemap, using 
consistent size, colour and order (Slingsby et al, 2009). Input 
variables organized into a hierarchy: location, construction 
type, occupancy, number of floors and year-built. Locations 
are spatially arranged (Wood and Dykes, 2008) and the 
others are arranged alphabetically by row (Benderson et al, 
2002). Colour (ColorBrewer Rd-Or; Brewer et al, 2003) 
indicates the loss associated with the combination of inputs.  

Findings from the barcharts are apparent in Fig. 5 (left): 
masonry incurs more loss than other construction types (but 
the degree is less easy to estimate with colour than length) 
and unknown and one storey buildings have similar losses 
that are higher than 4 and 8 storey losses. Method B is not 
shown due to space constraints, but it confirms that the main 

difference between the disaggregation methods is the 
distribution of losses between CRESTA zones. 

Fig. 5 (right) scales colour by the maximum for each 
CRESTA zone independently, allowing losses associated 
with each combination of inputs to be more effectively 
compared. The consistent ordering of elements provide 
recognizable visual signatures: 

• unknown and 1 storey masonry buildings incur 
higher losses than 4 and 8 storey buildings, with the 
exceptions of zones 15 and 19 (these are roughly 
equal) and zones 3, 8, 16, 18 (pattern is reversed); 

• year-built affects estimated loss for concrete 
buildings in zone 19; 

• losses incurred from 4 and 8 storey buildings differ 
markedly for buildings of unknown construction; 

• patterns for both disaggregation types are similar, 
but some of relative proportions differ and absolute 
values vary most between locations. 

Such observations inform the data exploration process 
allowing particular variable combinations to be selected, 
studied and presented, perhaps using more familiar graphics. 

Variables in the hierarchy can be reordered interactively, 
for example, moving year-built (currently difficult to 
resolve) to the base of the hierarchy. Such interactive 
reordering of the hierarchy emphasises different patterns and 
assists in data exploration (Slingsby et al, 2009). 

VI. CONCLUSIONS 
Interactive graphics are powerful means for spatial and 

aspatial model sensitivity analysis, where this involves 
analyzing multiple model runs with input perturbation.  

Spatial overlay for studying spatial relationships is well-
established GIS practice and multiple-linked statistical 
graphics are well-established information visualization 

 
Figure 3.  Barcharts of total loss (grey bars) incurred from exposure of 
each type and the portion of this (red colouring) contributed to by the 

selected characteristic (masonry in this case). Disaggregation method A 
(left and centre) is compared with disaggregation method B (right). 

Spineplots (centre) better show proportions than barcharts. 

 
Figure 4.  Studying the effects of different combinations of variables on 

estimated losses for disaggregation method A, with barcharts scaled to the 
maximum selected (left), conventional map of losses by CRESTA zone 

(top left) and Gastner cartogram of the same data in which zones are given 
approproximately the same area such that small zones can be resolved. 



techniques. These can be combined to produce spatial and 
aspatial interfaces to large datasets allowing model outputs 
for specific combination of inputs to be accessed quickly and 
conveniently in a way that is compatible with current 
workflows. 

Identifying which particular model input combinations 
out of the hundreds available is laborious and time 
consuming. Fixed-size consistently ordered treemaps provide 
overviews that allow such combinations to be identified. 

Interactive linking between these different graphical 
views of data allows them to be integrated into a workflow. 
We recommend offering alternative graphical reordering to 
assist in identifying significant model inputs, offering 
geometrical and colour rescaling to allow variation to be 
considered both globally and locally, offering alternative 
geographical projections of spatial data and using smooth 
transitions to relate these different data views. 
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Figure 5.  Treemaps showing estimated losses (colour) for all 6080 input combination (rectangles). Left: disagregation method A. Right as left, but with colour 

scaled to each CRESTA maximum for disaggregation method A (top) and B (bottom). 


