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The blocks of the q-Schur algebra
By ANTON COX

Mathematical Institute, 24–29 St. Giles’, Oxford, OX1 3LB, England.

In [10], Donkin determined the blocks of the classical Schur algebras in positive charac-

teristic from the blocks of the corresponding general linear group. We show in this paper

that an analogous result for the q-Schur algebras Sq(n, d) (when q is a primitive lth root of

unity) can be derived in the same way from the blocks of an appropriate quantum general

linear group.

There are a number of different quantisations of the general linear group. We shall

mainly consider that due to Dipper and Donkin, though the Manin quantisation will also

prove important. After some preliminary sections, the first main result is a proof of the strong

linkage principle for our quantum group. This follows the classical proof due to Andersen

[1], and is based on that for the Manin quantisation in [21]. For technical reasons, the proof

in [21] requires l to be odd, but we can remove this restriction for both quantisations.

Using the Strong Linkage Principle, we are then able to partially determine the blocks

of our quantum group. The rest of this paper then verifies that the argument of [10] holds

essentially unchanged for the quantum case. From this, it is then straightforward to complete

our determination of the blocks of the quantum group.

For d ≤ n, the blocks of the q-Schur algebra have already been determined by James and

Mathas in [18], while the blocks of the quantum group when n = 2 have also been calculated

in [3]. It should also be noted that in [24] Thams has already determined the blocks of the

quantum enveloping algebra (from which the blocks of our group could be derived) but under

the additional assumptions that q is a primitive lth root of unity with l odd and greater than

the Coxeter number for the group.

1 Two quantum general linear groups

In this section we introduce the two quantisations of the general linear group that we shall

need, and recall a result from [14] which will allow us to transfer results between them.

Our two quantisations are most easily introduced as certain special cases of a more general

construction due to Takeuchi [23], which we begin by describing.
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Henceforth we shall denote by k an algebraically closed field of characteristic p ≥ 0.

Following Parshall and Wang [21], we regard the category of quantum groups as the dual of

the category of k-Hopf algebras, and identify a quantum group’s module category with the

comodule category of the corresponding Hopf algebra.

Fix α, β ∈ k\{0}, and define Aα,β(n) to be the k-algebra generated by the n2 indetermi-

nates cij , with 1 ≤ i, j ≤ n, subject to the relations

cijcir = αcircij for j > r,
cjicri = βcricji for j > r,
cijcrs = α−1βcrscij for i > r and j < s,
cijcrs = (α−1 − β)ciscrj + crscij for i < r and j < s.

As noted in [23], there exist comultiplication and counit maps δ and ǫ respectively giving

Aα,β(n) the structure of a bialgebra. Further, after localising at a certain quantum deter-

minant, this can be given a Hopf algebra structure. We denote the corresponding quantum

group by Gα,β.

For fixed q ∈ k\{0}, the Dipper–Donkin quantisation [4] corresponds to the case α = 1

and β = q, while the Manin quantisation [20] corresponds to the case α = β = q. In

these cases we will denote Gα,β by q-GL(n, k) (or just G) and GLq(n, k) respectively. When

α = β = 1 we recover the classical coordinate algebra of GL(n, k), and in this case we shall

often write xij for the cij .

The main result relating these two quantisations is

Theorem 1.1 There is a coalgebra isomorphism between k[q2-GL(n, k)] and k[GLq(n, k)],

and hence the categories Mod(q2-GL(n, k)) and Mod(GLq(n, k)) are isomorphic.

Proof: See [14, Proposition 2.1 and Theorem 2.4].

As observed in [14, Remark 2.7], we should note that this is not necessarily an isomor-

phism of tensor categories.

Remark 1.2 We will often wish to use the last result to translate between the Dipper–

Donkin and Manin quantisations. When translating results across that depend on the value

of l, it should be noted that these results may change. In particular, if q is a primitive lth

root of unity with l even, then q2 is a primitive l/2th root of unity. Thus results that for

q-GL(n, k) depend on l will translate across to GLq(n, k) as results that depend either on l,

if l odd, or l/2 if l even.
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Finally in this section, we relate our quantum groups to the q-Schur algebra Sq(n, d) of

Dipper and James [5, 6], originally defined as the centralising algebra of a certain action

of the Hecke algebra Hq(d). Let Aα,β(n, d) be the subcoalgebra of Aα,β(n) consisting of

homogeneous polynomials of degree d in the generators cij . If αβ = q then the dual algebra

Aα,β(n, d)
∗ is isomorphic to Sq(n, d) (see [14, Theorem 5.5]).

2 Preliminaries

In this section we shall briefly review the representation theory developed for the Dipper–

Donkin quantisation in [12] and [11]. A similar theory is developed for the Manin quantisation

in [21]. When q is a root of unity we also consider certain related infinitesimal subgroups,

as in [12]. If further our field k has positive characteristic, we then generalise this procedure

to give a family of such infinitesimal subgroups.

Just as in the classical case, we can define certain subgroups of G corresponding to the

Borel subgroup of lower triangular matrices and the torus of diagonal matrices. We shall

denote these by B and T respectively. T is just the ordinary (classical) n-dimensional torus,

with character group X(T ) ∼= Z
n.

We make the usual choice of root system (see [19, II 1.21]), and denote the set of

roots (respectively positive roots) by Φ (respectively Φ+). The simple roots will be denoted

αi = ǫi − ǫi+1, with 1 ≤ i < n. We shall also need to consider the standard basis of X(T )

consisting of the fundamental dominant weights ̟i = ǫ1 + · · · + ǫi, and will occasionally

denote ̟n just by ̟. There is a Z-bilinear form 〈−,−〉 on X(T ) satisfying 〈ǫi, ǫj〉 = δij for

1 ≤ i, j ≤ n. We will also use the usual dominance partial order on X(T ).

The symmetric group Σn acts on X(T ), as an analogue of the classical Weyl group.

When considered thus, we shall denote Σn by W , and the element of Σn corresponding to

the transposition (i, i+ 1) by sαi
. As well as the usual action of W on the character group,

we also have the ‘dot’ action w.λ = w(λ + ρ) − ρ, where ρ = (n − 1, n − 2, . . . , 0). With

this we can define the affine Weyl group, Wl, associated to G. This is the transformation

group on X(T ) generated by w with the dot action, and the translations λ 7−→ λ + lα for

all α ∈ Φ. Occasionally we shall also need to consider ρ̄ which will equal half the sum of the

positive roots.

Given any quantum group H with subgroup K, and a K-module V , we shall denote the

H-module induced up from V by indH
K(V ). The ith right derived functor of induction will
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in such cases be denoted by RiindH
K(V ). To each element λ of X(T ) there corresponds a

one-dimensional B-module kλ of weight λ. We denote the module obtained by inducing this

up to G by ∇(λ) (or occasionally ∇n(λ)), and more generally for a B-module V we denote

RiindG
B(V ) by H i(V ). When considering both the classical and quantum case simultaneously,

we shall sometimes denote the classical induced module by ∇̄(λ).

The weights λ for which ∇(λ) is non-zero form the dominant weights X(T )+. Each ∇(λ)

with λ dominant has a simple socle L(λ), and these form a complete set of inequivalent simple

G-modules. The set of dominant polynomial weights of degree d in turn parameterises the

simple Sq(n, d)-modules, and will be denoted by Λ+(n, d). Given a module V , we denote the

composition multiplicity of L(λ) in V by [V : L(λ)].

The one-dimensional induced module ∇(̟) corresponds to the determinant representa-

tion, and will be denoted q-det (or detq for the Manin quantisation). For λ = (lpr−1 − 1)ρ,

we have L(λ) = ∇(λ), and we will denote this module by Str, the rth Steinberg module.

A G-module V is said to have a good filtration if there is a G-module filtration 0 = V0 ≤

V1 ≤ . . . with V = ∪i≥0Vi, such that each quotient Vi/Vi−1 is either 0 or isomorphic to ∇(λi)

for some dominant weight λi. The multiplicity of ∇(λ) in such a filtration is independent of

the choice of filtration, and we denote it by (V : ∇(λ)).

We shall denote the injective hull of L(λ) as a G-module, and as an Sq(n, d)-module,

by I(λ) and IS(λ) respectively. When determining the blocks of both G and Sq(n, d), the

following result from [11, Section 4(6)] will prove useful.

Proposition 2.1 For λ ∈ X(T )+ (respectively Λ+(n, d)), the module I(λ) (respectively

IS(λ)) has a good filtration with multiplicities given by

(I(λ) : ∇(µ)) = [∇(µ) : L(λ)]

for µ ∈ X(T )+ (respectively Λ+(n, d)). Thus two elements λ, µ ∈ X(T )+ belong to the same

block of G (respectively Sq(n, d)) if, and only if, there exists a chain λ = 1λ, . . . , tλ = µ

of elements of X(T )+ (respectively Λ+(n, d)) such that for each 1 ≤ i < t we have either

[∇(iλ) : L(i+1λ)] 6= 0 or [∇(i+1λ) : L(iλ)] 6= 0.

Proof: This follows just as in the classical case (see [8, Theorem 2.6]).
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3 Infinitesimal subgroups of q-GL(n, k)

In this section we shall consider certain infinitesimal subgroups of our quantum group. A

quantum analogue of the first Frobenius kernel is defined in [12, Section 3.1], and also of the

corresponding Jantzen subgroup. When the field k has positive characteristic, this definition

can be generalised to give the higher kernels, as outlined in this section.

Throughout this section we take q to be a primitive lth root of unity, and when consider-

ing the higher kernels further require that the characteristic p of our field is strictly positive.

Note that for this to be possible, we must have (l, p) = 1. By [14, (3.1) Theorem, taking

α = 1 and β = q] we have that there exists a Hopf algebra homomorphism

F̂ : k[GL(n, k)] −→ k[q-GL(n, k)]

taking xij to clij. Thus we define the Frobenius morphism F : q-GL(n, k) −→ GL(n, k) to

be the morphism of quantum groups with associated comorphism F̂ . If p > 0, then we also

have the usual Frobenius map F on GL(n, k) associated to the comorphism taking xij to xp
ij ,

and so we may consider the composition of these maps. Henceforth we will abuse notation

and write F r for Fr−1F .

Following [11], we say that a quantum group H̄ is a factor group of a quantum group

H if k[H̄ ] is a subHopf algebra of k[H ]. Given a factor group H̄ of H whose coordinate

algebra is central in k[H ], we obtain a subgroup H1 of H whose defining ideal is given by

IH1
= k[H ].(ker(ǫH) ∩ k[H̄ ]).

Consider the subHopf algebra of k[G] generated by the elements clp
r−1

ij for 1 ≤ i, j ≤ n,

and d−lpr−1

q (where if r > 1 we assume that p > 0). This is isomorphic to k[GL(n, k)] via

F r. The corresponding factor group will be denoted Ḡr, or just Ḡ in the case r = 1. Then

by the previous paragraph, there is a subgroup of G with defining ideal generated by the

elements clp
r−1

ij − δij for 1 ≤ i, j ≤ n, and d−lpr−1

q − 1. This subgroup will be denoted Gr,

and called the rth Frobenius kernel. We can also define infinitesimal analogues of B and T ;

respectively Br = B
⋂

Gr, and Tr = T
⋂

Gr.

Finally, we introduce quantum analogues of the Jantzen subgroups, which can be regarded

as infinitesimal thickenings of the Frobenius kernels by the torus. Consider the ideal of k[G]

generated by the elements clp
r−1

ij for 1 ≤ i 6= j ≤ n. (Again, if r > 1 then we assume that

p > 0.) This is clearly a biideal, and by the isomorphism of Ḡr with GL(n, k) above, along

with the description of the antipode in [4, Lemmas 4.2.20 and 4.2.12], it is easy to verify
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that it is in fact a Hopf ideal. We denote the subgroup of G with this as defining ideal by

GrT , and the corresponding intersection with B by BrT . Similarly one can show that the

ideal generated by the elements clp
r−1

ij for 1 ≤ i < j ≤ n is a Hopf ideal of k[G]; we denote

the subgroup corresponding to this by GrB.

The basic representation theory of these infinitesimal subgroups has been developed in

[12, Sections 3.1 and 3.2]. Unfortunately, [12] only considers the case r = 1; however the

arguments given there all still hold, mutatis mutandis, in the general case. For most of our

purposes the r = 1 theory will suffice, but we shall also require the following two more

general results.

We define the set of lpr−1-restricted weights

Xr(T ) = {λ ∈ X(T ) | 0 ≤ λi − λi+1 ≤ lpr−1 − 1 for 1 ≤ i ≤ n},

where we set λn+1 = 0 (with our usual requirement for p if r > 1). Then we have

Lemma 3.1 For λ ∈ Xr(T ), the simple module L(λ) remains simple on restriction to Gr.

Proof: This follows as in [12, 3.2(3)].

We shall also need

Lemma 3.2 Let V , Z ∈ mod G be such that resGr
V is absolutely indecomposable, Gr acts

trivially on Z, and Z is absolutely indecomposable as a Ḡr-module. Then V ⊗ Z is an

absolutely indecomposable G-module.

Proof: This follows by the same arguments as in [12, 3.3(5)] (or [7, Section 2, Lemma] in

the classical case).

Finally, we consider induction in the infinitesimal case. By arguing as in [21, (9.6.1–2)]

we see that for r = 1 or p > 0 we have

Lemma 3.3 The induction functor indGrB
B is exact.

For λ ∈ X(T ) define Ẑr(λ) = indGrT
BrT

(kλ), and Z̃r(λ) = indGrB
B (kλ), where as usual if

r > 1 we assume that p > 0. The basic properties of Ẑ(λ) have been developed in [12]

(at least for r = 1), but similar arguments also hold for Z̃r(λ). In particular, we have the

following result as in [21, (9.6.5)] (compare with [12, 3.1(21–2)]).
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Theorem 3.4 For any λ ∈ X(T ), we have:

i) Z̃r(λ+ lpr−1µ) ∼= Z̃r(λ)⊗ klpr−1µ;

ii) Z̃r(λ)
∗ ∼= Z̃r(2(lp

r−1 − 1)ρ̄− λ);

iii) Z̃r(λ) has an irreducible head, isomorphic to L̃r(2(lp
r−1 − 1)ρ̄− λ);

iv) resGrT Z̃r(λ) ∼= Ẑ(λ),

where L̃r(λ) is the simple GrB-module of highest weight λ, and r > 1 or p > 0.

Finally, we should remark that in the case where q is a primitive odd root of unity, a

similar infinitesimal theory can also be developed for the Manin quantisation. In the case

r = 1, this has been studied in [21].

4 The strong linkage principle

In this section we will prove the strong linkage principle for q-GL(n, k), when q is a root of

unity. This is proved for the Manin quantisation (for q a primitive lth root of unity with l

odd) in [21, (10.3.5)] and hence, by the isomorphism of module categories in (1.1), for our

chosen quantisation (for odd l). However we will show that the restriction on l is unnecessary

in both cases.

Before we can state the main result of this section, we begin with a pair of technical

lemmas that will be needed later. We recall from [11, Section 2] that to any composition a

of n, we can associate a corresponding parabolic subgroup P (a). We consider those a of the

form (1, . . . , 1, 2, 1, . . . , 1), where the 2 lies in the jth position, and denote the corresponding

parabolic just by Pj. For a simple B-module kλ, we will write H i
j(λ) for R

iind
Pj

B (kλ). Then

we have

Lemma 4.1 Let λ =
∑n

i=1 ti̟i ∈ X(T ) with tj > 0 for some j < n. Then there exist the

following short exact sequences of B-modules:

i) 0 −→ Kλ
j −→ H0

j (λ) −→ kλ −→ 0;

ii) 0 −→ sαj
(λ) −→ Kλ

j −→ V λ
j −→ 0;

iii) 0 −→ Cλ
j −→ V λ

j −→ F λ
j −→ 0;

iv) 0 −→ F λ
j −→ H0

j (λ− α) −→ Dλ
j −→ 0.

Moreover, the set of weights of both Cλ
j and Dλ

j is {sαj
(λ) + tlαj : 0 < t < tj/l}.
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Proof: This corresponds to [21, (10.2.1)], and as the proof given there is valid for all l, the

isomorphism in (1.1) gives the result for our quantisation. Alternatively, the argument given

can be rederived directly for our quantisation using the explicit description of the B-module

structure of the symmetric powers given in [25].

Corollary 4.2 If λ =
∑n

i=1 ti̟i ∈ X(T ) with tj ≥ 0 for some j < n, then there exist two

long exact sequences:

i) · · · → Hr(sαj
.λ) → Hr−1(λ) → Hr(V λ+ρ

j (−ρ)) → Hr+1(sαj
.λ) → · · ·;

ii) · · ·→Hr(Cλ+ρ
j (−ρ))→Hr(V λ+ρ

j (−ρ))→Hr−1(Dλ+ρ
j (−ρ))→Hr+1(Cλ+ρ

j (−ρ))→· · ·,

where for a B-module X we write X(−ρ) for X ⊗ k−ρ.

Proof: With the preceding lemma, and [11, Lemma 3.2], we obtain this just as in [21,

(10.2.2)].

Just as in [21], we define a strong linkage relation on X(T ) with respect to the dot action

of the affine Weyl group. In particular, a weight λ is strongly linked to µ, written λ ↑ µ,

if λ = µ or there exists a finite sequence of weights µ = 0µ, 1µ, . . . , tµ = λ such that for

i = 0, . . . , t− 1,

i+1µ = sαi
.iµ+milαi

for αi a positive root and mi a non-negative integer with 〈iµ+ ρ, αi〉 ≥ mil. The main result

in this section is

Theorem 4.3 (The strong linkage principle) Let λ ∈ X(T )+ and µ ∈ X(T ) with µ +

ρ ∈ X(T )+. If L(λ) is a composition factor of Hr(w.µ) for some w ∈ W and r ∈ N then

λ ↑ µ.

Proof: As noted in [21], the result follows just as in [1] provided certain preliminary results

hold. We merely verify that each of these results holds just as for the Manin quantisation.

Given the previous two lemmas, the result will follow from Serre duality, and the Borel–

Weil–Bott theorem for small dominant weights. So we will be done if we can prove the two

theorems below.

A dominant weight λ is called small if either λ =
∑n

i=1 ri̟i with
∑n−1

i=1 ri ≤ l+1−n, or

λ is a minimal dominant weight. We have the following result (compare with [11, Theorem

3.9]).
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Theorem 4.4 (Borel–Weil–Bott) Let λ ∈ X(T ) be a small dominant weight. Then

Hr(w.λ) =

{

∇(λ) if r = l(w),
0 otherwise,

where l is the usual length function on W .

Proof: As we have the Grothendieck vanishing theorem (see [11, Proposition 3.10]), this

follows just as in [21, (10.2.3)], noting that the other results used there have already been

verified above.

So it remains to prove that Serre duality holds, which shall take the rest of this section.

We first give an alternative description of induction for quantum groups.

Given K a subgroup of a quantum group H , and V a K-module, we define a map

Θ : V ⊗ k[H ] −→ V ⊗ k[K]⊗ k[H ]

as follows. We will use the convention that we suppress certain summations, indicated

by primes, in a similar manner to Sweedler’s notation (see [22]). Thus we shall write the

structure map τ of V as v 7−→ v′ ⊗ g′′, and comultiplication δ in k[H ] by f 7−→ f ′ ⊗ f ′′.

Denoting the antipode in k[K] by σ, and the image of f ∈ k[H ] in k[K] by f̄ , we define Θ on

elements of the form v⊗f by v⊗f 7−→ v′⊗g′′σ(f̄ ′)⊗f ′′, and extend by linearity. We define

the fixed points under this map to be those elements
∑

i vi ⊗ fi satisfying Θ(
∑

i vi ⊗ fi) =
∑

i vi ⊗ 1⊗ fi, and denote the set of these by (V ⊗ k[H ])K . Then we have

Proposition 4.5 Given H, K and V as above, we have

indH
K(V ) = (V ⊗ k[H ])K .

Proof: We first show indH
K(V ) ⊆ (V ⊗ k[H ])K . Consider

∑

i vi ⊗ fi ∈ indH
K(V ). Now

Θ
(

∑

i

vi ⊗ fi

)

= (id⊗m⊗ id)(id⊗ id⊗ σ ⊗ id)(id⊗ id⊗ δ̄)
(

∑

i

v′i ⊗ g′′i ⊗ fi

)

,

where δ̄ = (̄ ⊗ id)δ and m is the usual multiplication map. By the definition of induction

(see [11, Section 1]) we have

∑

i

v′i ⊗ g′′i ⊗ fi =
∑

i

vi ⊗ f̄ ′
i ⊗ f ′′

i ,
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and so by applying our alternative description of Θ to this we obtain

Θ
(

∑

i

vi ⊗ fi

)

=
∑

i

vi ⊗ f̄ ′
iσ(f̄

′′
i )⊗ f ′′′

i .

As δ(f̄) = δ(f), we have by the relations for a Hopf algebra that this equals
∑

i vi ⊗ 1 ⊗ fi

as required. Next we consider the reverse inclusion. As

(id⊗m⊗ δ̄)
(

∑

i

vi ⊗ 1⊗ fi

)

=
∑

i

vi ⊗ f̄ ′
i ⊗ f ′′

i ,

we have by our alternative description of Θ above that it is enough to show that

(id⊗m⊗ δ̄)(id⊗m⊗ id)(id⊗ id⊗ σ ⊗ id)(id⊗ id⊗ δ̄) = id.

So consider the left-hand side acting on some element v ⊗ a⊗ b. The image of this is

v ⊗ aσ(b̄′)b̄′′ ⊗ b′′′ = v ⊗ a⊗ b

as required, and the result now follows.

With this last result we can now prove

Lemma 4.6 For all i ≥ 0, r ≥ 1 (with p > 0 if r > 1), B(n, k)-modules M and G-modules

V , we have

Ri indG
GrB

(V ⊗MF r

) ∼= V ⊗ (Ri ind
GL(n,k)
B(n,k) M)F

r

.

Proof: By the generalised tensor identity [11, Proposition 1.3(ii)], it is enough to show that

Ri indG
GrB

(MF r

) ∼= (Ri ind
GL(n,k)
B(n,k) M)F

r

.

We first consider the case i = 0. Let us denote GrB by H . Now Gr is a subgroup of H , and

we shall denote the corresponding factor group by H̄r. Then by the last proposition we have

indG
H(M

F r

) ∼= (MF r

⊗ k[G])H

∼= ((MF r

⊗ k[G])Gr)H̄
r

∼= (MF r

⊗ k[Ḡr])H̄
r

∼= indḠr

H̄rMF r

,

using for the two intermediate steps [11, Proposition 1.5]. Now we have H̄r ∼= B(n, k) and

Ḡr ∼= GL(n, k), both via F r. Hence indG
H(M

F r

) ∼= (ind
GL(n,k)
B(n,k) M)F

r

as required.
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The argument for the general case now proceeds much as in [19, I 6.11]. We replace

appeals to [19, I 4.5(c)] by [11, Proposition 1.2], and note that induction is exact where

required by arguments as in [21, Sections 7.3–4].

We define N =
(

n

2

)

. By (4.4), we have that HN(−2ρ̄) ∼= k, and so by [21, (10.3.1)] we

obtain for every finite dimensional B-module V a pairing

HN−i(−2ρ̄⊗ V ∗)⊗H i(V ) −→ HN(−2ρ̄) ∼= k

of rational G-modules. With this we can now prove

Theorem 4.7 (Serre duality) For any finite dimensional rational B-module V ,

HN−r(−2ρ̄⊗ V ∗) ∼= (Hr(V ))∗.

Proof: Using (3.3) and (3.4), we obtain [21, (10.3.3)] by the arguments given there. Then,

as we have the generalised tensor identities (see [11, Proposition 1.3(ii)]), the proof now

follows as in [21, (10.3.4)].

This concludes the proof of the strong linkage principle. Note that, via our usual iso-

morphism (1.1) this also gives the result for the Manin quantisation without restriction on

l (with the appropriate modifications — see (1.2)).

5 The blocks of the q-Schur algebra

The main result in this section is a determination of the block structure of the q-Schur

algebra, and hence of q-GL(n, k). If q is not a root of unity then the q-Schur algebra is semi-

simple by [12, 4.3(7)(i)], so henceforth we assume that q is a primitive lth root of unity. We

first consider the blocks of G, using an easy argument based on the strong linkage principle

and the following lemma.

Lemma 5.1 For any dominant weight λ and r ≥ 1 (with p > 0 if r 6= 1),

Str ⊗ ∇̄(λ)F
r ∼= ∇((lpr−1 − 1)ρ+ lpr−1λ). (1)

Proof: Set λ′ = (lpr−1 − 1)ρ+ lpr−1λ. As both sides of (1) have the same character, by the

universal property of ∇’s it is enough to show that

soc(Str ⊗ ∇̄(λ)F
r

) ∼= L(λ′).
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For 0 ≤ α < lpr−1, consider

HomG(L(α)⊗ L̄(β)F
r

, Str ⊗ ∇̄(λ)F
r

) ∼= HomGr
(L(α)⊗ L̄(β)F

r

, Str ⊗ ∇̄(λ)F
r

)Ḡ
r

.

As L̄(β)F
r

and ∇̄(λ)F
r

are both trivial as Gr-modules, the terms in the right-hand side are

isomorphic to direct sums of L(α)’s and Str’s. But Str and L(α) are simple as Gr-modules

by (3.1), so for a non-zero homomorphism to exist we must have L(α) ∼= Str.

By Schur’s lemma, HomGr
(Str, Str) = k, and we have an injection

Homk(L̄(β)
F r

, ∇̄(λ)F
r

) −→ HomGr
(Str ⊗ L̄(β)F

r

, Str ⊗ ∇̄(λ)F
r

),

taking θ to 1⊗ θ. By dimensions this is an isomorphism. Hence

HomG(Str ⊗ L̄(β)F
r

, Str ⊗ ∇̄(λ)F
r

) ∼= Homk(L̄(β)
F r

, ∇̄(λ)F
r

)Ḡ
r

∼= HomḠr(L̄(β)F
r

, ∇̄(λ)F
r

)
∼= HomGLn

(L̄(β), ∇̄(λ))

∼=

{

k if β = λ,
0 otherwise.

Hence soc(Str ⊗ ∇̄(λ)F
r

) consists of copies of Str ⊗ L̄(λ) ∼= L(λ′). But dim ∇̄(λ)λ = 1 and

all other weights are less than λ, so only one such copy can occur, which gives the result.

Consider λ ∈ X(T ), not equal to −ρ. If p > 0 then we define m(λ) to be the least

positive integer such that there exists an α ∈ Φ+ with 〈λ + ρ, α〉 /∈ lpm(λ)
Z. If p = 0 then

we define m(λ) to be 0 if there exists an α ∈ Φ+ with 〈λ+ ρ, α〉 /∈ lZ and 1 otherwise. Our

first partial result on the blocks of G is

Proposition 5.2 If λ ∈ X(T )+, then (W.λ + lpm(λ)
ZΦ) ∩ X(T )+ is a union of blocks for

G. If further p = 0 and m(λ) = 1 then λ is the unique element in its block.

Proof: First consider the case m(λ) = 0. It is enough to check that if τ , ν are dominant,

with τ ∈ W.λ + lZΦ and L(ν) a composition factor of ∇(λ), then ν ∈ W.λ + lZΦ. But this

is an easy consequence of the strong linkage principle (4.3).

Now suppose that λ is any dominant weight, with m(λ) = m > 0. Again, it is enough

to show that if τ , ν are dominant, with τ ∈ W.λ + lpmZΦ and L(ν) a composition factor of

∇(τ) then ν ∈ W.λ + lpmZΦ, or if p = 0 that ν = τ . We first note that we have

τ = (lpm−1 − 1)ρ+ a̟ + lpm−1τ ′,

12



with τ ′ ∈ X+ and 0 ≤ a < lpm−1 (c.f. the definition of normal form in [10, Section 1]). So

by the preceding lemma, ∇(τ − a̟) ∼= Stm ⊗ ∇̄(τ ′)F
m

, and hence ∇(τ) ∼= (q-det)a ⊗ Stm ⊗

∇̄(τ ′)F
m

(as both sides have a simple socle and the same character). It is easy to see, by

Steinberg’s Tensor Product Theorem, that any composition factor of this module is of the

form L(ν) ∼= (q-det)a ⊗ Stm ⊗ L̄(ν ′)F
m

, and (decomposing λ in the same way as for τ) that

τ ′ ∈ W.λ′ + pZΦ. So it is enough to show that ν ′ ∈ W.λ′ + pZΦ, or if p = 0 that ν ′=λ′. But

this follows for p > 0 from the Strong Linkage Principle for GL(n, k) [1, Theorem 1], and for

p = 0 from the semisimplicity of Mod(GL(n, k)).

We will show later that the sets described in the theorem above are in fact precisely

the blocks of G. This will follow from the following description of the blocks of the q-Schur

algebra, which most of the rest of this section is taken up with proving.

Theorem 5.3 For any λ ∈ Λ+(n, d), the Sq(n, d)-block containing λ is

(W.λ + lpm(λ)
ZΦ) ∩ Λ+(n, d) if p > 0 or m(λ) = 0,
{λ} otherwise.

In what follows, it will be convenient to call a weight λ primitive if m(λ) = 0. By the

last result, it makes sense to define a primitive block as one consisting of primitive elements.

We first deal with the non-primitive blocks, as for these the result can be easily deduced

from the classical case.

Proposition 5.4 For d ≥ 0, m ≥ 0 (with p > 0 if m 6= 0), 0 ≤ a < lpm and B a block of

S(n, d), the set

B† = {(lpm − 1)ρ+ a̟ + lpmµ : µ ∈ B}

is a block of Sq(n, e), where e = (lpm − 1)|ρ|+ na + lpmd.

Proof: Define Φ : mod GL(n, k) −→ mod G by

Φ(V̄ ) = (q-det)a ⊗ Stm+1 ⊗ V̄ Fm+1

,
Φ(θ) = 1⊗ 1⊗ θ.

Now (q-det)a ⊗ Stm+1
∼= ∇(σ) where σ = (lpm − 1)ρ+ a̟, as both sides have a simple socle

and the same character. The result now follows just as in [10, Section 4, Theorem], noting

that if V̄ is indecomposable then so is ∇(σ)⊗ V̄ Fm+1

by (3.2).
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With the above proposition, the main theorem now follows for λ non-primitive from the

description of the blocks for S(n, d) given in [10, Section 4, Corollary] if p > 0, and from the

semisimplicity of Mod(S(n, d)) otherwise.

So it remains to prove the theorem when λ is a primitive weight. Recall that to each

partition λ we can associate a corresponding l-core, whose Young diagram is obtained from

that of λ by removing skew l-hooks. We shall call a subset of Λ+(n, d) a core class if it

consists of all elements of Λ+(n, d) with some fixed l-core. We note that the remarks in [10,

page 405] concerning p-cores all hold when p is replaced by l, and so (given our partial result

on the blocks of G) we have the following result.

Lemma 5.5 For primitive dominant weights λ =(λ1, . . . , λn) and µ =(µ1, . . . , µn), if λ and

µ belong to the same G-block then there exists a π ∈ Σn such that

λi − i ≡ µπ(i) − π(i) (mod l)

for all 1 ≤ i ≤ n. Further, for any λ, µ ∈ Λ+(n, d) there exists such a π ∈ Σn if, and only

if, λ and µ have the same l-core.

Remark 5.6 When d ≤ n the blocks of the q-Schur algebra have already been determined

by James and Mathas [18, Theorem 4.24]. To see that our main result is consistent with

this, note that in this case all of the elements λ ∈ Λ+(n, d) are primitive. Hence (5.3) and

the last lemma give that λ and µ lie in the same block for Sq(n, d) if, and only if, they have

the same l-core.

The remainder of this section is essentially devoted to verifying that the proof given in

the classical case for primitive blocks in [10, Section 3, Theorem] holds (with the obvious

modifications) in this setting. Examination of the proof given there gives that this will be

the case provided [10, Section 3 (1–6), Section 1 (5,8) and Section 2 (3, Proposition)] all

hold.

To a partition λ we can associate a hook tableau hij(λ), which is the λ-tableau whose

(i, j)th entry is the hook length λi + λ′
j − i− j + 1. Here λ′ is the conjugate partition to λ.

Further, given two partitions λ ∈ Λ+(n, d) and µ ∈ Λ+(m, e) with λn ≥ µ1, we shall write

(λ|µ) for the partition in Λ+(n+m, d+ e) obtained by concatenation.

An element λ ∈ Λ+(n, d) is called row l-regular if there does not exist an i with 0 ≤

i ≤ n − l such that λi+1 = λi+2 = · · · = λi+l > 0. The set of row l-regular elements in
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Λ+(n, d) is denoted Λ+(n, d)row. We will also need to consider the Schur functor f = fn,d :

mod Sq(n, d) −→ mod Hq(d), defined when d ≤ n. This is analogous to the usual Schur

functor defined in [15, Chapter 6], and its basic properties are outlined in [12, Section 2.1].

The six results in Section 3, and Section 2(3), are all straightforward, and summarised

in the following proposition.

Proposition 5.7 i) (Carter’s Criterion) Let λ ∈ Λ+(n, d) with d ≤ n. Then λ is row l-

regular and f∇(λ) is irreducible if, and only if, the l-adic valuation νl : Z −→ N is constant

on the columns of the hook tableau (hij(λ)).

ii) A partition λ is an l-core if, and only if, every entry of the hook tableau is not divisible

by l.

iii) Every core class in Λ+(n, d) is a union of Sq(n, d)-blocks, and if λ ∈ Λ+(n, d) is

primitive then its core class consists of primitive elements.

iv) Elements λ and µ of Λ+(n, d) belong to the same core class if, and only if, λ+̟ and

µ+̟ belong to the same core class in Λ+(n, d+ n)

v) If λ, µ ∈ Λ+(n, d) are in the same Sq(n, d)-block, then λ +̟, µ +̟ ∈ Λ+(n, d + n)

are in the same Sq(n, d+ n)-block

vi) Suppose that (λ|µ) ∈ Λ+(n +m, d+ e), with µ being the unique maximal element in

its Sq(m, e)-block and τ ∈ Λ+(m, e) belonging to the same block as µ. Then (λ|τ) is in the

same Sq(n+m, d+ e)-block as (λ|µ).

vii) If λ, µ ∈ Λ+(n, d) belong to the same block of Sq(n, d), then they belong to the same

block of Sq(m, d) for all m ≥ n.

Proof: A quantum Carter’s criterion is proved in [18, 4.15] for q-Specht modules, and hence

by the identification of these in [12, 4.5h] with the f∇(λ)’s we obtain (i). For (ii) the

classical criterion for λ to be a p-core in [10] can be seen from [17, 2.7.40] not to require p

prime (provided we replace “coprime to p” by “not divisible by p”). The result on core classes

(iii) follows directly from the previous lemma and proposition, while (iv) is immediate. Both

(v) and (vi) — consequences of James’ results on row and column removal and decomposition

numbers — hold with the same proofs as given, but replacing references to [9, Theorems 1

and 2] by [12, 4.2(9) and 4.2(15)] respectively. Finally, the last part is clear from [12, 4.2(6)]

The next result is an analogue of [10, Section 1(5)].
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Proposition 5.8 Let λ ∈ X(T )+. Suppose that λ is primitive and ∇(λ) is irreducible. Then

we have 〈λ, α〉 < l for all α ∈ Π.

Proof: Consider the Manin quantisation. Now Steinberg’s tensor product theorem holds for

l odd by [21, (9.4.1)], and for l even by [2, Theorem, and concluding remarks] (but replacing

l in this case by l/2 as remarked in (1.2)). Hence it also holds for SLq(n, k). Now [16,

Section 2.5 Theorem] clearly holds with l or l/2 replacing p, and hence we have [16, Section

2.5 Corollary], possibly with l modified. The result now follows just as in [10] (possibly

with modified l). Again, tensoring with detq will not affect reducibility, giving the result for

GLq(n, k). The usual category isomorphism (1.1) now gives the result for our quantisation,

and corrects any modifications to l introduced during the Manin stage.

To start the induction off in the proof of the main theorem, we need to check some small

cases. It will be convenient for this to define, as in [19, II 5.7], an Euler characteristic for

any given finite dimensional B-module M by

χ(M) :=
∑

i≥0

(−1)ichH i(M).

As usual, we write χ(λ) for χ(kλ), and then Kempf’s vanishing theorem [11, Theorem 3.4]

gives

χ(λ) = ch∇(λ) for all λ ∈ X(T )+,

so our notation agrees with that in [11]. Just as in the classical case we have

Lemma 5.9 i) The characters chL(λ) with λ ∈ X(T )+ form a basis of Z[X ]W .

ii) For all λ ∈ X and
∑

µ a(µ)e(µ) ∈ Z[X ]W ,

χ(λ)
∑

µ

a(µ)e(µ) =
∑

µ

a(µ)χ(λ+ µ).

iii) For all w ∈ W and λ ∈ X we have χ(w.λ) = (sgn w)χ(λ).

Proof: The first two parts follow just as in [19, II 5.8 Lemma], using [11, Theorem 2.10 and

Lemma 3.1], while the last part follows just as in [19, II 5.9] from [11, Lemmas 2.12 and 3.1].

We are now able to check the necessary small cases, corresponding to those in [10, Section

1(8)].
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Proposition 5.10 Let n = 1,2 or 3, and λ ∈ X(T )+ be primitive. Then

i) the module ∇(λ) is irreducible if, and only if, λ is minimal in its block;

ii) each primitive G-block contains a unique minimal element.

Proof: The case n = 1 is clear, while the n = 2 case follows from [3, Theorem 2.1 and

Corollary 2.2]. Consider λ = (λ1, λ2, λ3) primitive. Without loss of generality we may assume

that λ3 = 0 (as tensoring up with an appropriate power of q-det will give the general case in

what follows). By (5.8), if λ is primitive and ∇(λ) is irreducible then 0 ≤ λ1−λ2, λ2 ≤ l− 1

and (λ1−λ2, λ2) 6= (l−1, l−1). Suppose (λ1−λ2)+λ2 > l, and λ1−λ2, λ2 < l−1 (this cannot

arise when l = 2). Then λ1−λ2 = l−1−a and λ2 = l−1− b with a, b > 0 and a+ b < l−2.

Consider ∇(l− 2− b, l− 1− a− b, 0). This is minimal in its block, and hence simple, so by

Steinberg’s Tensor Product Theorem we see that ∇̄(1, 0, 0)F ⊗∇(l − 2 − b, l − 1− a− b, 0)

is also simple, isomorphic to L(τ) for some τ .

Now, using the previous proposition, we have

chL(τ) = (e(l, 0, 0) + e(0, l, 0) + e(0, 0, l))χ(l− 2− b, l − 1− a− b, 0)
= χ(τ) + χ(l − 2− b, 2l − 1− a− b, 0) + χ(l − 2− b, l − 1− a− b, l)
= χ(τ)− χ(2l − 2− a− b, l − 1− b, 0) + χ(l − 2, l − 1− b, l − a− b).

After rearranging, and noting that the central term on the right is just ch∇(λ1, λ2, λ3), we

see that

ch∇(τ) = chL(τ) + ch∇(λ)− ch∇(l − 2, l − 1− b, l − a− b),

which implies that ∇(λ) is not simple. After tensoring with q-det we see that the primitive

weights λ with ∇(λ) simple are a subset of

{(λ1, λ2, λ3) ∈ X(T )+ : 0 ≤ λ1 − λ3 ≤ l − 2}
∪{(l − 1 + a+ λ3, a+ λ3, λ3), (l − 1 + a+ λ3, l − 1 + λ3, λ3) : 0 ≤ a ≤ l − 2}.

But all these elements are minimal in their corresponding blocks, and as any minimal element

must be simple this gives the result.

As this last result corresponds to [10, Section 2(3)], it just remains to check the following

proposition (corresponding to that in [10, Section 2]), and most of the rest of this section

will be devoted to this. For the rest of this section we assume that d ≤ n.

Proposition 5.11 Let λ ∈ Λ+(n, d) be such that [∇(λ) : L(µ)] = 0 for all µ ∈ Λ+(n, d) with

µ > λ. Then
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i) for all N ≥ n, the Sq(N, d)-module ∇N(λ) is injective;

ii) λ is row l-regular;

iii) for N ≥ n, the kΣN -module fN,d∇N(λ) is irreducible.

We say that λ ∈ Λ+(n, d) is column l-regular if λi − λi+1 < l for all 1 ≤ i ≤ n, and

denote the set of these by Λ+(n, d)col. With this notation we have the following result from

[12, 4.4(4)(ii)].

Lemma 5.12 Suppose that d ≤ n. Then {fL(λ) : λ ∈ Λ+(n, d)col} is a complete set of

inequivalent irreducible Hq(d)-modules.

As noted in [12, 4.3(10)(ii)], there is a bijection i : Λ+(n, d)row −→ Λ+(n, d)col such that,

for λ ∈ Λ+(n, d)row, we have IS(λ) ∼= T (i(λ)), the indecomposable tilting module of highest

weight i(λ). Hence we obtain

Lemma 5.13 Suppose d ≤ n and λ ∈ Λ+(n, d)row. Then i(λ) is the unique highest element

in the set D(λ) = {µ ∈ Λ+(n, d) : [∇(µ) : L(λ)] 6= 0}, and further [∇(i(λ)) : L(λ)] = 1.

We also have a notion of contravariant duality (see [12, Remarks before 4.1d]), and we

shall denote the contravariant dual of a module V by V 0. This, combined with the results

above, allows us to prove the following analogue of [10, 2(5)].

Lemma 5.14 Suppose d ≤ n, and let f = fn,d. Then we have:

i) E⊗d ∼=
⊕

λ∈Λ+(n,d)row
IS(λ)

d(λ), where d(λ) = dim fL(λ);

ii) IS(λ)
0 ∼= IS(λ) for λ ∈ Λ+(n, d)row, and IS(λ) has unique highest weight i(λ);

iii) (E⊗d : ∇(µ)) = dim f∇(µ).

Proof: We have that E⊗d is injective by [12, 2.1(8)], and the rest of part (i) follows just

as in the classical case, using [12, 4.3(9)] instead of [15, (6.4b)]. Part (ii) follows from the

arguments above and [12, 4.3(10)(i)]. Finally part (iii) follows much as in the original case,

but replacing reduction to characteristic zero by reduction to the case q a non-root of unity,

and then using that the corresponding q-Schur algebra is semi-simple (see [12, 4.3(7)(i)]).

We are now almost in a position to prove (5.11). The one outstanding fact needed is an

analogue of [15, (6.4c) Theorem] giving a basis of f∇(λ). But, using the identification given
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in [12, 4.5h] of f∇(λ) with the Specht module of Dipper and James, this follows from [6,

8.1], as noted in [13, Remark after Theorem 1.5]. Now (5.11) follows just as in [10], which

then gives the main result.

Finally in this section, we use (5.3) to determine precisely the blocks of G.

Theorem 5.15 For λ ∈ X(T )+, the G-block containing λ is

(W.λ + lpm(λ)
ZΦ) ∩X(T )+ if p > 0 or m(λ) = 0

{λ} otherwise.

Proof: Clearly, by (5.2), it is enough to show that any two elements of the above set are in the

same block. So assume that p > 0 orm(λ) = 0, and that τ , µ ∈ (W.λ+lpm(λ)
ZΦ)∩X(T )+. If

these lie in Λ+(n, d) for some d then we are done, as they are then in the same Sq(n, d) block,

and the result follows from [11, 4(5)]. Otherwise there exists an e such that τ ′ = τ + e̟

and µ′ = µ + e̟ lie in Λ+(n, d) for some d. As these then lie in the same block of G by

the above argument, there exists a sequence of weights, say τ ′ = 1τ
′, . . . , tτ

′ = µ′, with

[∇(iτ
′) : L(i+1τ

′)] 6= 0 or [∇(i+1τ
′) : L(iτ

′)] 6= 0 for 1 ≤ i < t. Setting iτ = iτ
′ − e̟,

we note that ∇(iτ
′) ∼= ∇(iτ) ⊗ (q-det)e and L(iτ

′) ∼= L(iτ) ⊗ (q-det)e. Thus the sequence

τ = 1τ, . . . , tτ = µ is such that [∇(iτ) : L(i+1τ)] 6= 0 or [∇(i+1τ) : L(iτ)] 6= 0 for 1 ≤ i < t.

Hence τ and µ lie in the same G-block.

I am grateful to Stephen Donkin for various helpful comments and suggestions. This
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