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Decomposition numbers for distant Weyl modules

Anton Cox*

Mathematics Department, City University, Northampton Square, London,
EC1V 0HB, England.

E-mail: A.G.Cox@city.ac.uk

Consider a semisimple, connected, simply-connected algebraic group
G over an algebraically closed field k of characteristic p > 0. One can
construct for each dominant weight λ a Weyl module ∆(λ) with that
highest weight whose character is given by Weyl’s character formula.
Although not in general simple, ∆(λ) has a simple head L(λ), and
all simple modules arise in this manner.
Knowledge of the decomposition numbers dλµ = [∆(λ) : L(µ)]

for λ and µ ‘small’ (i.e. p-restricted) is equivalent to calculating
the characters of the corresponding simple modules — and hence by
Steinberg’s tensor product theorem to determining the characters of
all the simples. Consequently, much work has been undertaken to
try to determine these numbers, concentrating mainly on the case
when p is large enough to be able to consider the Lusztig conjecture.
Indeed, for sufficiently large primes the dλµ are now known by the
work of Andersen, Jantzen and Soergel [1].
Although in principle all decomposition numbers can be deter-

mined from those for p-restricted weights — via character calcula-
tions using the tensor product theorem and Weyl’s character formula
— this is not straightforward in practice. Further, it is often more
convenient to know decomposition numbers than characters; for ex-
ample when relating representations of the general linear and sym-
metric groups via Ringel duality only the former can be translated
between the two categories.
We shall consider the situation where λ is ‘large’, and give an

elementary algorithm for calculating decomposition numbers given
those for all p2-restricted weights. If we regard Steinberg’s tensor
product theorem as an algorithm for determining large characters
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2 ANTON COX

from smaller ones, then this is an analogous result for decomposition
numbers. Our algorithm can be easily inverted, and we discuss an
application of this to the representation theory of the symmetric
group using Ringel duality.
There is another, similar, recursive character formula for Weyl

modules due to Jantzen [13]. Away from the boundary of the dom-
inant region this corresponds to a filtration of ∆(λ). This is ob-
tained by considering representations of certain induced modules for
infinitesimal subgroups GrT of G related to the Frobenius kernels.
Doty and Sullivan [9] have given an algorithm for determining de-
composition numbers for these induced modules, and have shown
how the corresponding result for Weyl modules can be deduced from
this.
In order to describe our algorithm, we introduce certain sets of

virtual decomposition factors with multiplicities. Although these
arise naturally in our argument, this is essentially a combinatorial
procedure — and hence it is not immediately clear that such sets
have any representation-theoretic interpretation (or even that the
associated multiplicities are non-negative). However, we shall show
that they are precisely the composition factors (with multiplicities)
of certain modules studied by Lin [16] arising as lifts of modules from
corresponding quantum groups at a primitive p2 root of unity. More
generally, Lin considers the lifts of modules from quantum groups at
pr roots of unity, and our algorithm can also be used to determine
the decomposition numbers for these modules.
In the light of these results, it is natural to ask if our algorithm

corresponds to successive refinements of some filtration of the Weyl
module. This seems to be related to a conjecture of Humphreys [11]
concerning filtrations of Weyl modules, which we briefly discuss. We
then consider evidence for such a structural interpretation, arising
from results of Doty [8] on the submodule structure of the symmetric
powers and of Kühne-Hausmann [15] on the structure of suitably
‘generic’ Weyl modules for SL3.
Finally, we conclude by noting that an appropriate analogue of our

algorithm can also be derived for the quantum general linear group
at a root of unity in positive characteristic.
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1. PRELIMINARIES

In this section we shall briefly review those basic results that will
be required later, mainly so as to fix our notation. All of this material
can be found in [14, II, Chapters 1–6]. Towards the end we shall also
prove an elementary proposition on the geometry of lattice points in
facets that will be needed in the next section.
We fix a maximal torus T ⊂ G, and hence the lattice of weights

X(T ). The pair (G,T ) determines a root system R, inside which we
choose a set of positive roots R+. The corresponding set of simple
roots we denote by S. The Weyl group W and associated affine Weyl
groups Wpi act on the space E = X(T )⊗Z R.
More precisely, let αˇbe the coroot associated to α in X(T )∗, and

〈−,−〉 the usual bilinear form on X(T ) × X(T )∗. For each α ∈ R
we denote by sα the reflection on X(T ) given by sαλ = λ−〈λ, α 〉̌α.
This action extends to the whole of E. Then W is just the group
generated by these reflections. For i ≥ 1 we define Wpi , the affine
Weyl group, to be the semidirect product of W with the group piZR
(acting by translations on E).
Let ρ = 1

2

∑

α∈R+ α, an element of X(T ) ⊗Z Q. It is easy to
verify that the dot action w.λ = w(λ + ρ) − ρ of W (or Wpi) on E
maps X(T ) into itself. Henceforth we shall use this action without
further comment. As G is semisimple and simply-connected, the
set {αˇ: α ∈ S} is a basis for X(T )∗, and there is a corresponding
basis {ωα : α ∈ S} of the fundamental weights for X(T ), such that
〈ωα, β 〉̌ = δαβ for all simple roots α and β. This further implies that
ρ =

∑

α∈S ωα ∈ X(T ).
The action of Wpi on E defines a system of pi-facets; these are sets

of the form

F =

{

λ ∈ E :
〈λ+ ρ, α 〉̌ = nαp

i for all α ∈ R+
0 (F )

(nα − 1)pi < 〈λ+ ρ, α 〉̌ < nαp
i for all α ∈ R+

1 (F )

}

for suitable integers nα and a disjoint decomposition R+ = R+
0 (F )∪

R+
1 (F ). A facet F is called an alcove if R+

0 (F ) = ∅, and a wall if
|R+

0 (F )| = 1. The closure F̄ of any alcove F is a fundamental domain
for Wpi on E, and Wpi permutes the alcoves simply transitively.
Similarly, F̄ ∩ X(T ) is a fundamental domain for Wpi on X(T ).
Thus it will often be sufficient to study just the standard alcove Ci,
where nα = 1 for all α. We will also need to consider the set of
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pi-restricted weights

Xi(T ) = {λ ∈ X(T ) : 0 < 〈λ+ ρ, α 〉̌ ≤ pi for all α ∈ S}.

Clearly, X(T ) is a disjoint union of translates of this set by the
pi-weight lattice piX(T ), and Xi(T ) is a union of sets of the form
X(T )∩F for certain pi-facets F ofWpi . Any weight λ can be uniquely
written in the form λ = λ′ + piλ′′ with λ′ ∈ Xi(T ), and any decom-
position of λ in this way is to be assumed to be of this form.
Key to our arguments will be the notion of scaling. For each weight

λ and pi-facet F , there is at most one element of Wpi .λ in X(T )∩F .
Thus it is enough to identify the pi-facet in which a weight lies and
its orbit under Wpi to determine the weight itself. Let εi : E −→ E
be the map x 7−→ pi−1(x+ ρ)− ρ. Note that εi is a bijection taking
p-facets to pi-facets, and that under this bijection the Wp-orbit of x
corresponds to the Wpi-orbit of εi(x).
We may identify Wpi and Wpj via the isomorphism induced from

the obvious isomorphism between piZR and pjZR. Given an element
w ∈ Wp we may denote its image in Wpi under this identification by

w(i). It is now easy to verify that εi(w
(j).λ) = w(i+j−1).εi(λ), and in

particular that εi commutes with the dot action of W . We also have
that εi(λ+ µ) = εi(λ) + pi−1µ for all weights λ and µ.
We will often regard pi-facets as though they are p-facets (by

means of ε−1
i ), and use certain combinatorics of p-facets associated to

Wp to determine a new family of p-facets, and hence of pi-facets via
εi. By the remarks above, given a weight λ in our original pi-facet,
this will unambiguously determine a corresponding set of weights in
the pi-facets thus obtained. We shall refer to the identification of
pi-facets with p-facets (and vice versa) via εi as scaling, and given a
p-facet F shall call εi(F ) the pi-facet corresponding to F .
For our later work, it will be important to know when the in-

tersection of a pi-facet with the weight lattice is non-empty. We
shall abuse notation and say that such facets are non-empty. Set
h = max{〈ρ, β 〉̌ + 1 : β ∈ R+}. As G is connected this is just the
Coxeter number of R. It is well known that a pi-alcove contains a
lattice point if and only if pi ≥ h, and as G is simply connected the
same is also true for walls (see [14, II 6.3(1)]). We will need the
following easy generalisation of these results (our proof follows that
in [14, II 6.3(1)]).
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Proposition 1.1. Suppose that p ≥ h. A p-facet F is non-empty if
and only if the corresponding pi-facets (under scaling) are non-empty
(for all i).

Proof. It is clear that if F contains a lattice point, then so does
εi(F ) for all i. Thus it is enough to show that if F does not contain a
lattice point, then neither does εi(F ) for any i. The action of Wp on
p-facets corresponds under scaling to the action of Wpi on pi-facets
and hence, by the conjugacy of alcoves under Wp, we may assume
that F ⊂ C̄1.
For each wall in C̄1, there is a unique reflection that fixes it. As

noted in [14, II 6.3], the set of such reflections consists of all sα with
α simple, and sβ,p, where β is the longest short root of R. Here sβ,p
is the reflection that fixes those λ satisfying 〈λ + ρ, β 〉̌ = p. Now
every facet F in C̄1 can be identified with a distinct subset of these
reflections by setting Fix(F ) to be the set of those reflections which
fix F pointwise. For example, Fix(C1) is the empty set.
Any element of X(T ) can be written in the form λ =

∑

α∈S mαωα

and so
〈λ+ ρ, α 〉̌ = mα + 1

for all simple roots α (by the explicit expression for ρ in terms of
the ωα). Also, if we write the coroot associated to the longest short
root β in the form βˇ=

∑

α∈S bααˇ then for any other root γ with
γˇ=

∑

α∈S cααˇ we have cα ≤ bα for all α ∈ S (as βˇis the maximal
(long) root in the dual root system R )̌.
First suppose that our facet is not fixed by sβ,p. Then to contain

a lattice point we require that there exists λ =
∑

α∈S mαωα such
that 〈λ + ρ, α 〉̌ is zero for all α ∈ Fix(F ) and strictly between 0
and p for all other roots not in the linear span of Fix(F ). Consider
λ =

∑

α∈Fix(F )−ωα. Clearly 〈λ+ ρ, α 〉̌ = 0 for all α ∈ Fix(F ), and
for all roots γ not in the linear span of Fix(F ) we have

0 < 〈λ+ ρ, γ 〉̌ ≤ 〈ρ, γ 〉̌ ≤ 〈ρ, β 〉̌ < h ≤ p.

Thus every facet not fixed by sβ,p contains a lattice point.
So it only remains to consider those facets F fixed by sβ,p. Let

SFix(F ) be the set of reflections in Fix(F ) not equal to sβ,p. For F to
contain a lattice point we require that there exists a λ =

∑

α∈S mαωα

such that 〈λ + ρ, α 〉̌ is zero for all α ∈ SFix(F ), equal to p when
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α = β, and strictly between 0 and p for all other roots not in the
linear span of Fix(F ).
Arguing as in the last paragraph, it is easy to see that it is enough

to solve the equation

∑

α ∈ S\SFix(F )

(mα + 1)bα = p (1)

for some integers mα satisfying 0 ≤ mα < p − 1 for each α ∈
S\SFix(F ), as setting mα = −1 for all α ∈ SFix(F ) will then give
the desired λ.
The proof now reduces to a case by case examination of the possible

values of the bα for each root systems. Using the tables given in [2,
Planches I–IX] it is easy to verify for each root system that there is
a solution of (1) for p ≥ h whenever the highest common factor of
the bα for α ∈ S\SFix(F ) is 1. Thus in these cases there is always a
lattice point in F . By inspection, when the highest common factor
is greater than 1 it must be less than h (and hence less than p), and
so in this case there is no lattice point in F . However in this case
exactly the same argument holds for the pi-facets (as there is still
no solution to (1) when we replace p by pi), and so the result now
follows.

We conclude this section by recalling the basic properties of simple
and Weyl modules that we shall require. Given a Borel T ⊂ B ⊂
G we can define the modules H i(λ) = RiindGBkλ, where kλ is the
one-dimensional B-module of weight λ, and RiindGB is the ith right
derived functor of induction. We set χ(λ) =

∑

i≥0(−1)ichH i(λ).

By choosing B appropriately, we may arrange that H0(λ) is non-
zero precisely when λ is dominant, and for these weights χ(λ) =
chH0(λ) by Kempf’s vanishing theorem. The Weyl module ∆(λ) is
the contravariant dual of H0(λ), and has the same character, which
is given by Weyl’s character formula.
We will frequently use the following properties of χ (see [14, II

5.8–9]).

Lemma 1.2. For all λ ∈ X(T ), w ∈ W and
∑

µ a(µ)e(µ) ∈ Z[X(T )]W

we have
χ(λ)

∑

µ

a(µ)e(µ) =
∑

µ

a(µ)χ(λ+ µ)



DISTANT WEYL MODULES 7

χ(w.λ) = (−1)l(w)χ(λ).

Note that for each element λ, either χ(λ) = 0, or there exists a
unique element wλ ∈ W such that wλ.λ is a dominant weight. When
χ(λ) = 0, we set wλ = 1.
Finally, we note that each Weyl module ∆(λ) has a simple head

L(λ) (whose character is W -invariant), and that all simple modules
can be obtained in this manner. We will often abuse notation and
refer to weights as composition factors by identifying λ with the
module L(λ). Any dominant weight λ can be uniquely written in the
form λ =

∑

i≥0 λip
i with λi ∈ X1(T ) for all i. Then by Steinberg’s

tensor product theorem we have L(λ) ∼=
⊗

i L(λi)
Fi

, where F is the
Frobenius morphism.

2. THE MAIN THEOREM

Throughout this section we shall assume that the decomposition
numbers for Weyl modules with highest weight in the set of p2-
restricted weights are known. In examples we shall only consider
Weyl modules whose highest weight lies in the interior of an alcove
— however our main result holds for all weights without restriction.
Henceforth we will assume that p ≥ h. This will allow us to appeal

to the translation principle [14, II 7.17 Corollary], and note that the
facets containing composition factors of a Weyl module ∆(λ) depend
only on the facet in which λ lies. Under this hypothesis, Proposition
1.1 will also ensure that the p-facet corresponding to a non-empty
pi-facet will also be non-empty. We will repeatedly make use of both
of these properties without further comment. By considering the
Steinberg weight (pi − 1)ρ, it is easy to see that for p ≥ h we also
have Xi(T ) ⊆ C̄i+1, for all i > 0.
We will associate to each weight λ a set of i-virtual composition

factors (with multiplicities). As this is a somewhat lengthy process,
we will proceed in several stages. We begin by associating to each
non-empty p-facet F containing a dominant weight a decomposition
diagram. This is defined to be a set of facets H with multiplicities
dFH defined by picking an arbitrary weight λ ∈ F and determining
which facets contain composition factors of ∆(λ). These are the
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facets of the decomposition diagram, and their multiplicities are just
those of the corresponding composition factors.
Next consider the set of p2-facets inside the set of p2-restricted

weights. To each such facet ε2(F ) that is non-empty, we define
a p2-decomposition diagram in the following manner. Under scal-
ing, ε2(F ) corresponds to the (non-empty) p-facet F , which has an
associated decomposition diagram. The p2-decomposition diagram
associated to ε2(F ) is just the set of p2-facets (with multiplicities)
corresponding to this diagram under scaling.
To each non-empty p-facet F in the set of p2-restricted weights,

we now associate a virtual decomposition diagram. We proceed by
induction on the p2-facets below the p2-facet containing F (using the
partial ordering on facets induced by the usual dominance ordering
on weights). The set of p-facets in the virtual decomposition diagram
for F are just those E for which the virtual decomposition number

cFE = dFE −
∑

I<H

dHIcJE 6= 0 (2)

where F lies in the p2-facet ε2(H) and J is the image of F under
Wp2 in ε2(I). The multiplicity of such a facet E is just cFE .
It is possible for some of the facets J in (2) to lie outside X2(T ).

Thus for our inductive definition to make sense, we also need to
define virtual decomposition numbers cJE for such facets. Any such
J can be uniquely written in the form J = J ′ + p2τ , where J ′ is a
p-facet in X2(T ) and τ ∈ X(T ). The virtual decomposition numbers
cJ ′K are already defined by induction, and we set cJE = cJ ′E′ , where
E = E′ + p2τ .
Given a p2-restricted weight λ, the set of virtual composition fac-

tors associated to λ is just the set of elements of Wp.λ lying in some
p-facet of the virtual decomposition diagram, with the corresponding
multiplicities.
Before giving the definition of i-virtual composition factors, we

shall illustrate the above definitions with a few examples concerning
alcoves. For SL2, there is only one p2-alcove in the set of p2-restricted
weights. This corresponds under scaling to the unique p-restricted
alcove C1, whose associated decomposition diagram is just C1. Thus
the p2-decomposition diagram associated to ε2(C1) is just ε2(C1),
and the virtual decomposition diagram associated to a p-alcove F in
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the set of p2-restricted weights consists of those E for which

cFE = dFE 6= 0.

More generally, for any group G, the p2-alcove C2 is its own p2-
decomposition diagram, and hence for any p-facet F in C2 we have
cFE = dFE . Thus for any weight in C2, the virtual composition
factors are just the usual composition factors of the associated Weyl
module.

λ µ

2 2

FIGURE 1. (a), (b) and (c)

For a non-trivial example, consider SL3 with p = 5, and a weight
λ in an alcove just above the lowest p2-alcove (as shown in Figure
1(a)). Now λ lies in ε2(D), where D is the upper alcove in the set of
p-restricted weights. The decomposition diagram associated to D is
just D and C1, each with multiplicity one. Thus for the p-alcove F
containing λ, (and any p-facet E) we have

cFE = dFE − dDC1
cJE = dFE − cJE = dFE − dJE

where J is the image of F in ε2(C1) under Wp2 . For λ in F as
above, the p-alcove J is that containing µ in Figure 1(b). The de-
composition diagrams for F and J are given in Figures 1(a) and (b)
respectively, and so the virtual decomposition diagram associated to
F is that given in Figure 1(c). (All multiplicities are 1 unless other-
wise indicated.) The virtual composition factors associated to λ are
just those weights in Wp.λ lying in this final diagram.
Returning to our definitions, we next associate to each pi+1-restricted

weight λ a set of i-virtual composition factors (with multiplicities).
When i = 1 these will just be the virtual composition factors de-
fined above. Regard the pi-facets as p-facets by scaling. Then the
pi-facet εi(F ) containing λ corresponds to the p-facet F in the set
of p2-restricted weights. We have already associated to F a virtual
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decomposition diagram. By scaling, we obtain a corresponding set
of pi-facets with multiplicities. This is the i-virtual decomposition
diagram associated to εi(F ), and the i-virtual composition factors
associated to λ are just those weights in Wpi .λ that lie in these
pi-facets. We shall denote the corresponding multiplicity of such a
weight µ by ciλµ.
Finally, we shall associate a set of i-virtual composition factors to

an arbitrary dominant weight λ. Any such weight can be uniquely
written in the form λ = λ′ + pi+1λ′′ with λ′ ∈ Xi+1(T ). Now the
i-virtual composition factors associated to λ are just those weights
of the form µ = µ′ + pi+1λ′′ where µ′ runs over the set of i-virtual
composition factors of λ′, and ciλµ = ciλ′µ′ .
We will show that, for p ≥ h, the following algorithm completely

determines the decomposition numbers for a given Weyl module
∆(λ).

Algorithm 2.1.

(1) Let i be maximal such that λ does not lie in C̄i and let cf(λ, i +
1) = {λ}. (Thus λ lies in the set of pi+1-restricted weights.)
(2) If i = 0 then we are done, otherwise continue with step (3).
(3) For each weight µ in cf(λ, i+1) (and keeping track of multiplici-
ties) determine the set of i-virtual composition factors associated to
µ.
(4) Let cf(λ, i) be the disjoint union of all the sets of virtual compo-
sition factors (with multiplicities) obtained during step (3).
(5) Set i = i− 1 and repeat from step (2).

To illustrate the above algorithm we shall consider an example for
SL3. Let p = 5 and consider the Weyl module ∆(181, 0, 0) for GL3

(where we use the usual partition labelling for polynomial dominant
weights). This Weyl module is just the contravariant dual of a sym-
metric power of the natural module, and so its composition factors
can be calculated using the results in [8].
The various iterations of the algorithm, and the final result, are

shown in Figure 2. Note that the dotted lines indicate p-walls while
the thicker lines indicate higher powers of p. As each p-alcove can
contain a unique composition factor of any module, we merely indi-
cate the alcove in which each factor lies. The small diagrams indicate
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ωω

d

ba c

e

f

(i)
(ii)

(i)
(ii)
(iii)

(i) (iii)(ii)

12

λ

Iteration 3 Iteration 3

for a and d.
Iteration 3

for c and f. for b and e.
Iteration 2.

Iteration 1.

FIGURE 2.

the various virtual decomposition diagrams that arise during each it-
eration of the algorithm. For future reference we have labelled the
composition factors that arise; for example, λ corresponds to the
label d(i).
We begin by considering the p3-facets. After scaling, the p3-facet

containing λ corresponds to the upper shaded p-alcove shown in Iter-
ation 1. Thus the first iteration of the algorithm produces λ and the
element of Wp3 .λ lying just above the lowest p3-alcove (indicated by
a solid arrow). After the second iteration, the virtual decomposition
diagrams given in Iteration 2 arise, and after scaling (and transla-
tion for those associated to λ, since this is not a p3-restricted weight)
these give weights in the alcoves indicated by dotted arrows. The
final iteration uses the virtual decomposition diagrams shown in It-
eration 3 to produce the set of shaded p-alcoves shown in the central
diagram.
Our main result is
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Theorem 2.2. Suppose that p ≥ h. Given a dominant weight λ,
the set of composition factors of ∆(λ) (counted with multiplicities)
is precisely the set cf(λ, 1) obtained from Algorithm 2.1.

Proof. First suppose that λ ∈ X2(T ). We will show that the sum
of the characters of the virtual composition factors obtained from
the algorithm is χ(λ), as required. We first note that if λ ∈ C2, then
the set of virtual composition factors associated to λ is precisely the
full set of composition factors of ∆(λ) (by our earlier remarks), and
hence the result is immediate.
If λ ∈ X2(T ) does not lie in C2 then as noted at the start of the

section we must have λ ∈ C3. Thus there are two iterations when
the algorithm is applied to λ, and the set cf(λ, 2) is just the set
of composition factors arising from the p2-decomposition diagram.
After the second iteration the multiplicity of µ in cf(λ, 1) is just

∑

τ

dHIcτµ = cλµ +
∑

τ<λ

dHIcτµ

where λ ∈ ε2(H), τ ∈ Wp2 .λ, and τ ∈ ε2(I). Comparing this with
(2), we see that this equals dλµ as required.
Now suppose that λ is a pi+1-restricted weight with λ /∈ Ci. We

set j = i − 1 if λ ∈ Xi(T ), and j = i otherwise. The first iteration
of our algorithm begins at level i, and cf(λ, i + 1) = {λ}. We claim
that, by Steinberg’s tensor product theorem, it is enough to show
that

χ(λ) =
∑

µ∈cf(λ,j)

(

ch(L(µ′′)F
j
)



χ(µ′) +
∑

τ<µ′

ajµ′τχ(τ)



 (3)

where µ = µ′+pjµ′′ and the ajµ′τ are defined in the following manner.

For E and F p-facets in X1(T ), we define a1FE by choosing λ ∈ F
and solving

chL(λ) =
∑

E≤F

a1FEχ(µE)

where µE = (WP .λ) ∩ E. For weights µ′ ∈ εi(F ) and τ ∈ εi(E) in
Xi(T ), we define

aiµ′τ =

{

a1FE if τ ∈ Wpi .µ
′

0 otherwise.
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For the claim, note that for each µ on the right-hand side of (3) we
have by our choice of j that µ′ < λ. Thus by induction our algorithm
gives the character of χ(µ′) (and of χ(τ) for all τ < µ′), but possibly
starting at level j. The effect of starting at level j− 1, as is the case
when calculating for µ ∈ cf(λ, j), is to lose the elements descended
from those elements of cf(µ, j) not equal to µ. After scaling, it can
be seen that this corresponds to calculating decomposition numbers
for the simple module in the corresponding p-alcove in X2(T ) rather
than of the Weyl module. Hence by the induction hypotheses and
the definition of the ajµ′τ , it is enough to show (3).
Let ch L(µ′′) =

∑

ν mµ′′νe(ν). Then we wish to show that

∑

µ

(

ch L(µ′′)F
j
) (

∑

τ≤µ′ a
j
µ′τχ(τ)

)

=
∑

µ

(
∑

ν mµ′′νe(p
jν)

)

(

∑

τ≤µ′ a
j
µ′τχ(τ)

)

=
∑

µ

∑

ν mµ′′ν

(

∑

τ≤µ′ a
j
µ′τχ(τ + pjν)

)

=
∑

µ

∑

ν mµ′′ν

(

∑

τ≤µ′ a
j
µ′τ (−1)l(wτν)χ(wτν(τ + pjν))

)

is equal to χ(λ) (where we write wτν for wτ+piν for brevity). This
expression is of the form

χ(λ) +
∑

θ<λ

fλθχ(θ)

for some coefficients fλθ (where all the weights θ are dominant).
Now when j = 1 all these coefficients are zero by the calculation

above, and the linear independence of the characters of Weyl mod-
ules. But in general the fλθ depend only on the pjν, reflections about
the boundaries of the dominant region, and the combinatorics of pj-
facets regarded as p-facets. Thus, after fixing an appropriate power
of the Frobenius morphism, these coefficients depend only on the
combinatorics of the pj-facets regarded as p-facets and the weights
of the L(µ′′). As for j = 1 all the fλθ are zero, the same must be
true for all j by scaling.

There is another recursive formula which can be used for deter-
mining the composition factors of Weyl modules, due to Jantzen [13,
3.1 Satz]. For any weight λ ∈ X(T ) we have

χ(λ) =
∑

µ′′∈X(T )

∑

µ′∈Xr(T )

[Ẑr(λ) : L̂r(p
rµ′′ + µ′)]χ(µ′′)F

r

ch(L(µ′))(4)
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where the Ẑr(λ) are certain coinduced modules for the Jantzen sub-
group GrT of G, and the L̂r(λ) are the corresponding simple modules
(see [14, II Chapter 9] for details). Suitably far away from the walls
of the dominant region, all the weights in this sum are dominant,
and the equality corresponds to a filtration of H0(λ) with factors of
the form L(µ′)⊗H0(µ′′)F

r

(see [14, II 9.11 Proposition]). However,
near the boundary of the dominant region, the µ′′ will not all be
dominant, and although (4) can be modified using Lemma 1.2, the
coefficients will now no longer all be positive.
Although the virtual composition factors associated to a single

weight µ arising during Algorithm 2.1 may also (in principle) have
negative multiplicities, we have

Lemma 2.3. For any dominant weight λ, the multiplicities of the
elements of cf(λ, i) obtained after each iteration of Algorithm 2.1 are
all positive.

Proof. Suppose there is some λ for which the lemma fails, and let
i be as in Algorithm 2.1. Then there exists some j ≤ i such that the
set F of j-virtual composition factors obtained when considering pj-
facets includes some negative multiplicities. Chose λ′ such that it lies
in the p-facet corresponding to the pi−j+1-facet containing λ (under
scaling). Then the set of composition factors of H0(λ′) obtained
using the algorithm will correspond (under scaling) to those in F ,
and have the same multiplicities. But these multiplicities are all
positive, which gives the desired contradiction.

For there to be any possibility of obtaining a filtration of H0(λ)
associated to our algorithm, it is clearly necessary that all the virtual
composition multiplicities associated to a given weight are positive.
We shall return to this question in Section 4. First however we shall
exploit the easy invertibility of our algorithm.

3. RINGEL DUALITY AND REPRESENTATIONS OF THE

SYMMETRIC GROUP

In this section we restrict our attention to the case where G is
the general linear group GLn. Although not itself semisimple, its
representation theory can be easily deduced from that of SLn, and so
the results from the previous section apply. Associated to G are the
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Schur algebras S = S(n, d), and in [10] Erdmann showed how their
representation theory can be related to that of the symmetric group
Σd by Ringel duality. We shall very briefly review this relationship
(details and further references can be found in [10]), and show how
the invertibility of Algorithm 2.1 allows us to deduce certain results
concerning representations of the symmetric group. Throughout this
section we shall assume that p > n.
The category of S(n, d)-modules is naturally equivalent to the cat-

egory of SLn-modules all of whose composition factors L(λ) satisfy
λ =

∑

i aiωi with
∑

i iai = d − jn for some j ≥ 0. As S(n, d) is a
quasi-hereditary algebra, there exists a certain characteristic module
T for S, and we call the endomorphism algebra S′ = EndS(T ) the
Ringel dual of S. In fact (up to Morita equivalence) we can identify
S′ precisely:

Theorem 3.1. Suppose that p > n. Then the Ringel dual of S(n, d)
is Morita equivalent to a certain (known) quotient of kΣd, the group
algebra of the symmetric group on d symbols.

Proof. This is a special case of the first part of [10, Theorem 4.4].

Let Λ+(n, d) be the set of n-part partitions of d. To each λ ∈
Λ+(n, d), we can associate a corresponding permutation module Mλ

for kΣd, and certain explicitly defined submodules Sλ of Mλ, called
Specht modules. The indecomposable direct summands of Mλ are
called Young modules, and we define Y λ to be the unique such sum-
mand of Mλ containing Sλ.
It is shown in [6, (2.6)] that Young modules have a Specht module

filtration, and we shall denote the multiplicity of Sµ in some such
filtration of Y λ by (Y λ : Sµ). It is easy to see (confer [20, 4.10
Corollary]) that if λ has at most r non-zero parts, so also must µ for
any Sµ arising in such a filtration of Y λ. Indeed, by general results
on Ringel duals and the explicit identifications made in [10], we have

Proposition 3.2. Suppose that p > n. Then for all λ, µ ∈ Λ+(n, d)
we have

(Y λ : Sµ) = [∆(µ) : L(λ)].

Proof. See [10, 4.4 Theorem] and [7, Lemma A4.6].
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Thus to determine the Specht modules arising in a given Young
module Y λ for kΣd, it is enough to determine all Weyl modules
containing the simple module L(λ) for SLn with highest weight in
a certain bounded set of weights. Here n can be taken to be the
number of non-zero parts of λ. The advantage of our algorithm for
computing decomposition numbers is that it can easily be run in
reverse. Starting with a given weight λ and the initial data on Weyl
modules corresponding to p2-restricted weights, it is easy to deter-
mine those weights (with multiplicities) which give rise to λ after one
iteration of Algorithm 2.1. Iterate this procedure by determining for
each weight obtained at the ith stage a corresponding set (with mul-
tiplicities) of new weights in a similar way (by regarding pi-facets as
p-facets). Thus (as h = n) we obtain

Proposition 3.3. Suppose that p > n. Given a weight λ ∈ Λ+(n, d),
we can invert Algorithm 2.1 to give an algorithm for determining
(Y λ : Sµ) for all µ ∈ Λ+(n, d), from the decomposition numbers for
Weyl modules for SLn with p2-restricted weights.

4. LIFTING FROM THE QUANTUM GROUP

Although they arise naturally in the algorithm of Section 2, it is
not yet clear that the sets of virtual composition factors have any
representation-theoretic interpretation. In particular, it is not even
clear that they have non-negative multiplicities. In this section we
shall realize them as the sets of composition factors associated with
G-modules obtained by lifting from a corresponding quantum group
— at least when p is large enough for the Lusztig conjecture to
hold. We then discuss a possible connection with a long-standing
conjecture of Humphreys on the structure of Weyl modules.
The modules we require arise in the work of Lin [16], and are

generalisations of certain modules considered by Lusztig. The con-
structions in this section are based on [16, Section 2], to which we
refer the reader for further details.
We begin by defining the various quantum algebras that we re-

quire. Let Uq be the quantised enveloping algebra over C(q) corre-
sponding to the root system R. If we set A = Z[q, q−1] ⊂ C(q), then
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Lusztig [19] has constructed a certain A-form UA of Uq. For ξ a
fixed primitive pr-th root of unity, C becomes an A-algebra via the
homomorphism taking q to ξ. We denote by Uξ the corresponding
algebra C⊗A UA.
Setting Br to be the localisation of Z[ξ] at the ideal (ξ − 1), we

have that Br is a discrete valuation ring, and UBr
= Br ⊗A UA is

a Br-form inside Uξ. Finally, for k an algebraically closed field of
characteristic p, the natural homomorphism A → k taking q to 1
factors through the homomorphism B → k taking ξ to 1. We obtain
an isomorphism of k-algebras

Uk := k ⊗A UA
∼= k ⊗Br

UBr
.

We next wish to define various modules for each of these algebras,
following Lusztig [17, 18, 19]. For each dominant weight λ there ex-
ists a unique finite-dimensional irreducible Uq-module Lq(λ) of type
1 with highest weight λ. If we fix some vector vλ generating this
module, then LA(λ) = UAvλ is a UA-invariant A-lattice in Lq(λ).
We set ∆pr(λ) = C ⊗A LA(λ), the quantum Weyl module for Uξ.
This has a unique simple quotient, which we denote by Lpr(λ). We
denote the image of our generating vector vλ in this quotient by v̄λ.
Now LBr

(λ) = UBr
v̄λ is a Br-lattice in Lpr(λ), and so Lpr(λ) =

k ⊗Br
LBr

(λ) is a Uk-module. Indeed, Lusztig has shown that this
is even a (rational) G-module. The Weyl module for G can also be
constructed using Uq; we have

∆(λ) ∼= k ⊗A LA(λ) ∼= k ⊗Br
∆Br

(λ)

where ∆Br
(λ) = UBr

vλ is a Br-lattice inside ∆pr(λ).

Our construction gives that Lpr(λ) is a quotient of ∆(λ), and we
wish to understand the structure of these modules. By [16, Theorem
2.7], we have that

Lpr(λ) ∼= Lpr(λ′)⊗∆(λ′′)F
r

where λ = λ′ + prλ′′ with λ′ ∈ Xr(T ), and F denotes the usual
Frobenius morphism. Thus we first need to understand the structure
of Lpr(λ) for all p

r-restricted weights.
In [16], Lin has investigated the decomposition patterns of these

modules for suitably ‘generic’ weights λ. (Roughly, this means that
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λ is suitably far away from any pi-walls for certain i; see [16, pg 286]
for the precise definition.) For arbitrary dominant weights λ and µ
we have

[∆(λ) : L(µ)] =
∑

ν

[∆pr(λ) : Lpr(ν)][Lpr(ν) : L(µ)]. (5)

It is this identity that will allow us to relate our algorithm to the
decomposition patterns of the Lpr(λ).
For the rest of this section, we shall assume that Lusztig’s conjec-

ture (for algebraic groups) holds for our choice of G and p, and that
p ≥ 2h − 2. For fixed G this is known to be the case if we take p to
be sufficiently large by the results in [1].
A dominant weight λ satisfies the Jantzen condition if 〈λ+ρ, α 〉̌ ≤

p(p+ 2− h) for all α ∈ R+. For such λ we have

[∆p(λ) : Lp(µ)] = [∆(λ) : L(µ)]

and we see by induction using (5) that Lp(λ) ∼= L(λ) is irreducible.
More generally we shall say that a dominant weight λ satisfies the

ith Jantzen condition if

〈λ+ ρ, α 〉̌ ≤ pi(p + 2− h)

for all α ∈ R+, and denote the set of such λ by Ji(T ). Note that
λ satisfies the Jantzen condition if and only if εi(λ) satisfies the ith
Jantzen condition. For λ ∈ Ji(T ) we have

[∆pi(λ) : Lpi(µ)] =

{

dFE if µ ∈ Wpi .λ
0 otherwise

(6)

where λ ∈ εi(F ) and µ ∈ εi(E). As p ≥ 2h−2 we have that Xi(T ) ⊆
Ji(T ), and hence for p2-restricted weights, the p2-decomposition di-
agrams defined in Section 2 are just the decomposition diagrams for
the corresponding quantum group at a p2 root of unity.
We next define some more sets of weights associated to Algorithm

2.1. It will be convenient to set cf(λ, i) = {λ} whenever λ ∈ C̄i,
extending our earlier notation. Given a weight λ and an integer
i ≥ 1, we define Desc(λ, i), the set of descendents of λ at level i in
the following manner. First note that for any weight λ and integer
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i we have, by construction, λ ∈ cf(λ, i), with multiplicity one, and
all other weights µ ∈ cf(λ, i) satisfy µ < λ. We define Desc(λ, i) by
induction on λ via

cf(λ, 1) =

.
⋃

µ∈cf(λ,i)
Desc(µ, i)

where as usual we run over elements of the index set counted with
multiplicities.
As an example, consider the weight denoted λ in Figure 2. For

i ≥ 4 we have Desc(λ, i) = cf(λ, 1), the set of composition factors
of ∆(λ). The set Desc(λ, 3) is precisely the set of those weights
with labels of the form d(–), e(–), or f(–), while Desc(λ, 2) = {λ =
d(i), d(ii)} and Desc(λ, 1) = {λ}.
The main result of this section is

Theorem 4.1. Suppose that p ≥ 2h − 2 is such that the Lusztig
conjecture is satisfied for G. If λ ∈ Ji(T ) then the set of composition
factors, with multiplicities, of Lpi(λ) equals Desc(λ, i).

Proof. We proceed by induction on λ. If λ lies in C̄i, then cf(λ, i) =
{λ} and hence Desc(λ, i) = cf(λ, 1). But in this case, as [∆pi(λ) :

Lpi(µ)] = δλµ we see from (5) that Lpi(λ) = ∆(λ), and so we are
done by Theorem 2.2.
Now suppose that λ /∈ C̄i. As Ji(T ) ⊆ Ci+1, we see that Algo-

rithm 2.1 begins at level i, and cf(λ, i+1) = {λ}. After scaling by εi,
the pi-facet containing λ corresponds to some p-facet F in C2. By
our remarks before Algorithm 2.1, this implies that the virtual de-
composition diagram associated to F is just the usual decomposition
diagram for F . Hence after scaling by εi we see that

ciλµ =

{

dFE if µ ∈ Wpi .λ
0 otherwise

where λ ∈ εi(F ) and µ ∈ εi(E). But by (6) this equals [∆pi(λ) :
Lpi(µ)]. Hence we have by Theorem 2.2 that the composition factors
of ∆(λ) are given by cf(λ, 1), where

cf(λ, 1) =
.
⋃

µ
[∆pi(λ) : Lpi(µ)]Desc(µ, i)
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where µ runs over the set of dominant weights. By induction, we see
by comparing with (5) that Desc(λ, i) is precisely the set of compo-
sition factors of Lpi(λ), as required.

Recall that for p ≥ 2h− 2 we have Xi(T ) ⊂ Ji(T ). Thus for suit-
ably large p, our algorithm gives a means of calculating the compo-
sition factors of Lpi(λ) for all p

i-restricted weights, given the decom-
position numbers for ∆(µ) for p2-restricted weights µ. In particular,
for any p2-restricted weight λ we have that Desc(λ, 2) is just the set
of virtual composition factors associated to λ, and hence obtain

Corollary 4.2. Suppose that p ≥ 2h − 2 is such that the Lusztig
conjecture is satisfied for G. Then for any p2-restricted weight λ, the
virtual decomposition numbers cλµ are all non-negative.

Recall from Section 1 that for any weight λ we may define modules
Hj(λ) by considering the right derived functors of indGB . In [11],
Humphreys has conjectured that any Weyl module ∆(λ) should have
a filtration with quotients of the form Hj(µ) ⊗ L(ν)F

i

, where µ is
W -conjugate to a weight in Xi(T ) and ν is dominant. On the level
of characters, this would imply that ∆(λ) has a filtration where each
quotient has composition factors clustered around a certain translate
of Xi(T ) (related to the weight ν defined above).
Now suppose that there exists a filtration of ∆(λ) associated to

the ith level in Algorithm 2.1; that is, a filtration whose successive
quotients have sets of composition factors of the form Desc(µ, i) for
elements µ ∈ cf(λ, i). On the level of characters, this would imply
that ∆(λ) has a filtration where each quotient has composition fac-
tors clustered around a certain pi-alcove (related to the weight µ).
In proving (5), Lin constructs an associated filtration of the Weyl
module, which by Theorem 4.1 is compatible with the first iteration
of Algorithm 2.1.
If we consider the case of SL3, with λ suitably ‘generic’ in the

lowest p3-alcove (as in [11, Figure 1]), it is easy to verify that the
clusters of composition factors arising from the final iteration of our
algorithm correspond to the (conjectural) filtrations of ∆(λ) given
by Humphreys in [11, pages 2672–4]. Indeed, we have
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Theorem 4.3. Suppose that λ is a dominant weight for SL3 such
that all composition factors of Ẑ1(λ) lie in the same p2-alcove. Then
there is a filtration of ∆(λ) corresponding to the final iteration of
Algorithm 2.1.

Proof. This is an easy consequence of a theorem of Kühne-
Hausmann [15, Kapitel VI, Satz 2].

More generally, Kühne-Haussman has calculated the submodule
structure of all Weyl modules for SL3 which are multiplicity-free.
For the examples given in [15, pages 174-6] — which do not satisfy
the hypotheses of Theorem 4.3 — it is easy to verify that there is
still a filtration associated to our algorithm.
If we assume that Humphreys’ conjecture holds, the above remarks

gives some evidence that there may be a refinement of his filtration
associated to the corresponding level of Algorithm 2.1. In the next
section we shall consider further evidence for the existence of such a
filtration.

5. A SOCLE SERIES FOR CERTAIN INDUCED MODULES

In this section we shall show how the facet combinatorics intro-
duced in Section 2 can be used to give a new description of certain
results of Doty in [8]. In particular we shall give a filtration (and
for weights in alcoves a description of the socle series) of symmetric
powers of the natural module for SL2 and SL3. These are isomorphic
to induced modules of the form H0(dω1), which in turn are just the
contravariant duals of the corresponding Weyl modules (and have
the same composition factors). Thus this filtration will provide an
interpretation in terms of module structure of the character-theoretic
result in Section 2.
These results could also be deduced from [3] for SL2, and [15,

Kapitel VI, Satz 1] for SL3. However, we prefer to consider the
methods of Doty as these are both simpler and more accessible to
generalisation to groups of higher rank.
We begin by recalling the combinatorial framework outlined in [8].

Let Sd(V ) denote the dth symmetric power of the natural represen-
tation V of GLn. We write d =

∑M
i≥0 dip

i with 0 ≤ di ≤ p − 1 for

all i, and dM 6= 0. Given a monomial xb = xb11 · · · xbnn ∈ Sd(V ) we
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write bi =
∑

j≥0 bijp
i with 0 ≤ bij ≤ p − 1 for all i and j. Then

we can associate to each monomial xb an M -tuple of non-negative
integers (c1(b), . . . , cM (b)), where the elements ck(b) are defined by
the equations

∑

i≥0

∑

j<k

bijp
i = ck(b)p

k +
∑

j<k

djp
j.

An equivalent set of defining equations are given by
∑

i≥0

bik = dk + pck+1 − ck. (7)

We let C(d) be the set of M -tuples arising from some xb ∈ Sd(V ).
This set can be given a lattice structure by setting c ≤ c′ if and only
if ck ≤ c′k for all k. Then the main result in [8] is

Theorem 5.1. There is a lattice isomorphism between the lattice of
order closed subsets of C(d) and the G-submodules of Sd(V ) (ordered
by inclusion). In particular, the composition factors of Sd(V ) are in
one-to-one correspondence with the elements of C(d).

Further, by considering (7), we can determine explicitly the highest
weight vector of the composition factor corresponding to c as follows.
Let xb be the highest weight vector corresponding to c. Then b is
given by the set of equations

bik = max{min{dk + p(ck+1 + 1− i)− ck + i− 1, p − 1}, 0} (8)

where the dk and bik are as defined above. Thus, given the set C(d)
corresponding to d, we can determine the composition factors of
Sd(V ). The final result from [8] that we shall need is the following
criterion for recognising elements of C(d).

Lemma 5.2. An M -tuple c of non-negative integers is an element
of C(d) if and only if it satisfies the equations

0 ≤ ck ≤
∑

j≥k

djp
j−k

and
0 ≤ dk + pck+1 − ck ≤ n(p− 1)
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for all k, where we set cj = 0 for all j ≤ 0 and j > M .

We begin by analysing the structure of the lattice C(d). First
we note that by induction (using Lemma 5.2) it is clear that we
must have 0 ≤ ck ≤ n − 1 for each k. Given c ∈ C(d), we set
|c| =

∑

i≥0 ci. We shall say that such an element c lies in the jth

socle layer Socj(C(d)) of C(d) if the longest chain of elements strictly
below c is of length j − 1.

Lemma 5.3. An element c ∈ C(d) lies in the jth socle layer if and
only if |c| = j.

Proof. Any chain of elements strictly below c must have length
at most |c|, and so it is enough to show that a chain of this length
in fact exists. For this, it will be enough to show that for each c 6= 0

there exists some c′ < c in C(d) such that for some k0 we have
c′k0 = ck0 − 1, and c′i = ci for all i 6= k0.
We first claim that if c 6= 0 then there exists some k such that

0 ≤ dk + pck+1 − ck < n(p − 1) and ck 6= 0. For otherwise take k1
minimal such that ck0 6= 0. Then we must have dk1 + pck1+1 − ck1 =
n(p − 1) ≥ p, and hence that ck1+1 > 0. In a similar manner we
deduce that ck > 0 for all k ≥ k1 (and that for all such k we must
have dk + pck+1 − ck = n(p− 1)). But this contradicts the condition
that cM+1 = 0, and so the claim follows.
Taking k0 to be minimal satisfying the above hypotheses, it is now

an easy exercise using the inequalities in Lemma 5.2 to verify that
the element c′ defined above is in C(d) as required.

Most of the rest of this section will be devoted to proving

Proposition 5.4. For GL2 and GL3, the modules Sd(V ) have fil-
trations corresponding to the virtual decomposition factors obtained
at any given stage in Algorithm 2.1. Moreover, for weights in the
interior of alcoves, the socle series for Sd(V ) can be constructed in
the course of implementing the algorithm.

Proof. To each composition factor L(λ) we have associated a carry
pattern c(λ). We shall show that the iteration of Algorithm 2.1 cor-
responding to pi-facets changes the value only of the first i elements
of any c obtained so far, and that each virtual decomposition factor



24 ANTON COX

obtained at this stage from a given weight corresponds to a differ-
ent value of ci. In fact, for weights in the interior of an alcove we
shall show that at this stage the first i elements of any carry pattern
obtained so far are all equal. By Lemma 5.3, we shall thus obtain
complete information on the socle series of the symmetric powers
corresponding to weights in the interior of an alcove.
We begin with an easy example to illustrate this result for SL2.

(We postpone analysis of the socle series for the SL3 example given
in Figure 2 until later in this section.) Let p = 3 and d = 43.
On applying Algorithm 2.1 we obtain the set of composition factors
labelled a to f in Figure 3.

f db c e a

p -1 p -12 3-1 p-1

FIGURE 3.

For SL2, the p2-restricted weights are precisely those in the upper
closure of the lowest p2 alcove. Thus the virtual composition factors
associated to a weight are just the ordinary composition factors of the
corresponding Weyl module. This is simple for weights on walls or in
the lowest p-alcove, and has two composition factors corresponding
to the highest weight and its reflection about the p-wall immediately
below it for weights in the remaining p-alcoves. As in this case
the various ci can only be 0 or 1, the corresponding socle series
predicted by our result will be as shown in Figure 4(a) (with the
actual submodule lattice obtained using the results in [8] given in
Figure 4(b)).

a

b
f
d

c
e

a

b
f
d

c
e

FIGURE 4. (a) and (b)

We now return to the proof of Proposition 5.4. The submodule
structure for the symmetric powers has already been given in [8], and
we merely verify that the results given there can be converted into
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the required form. For this we need to know the relative positions of
the virtual composition factors for certain p2-restricted weights. It is
for this reason that we restrict ourselves to considering SL2 and SL3,
although we conjecture that the result should hold for SLn without
restriction on n.
In order to convert the results from [8] for GLn into a form compat-

ible with the facet geometry, we use the usual change of coordinates
λ = (λ1, . . . , λn) 7−→ λ̄ = (λ̄1, . . . , λ̄n−1), where we set λ̄i = λi−λi+1.
This now gives the coordinates of the corresponding SL-weight in
terms of the basis of fundamental weights.
We begin by considering the SL2 case. Let b = (b1, b2) be the

highest weight vector in some composition factor of Sd(V ). By the
preceding remarks and Theorem 2.2 this is either (d, 0) or b̄ is a
reflection of some b̄′ about a pi-wall for some weight b′ generated
at an earlier stage in the algorithm (where we take i to be maximal
with this property). Let the corresponding elements of C(d) be c

and c′ respectively.
It will be enough to show that ck = 1 − c′k when 1 ≤ k ≤ i and

ck = c′k otherwise. Suppose that b̄′ = api − 1 + b with 0 < b < pi

and a 6≡ 0 mod p. Then it will suffice to show that the weight x̄

corresponding to the desired value of c̄ satisfies x̄+ b̄′ = 2api−2 (as
then x̄ must equal b̄). By considering the various possible values of
b′ik arising from (8) we see that

b̄′k = b′1k − b′2k =















dk if (ck, ck+1) = (0, 0)
p− dk − 2 if (ck, ck+1) = (0, 1)
dk − 1 if (ck, ck+1) = (1, 0)

p− 1− dk if (ck, ck+1) = (1, 1).

(9)

Clearly, we must have {(c0, c1), (c
′
0, c

′
1)} = {(0, 0), (0, 1)}, while for

1 ≤ t ≤ i−1 we have {(ct, ct+1), (c
′
t, c

′
t+1)} = {(0, 0), (1, 1)}. Further,

by our inductive hypothesis we must have {(ci, ci+1), (c
′
i, c

′
i+1)} =

{(0, 1), (1, 1)} or {(1, 0), (0, 0)}. Using (9) it is now easy to see that

∑

k

(b̄′k + x̄k)p
k = p− 2 +

i−1
∑

t=1

(p− 1)pt + (2a− 1)pi = 2api − 2

as required. This completes the proof in the SL2 case.
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The proof for SL3 proceeds in a similar manner. We shall first
consider the case where the initial weight lies in the interior of an
alcove, and show that when considering pt-alcoves, the set of virtual
composition factors associated to a given weight contains at most one
of each of the three types of alcove shown in Figure 5(a). Further, we
show that the image of the given weight under Wpt in each of these
alcoves corresponds to the carry pattern whose first t elements are
equal to the integer labelling that diagram, and that the remaining
elements of the carry pattern are fixed for these alcoves.

2

1

0

1

2

0

1

20

1

0

2

2 1

0 2

01

2 1 01

FIGURE 5. (a) and (b)

Using (4), and the known decomposition numbers for the Ẑ1(λ)
for SL3 [12], it is easy to show that the various possible patterns of
virtual composition factors associated to weights outside the lowest
p-alcove are as shown in Figure 5(b).
It just remains to consider the various possible cases, calculate the

weights corresponding to the predicted carry patterns, and verify
that the differences between them correspond to the relative posi-
tions of the various weights shown in each case. This is a routine (if
lengthy) exercise using the expression for the bik given in (8).
If the initial weight does not lie in an alcove, then the strong ver-

sion of the inductive hypothesis (asserting the precise form of the
corresponding carry patterns) is no longer satisfied. However by
similar arguments one shows that at every stage the virtual compo-
sition factors correspond to distinct values of an appropriate ct, and
that the ct′ (for t′ > t) remain constant. This completes the proof
of Proposition 5.4.
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FIGURE 6. (a) and (b)

To illustrate the SL3 case, we return to the example considered
in Figure 2. In Figure 6(a) we give the socle series constructed in
the proof of Proposition 5.4, while in Figure 6(b) we give the corre-
sponding submodule lattice calculated using [8]. The labels on the
left are those used in Figure 2, while on the right the corresponding
elements of C(d) are given.

6. THE QUANTUM MIXED CASE

To conclude, we consider the quantum general linear group q-
GL(n, k) defined by Dipper and Donkin [5], in the case when q is
a primitive lth root of unity and k has characteristic p > 0. Algo-
rithm 2.1 can easily be modified to give a corresponding algorithm
in this context, by replacing pi-facets by lpi−1-facets, and taking as
the initial dataset the decomposition numbers for all lp-restricted
weights.
Now the same arguments as in Sections 1 and 2 can be applied to

show that this gives the composition factors of the quantum Weyl
module corresponding to λ. For the results on the geometry of facets
it is sufficient to require that both l and p are at least as big as the
Coxeter number, which in this case is n. The general theory reviewed
in Section 1 is given in the quantum case in [7] and [4].
Again, this has applications via Ringel duality; for the results in

Section 3, we must replace the symmetric group by the Hecke alge-
bra — the basic theory needed in this case can be found in [7] and
[20]. Finally, the results on the submodule structure of the symmet-
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ric powers used in Section 5 have been generalised to the quantum
setting in [21].
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