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1 Introduction

The blob algebra was originally introduced in [1] in the context of statistical

mechanics, as a generalisation of the ordinary Temperley-Lieb algebra. In [2]

the blocks of these algebras were determined, together with the structure of

the standard modules (in the quasi-hereditary sense), over any field of charac-

teristic zero. In this paper we shall determine corresponding results in positive

characteristic.

The blob algebra can be defined as a quotient of the type B Hecke algebra

HB(n), much as the ordinary Temperley-Lieb algebra TLA(n) can be identified

with a quotient of the type A Hecke algebra HA(n). For this reason we shall

consider the blob algebra to be the type B analogue of TLA(n), and denote it

by TLB(n). This algebra is closely related to the algebra TBn defined by tom

Dieck [3].

As HB(n) is itself a quotient of the extended affine Hecke algebra of type

A, the representations which we construct will also be representations of this

algebra. The blob algebra was introduced as an algebra which, though of finite

rank, underlies the finite dimensional representation theory of (infinite rank)
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Temperley-Lieb algebras on the cylinder or annulus [4] (confer [5] and [6]).

In [7] the second author and Lehrer show that, on restriction, the standard

modules for the blob algebra will be cell modules for the annular Temperley-

Lieb algebra. Using this result and earlier work [8,9] they relate these modules

to the standard modules of Bernstein and Zelevinsky [10] (confer Rogawski

[11], Kazhdan and Lusztig [12] and Zelevinsky [13]) corresponding to two-

step nilpotent matrices. It follows that the decomposition numbers for these

standard modules can be determined from those for a corresponding family of

blob algebras.

Our definition of the blob algebra differs slightly from that given in [1]. After

an initial section of definitions, we shall relate these two definitions and show

that the two algebras are isomorphic in all cases that we need consider. Thus

the results in [2] can all be translated to our setting, a fact that we shall use

repeatedly.

The blob algebra TLB(n), defined over a field k, depends on two parameters

q ∈ k× and y ∈ Z. In order to relate TLB(n) to the original blob algebra, we

shall assume that [y] 6= 0. For the remainder of this section we shall review

the characteristic zero theory from [2], and indicate how the results must be

modified in positive characteristic.

When [2] 6= 0 the algebra is quasi-hereditary, with standard modules Wt(n)

where n+t is even with −n ≤ t ≤ n. We call the indexing set of these modules

the set of weights for TLB(n). By quasi-heredity, each Wt(n) has simple head

Dt(n), and all irreducible modules arise in this manner. The hereditary order

on the set of weights is given by t � u if and only if |t| > |u|. We can give

an explicit basis of diagrams both for the algebra itself and for each of the

standard modules.

From [2] we see that (in the cases of interest to us) the representation theory

of TLB(n) splits into three cases, depending on the choice of parameters. If

|y| ≥ n, and there is no y′ such that [y] = [y′] and |y′| < n, then the algebra is

semi-simple. Otherwise either q is not a root of unity (called the singly critical
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case), or q is a root of unity (the doubly critical case). For the semi-simple and

singly critical cases, the methods and results in [2] all generalise unchanged

to positive characteristic. Hence we shall assume that we are in the doubly

critical case, with q a primitive lth root of unity. We also choose x a primitive

2lth root of unity, such that x2 = q. Under these assumptions we may (and

shall) assume that −l < y ≤ l. For simplicity, we shall also assume that l > 2.

We define an alcove structure on R by defining the elements of the form y+al

with a ∈ Z to be walls, and the connected components of non-wall elements to

be alcoves. By regarding the set of weights for TLB(n) as a subset of R in the

obvious manner, we can thus refer to the alcove or wall in which a given weight

lies. It will be convenient to draw the set of weights (embedded into R) in the

form shown in Figure 1, where the vertical lines denote the walls in R. (In

0

yy+ly+2ly+3l

y-ly-2ly-3ly-4l

Fig. 1.

such diagrams we shall always assume that 0 ≤ y; however our results do not

require this assumption.) Suppose that s and t are weights with |s| > |t| ≥ 0,

such that s = w +m and t = w − m with w ∈ Z on a wall. In this case we

say that t is the reflection of s about the wall w. There is an injective map

from Ws(n) into Wt(n) which we denote by φst (respectively ψst) if |w| ≥ |m|

(respectively |w| < |m|). In [2] these maps were constructed indirectly in

characteristic zero; in Section 6 we shall give an explicit description of them,

and hence show that they exist in arbitrary characteristic.

Given a weight t, let s and u be minimal such that there exist maps φst and

ψ−ut. (If one or both of these maps does not exist because t is too close

to ±n then we are in a degenerate case of the following; the reader will

be able to make the appropriate modifications.) In characteristic zero with

t in an alcove we have that the quotient Yt(n) = Wt(n)/(Imφst) is inde-

composable with composition factors Dt(n) and D−u(n), while the quotient
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X0
t (n) = Wt(n)/(Imφst + Imψ−ut) is isomorphic to Dt(n). From this we can

deduce that Wt(n) has composition factors

Dt(n)

Ds1(n) D−u1
(n)

Ds2(n) D−u2
(n)

Ds3(n) D−u3
(n)

...
...

(1)

with elements si and −ui as in Figure 2

-u 1-u 2-u 4

s 3 s 2 s 1

-u 3

0

t

Fig. 2.

where the interior arrows denote ψ maps and the exterior denote φ maps.

There is a similar (simpler) statement for weights on walls (see [2, (9.4)The-

orem]). In positive characteristic the structure of the quotients X0
t (n) and

Yt(n) is no longer so straightforward; however, for precisely one element in

each alcove we can give an alternative description of these quotients that is

independent of the characteristic.

To do this we need to consider an embedding of TLA(n) into TLB(n). When

t ≡ y − 1 (mod l) with t ≥ 0 we have (Lemma 8.3) that

Yt(n) ∼= ∆t(n)

as TLA(n)-modules, where ∆t(n) is the standard module for TLA(n) associ-

ated to the weight t. Further, for this choice of t we shall show in Section

8 that each irreducible TLA(n) composition factor of X0
t (n) has a TLB(n)-

module structure, and hence that we can lift a composition series of X0
t (n) as

a TLA(n)-module to a composition series as a TLB(n)-module. If t < 0 and

t ≡ y + 1 (mod l) we have an isomorphism

Yt(n) ∼= ∆−t(n)
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and we can again lift a composition series of X0
t (n) from TLA(n) to TLB(n).

It is for this reason that we chose to draw our set of weights in the form given

above.

The composition factors of ∆t(n) are well known. In Section 4 we determine

them via Ringel duality from results about tilting modules for SL2. (This is

convenient in our context, as it allows us to state the result in alcove form.)

Motivated by the submodule structure of the ∆t(n) when l = 1 we next wish

to define a series of modules Ξi
t(n) for TLA(n) such that ∆t(n) ∼= Ξ−1

t (n) and

we have for all i ≥ 0 a short exact sequence

0 → Ξi
u(n) → Ξi−1

t (n) → Ξi
t(n) → 0

for suitably chosen u. We also require that there should be a simple combi-

natorial criterion for determining the compositions factors of the Ξi
t(n) from

those for the ∆t(n). In order to define such modules we consider the global

Temperley-Lieb algebra TLA(∞), and construct (Theorem 5.1) explicit homo-

morphisms θrs : ∆r(∞) → ∆s(∞) between standard modules for this algebra.

These maps give rise to all TLA(n) homomorphisms between standard mod-

ules, and can be used to define the Ξi
t(n) sought above.

Returning to our particular choice of weight for TLB(n), we can show by

comparing with the characteristic zero case (Proposition 8.4) that

X0
t (n)

∼= Ξ0
t (n)

and (Proposition 8.6) that we have a short exact sequence

0 → X0
−u(n) → Yt(n) → X0

t (n) → 0.

Hence we can determine the composition factors of Xt(n) and Yt(n) for pre-

cisely one weight inside each alcove.

To deduce from this the composition factors of Wt(n) for arbitrary weights,

we use an analogue of the translation principle. From the maps φ and ψ, along

with an explicit calculation of the action of certain elements of the algebra, we
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know the blocks of TLB(n) (Theorem 7.3). If we define the exact functor prt

from TLB(n)-mod to TLB(n−1)-mod to be restriction followed by projection

onto the block containing Wt(n), we can show for t in an alcove (Theorem

8.7) that prt±1Dt(n) is either 0 or Dt±1(n− 1), and determine precisely when

each case can occur. In this way we can translate a composition series for

Wt(n) for our special choice of t to any other t′ in the same alcove or on the

wall just below, and hence determine the composition factors of the Wt(n) by

induction, using the injective maps φ (Theorem 8.8).

We would like to thank the referee for many helpful corrections and comments.

The third author would like to thank the EPSRC for partial support under

GRM22536.

2 Preliminaries

In this section we review the various algebras to be considered in what follows.

We shall define these over A = Z[x, x−1, Q,Q−1], but will concentrate mainly

on their specialisations to a field k of characteristic p > 0. We set q = x2, and

fix an integer y. For any integer n we define the usual Gaussian coefficient

[n] = xn−x−n

x−x−1 ∈ A.

We begin by defining the various Hecke algebras that we shall require. The

Hecke algebra of type Bn, denoted HB(n), is the A-algebra generated by ele-

ments Ti with 0 ≤ i ≤ n− 1 subject to the relations

(T0 −Q)(T0 + 1) = 0

(Ti − q)(Ti + 1) = 0 if i 6= 0

TiTj = TjTi if |i− j| 6= 1

TiTjTi = TjTiTj if |i− j| = 1 and i, j 6= 0

T0T1T0T1 = T1T0T1T0.

The subalgebra generated by the Ti with 1 ≤ i ≤ n − 1 is the Hecke algebra

of type An−1, denoted HA(n).
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Next we define certain variants on the usual Temperley-Lieb algebra. The blob

algebra, denoted here by TLy
B(n) (or just TLB(n) when this is unambiguous),

is the A-algebra generated by elements Ui with 0 ≤ i ≤ n − 1 satisfying the

relations

U2
0 = −[y]U0

U2
i = −[2]Ui if i > 0

UiUj = UjUi if |i− j| 6= 1

UiUjUi = Ui if |i− j| = 1 and i, j > 0

U1U0U1 = [y + 1]U1.

(2)

Note that this is not the original definition of the blob algebra given in [1]; we

shall consider the relationship between the two definitions in Section 3. The

subalgebra of TLy
B(n) generated by the Ui with 1 ≤ i ≤ n − 1 is the usual

Temperley-Lieb algebra of type An−1, and will be denoted by TLA(n).

It will be convenient in what follows to work with a diagrammatic construction

of the blob algebra. In order to see that this coincides with our definition, it is

convenient to use certain results about projection algebras from [14, Chapter

6]. The necessary background material has been included in an Appendix at

the end of this paper.

We will construct a certain algebra of diagrams, and show that this is isomor-

phic to TLB(n). Whenever we consider diagram constructions, we shall adopt

the following conventions. By a diagram we mean a rectangular box containing

non-intersecting line segments, possibly with decorations. We refer to the dot-

ted boundary of a diagram as its frame and the interior line-segments as lines,

and identify two diagrams if they differ by an (edgewise) frame-preserving

ambient isotopy. Lines in a diagram are called propagating lines if they con-

nect the northern and southern edges of the frame, and northern (respectively

southern) arcs if they meet only the northern (respectively southern) edge of

the frame. The endpoints of lines are called nodes. If the number of southern

nodes in A equals the number of northern nodes in B then we define the prod-

uct AB to be the concatenation of the diagram A above the diagram B. (In

the product of two diagrams AB we assume that the southern nodes of A are

7



identified with the corresponding northern nodes of B, and ignore the dotted

line segment formed by their frames across the centre of the new diagram.)

21 n2 n i i+11

.... ..........

3 4 n−1 i−1 i+2

Fig. 3. U ′
0 and U ′

i

With these conventions, let U ′
0 and U ′

i (for 1 ≤ i ≤ n − 1) be the diagrams

shown in Figure 3 and define TL′
B(n) to be the A-algebra generated by these

elements, in which we (i) identify any diagram with a double-starred line

with −[y] times the same diagram with a single star, and (ii) identify any

diagram containing a closed internal loop with no decoration (respectively

decorated by a star) with the same diagram without the loop, multiplied by

−[2] (respectively multiplied by [y + 1]).

It is well known (see for example [15, Corollary 10.1]) that the subalgebra

of TL′
B(n) generated by the U ′

i with 1 ≤ i ≤ n − 1 is isomorphic to the

ordinary Temperley-Lieb algebra TLA(n). This subalgebra has a basis of those

diagrams with n northern nodes and n southern nodes such that every line

is either propagating or an arc, and no line is decorated with a star. We call

such diagrams Temperley-Lieb diagrams. If we relax the condition that no

line is decorated with a star then we call the diagrams that arise generalised

Temperley-Lieb diagrams. The algebra TL′
B(n) has a basis consisting of those

generalised Temperley-Lieb diagrams in which only the lines which can be

deformed ambient isotopically to touch the western side of the frame may be

decorated by a star, and each such line has at most one star.

It is easy to see that the algebra TL′
B(n) can be regarded as a quotient of

TLB(n) via the homomorphism which for each i takes Ui to U
′
i . We wish to

show that this is in fact an isomorphism. As noted in the Appendix, TLB(n)

is a projection algebra which satisfies the hypotheses of Theorem A.1 (i.e

Theorem 6.20 of [14]), and hence is free. As TL′
B(n) is clearly free, it is enough

to show that these two algebras have the same rank. In order to do this, we
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begin by considering a related algebra defined by tom Dieck [3].

The algebra TBn is the A-algebra generated by elements Ūi with 0 ≤ i ≤ n−1

satisfying the relations

Ū2
i = dŪi if i ≥ 0

ŪiŪj = ŪjŪi if |i− j| 6= 1

ŪiŪjŪi = Ūi if |i− j| = 1 and i, j > 0

Ū1Ū0Ū1 = dŪ1

for some d ∈ A. This algebra can also be realised as a projection algebra,

and we show in the Appendix that it is free of the same rank as TLB(n).

In [3, (4.5) Satz] it is shown that this algebra has a basis consisting of those

Temperley-Lieb diagrams with 2n northern nodes and 2n southern nodes that

are symmetric under reflection about the vertical axis.

We will be done if we can show that the set of such diagrams can be put

in bijective correspondence with our diagram basis for TL′
B(n). But this is

straightforward as such symmetric diagrams are determined by their right

hand halves, and these can be identified bijectively with our original diagram

basis by replacing each consecutive pair of intersections of lines with the axis

of symmetry with a connecting line decorated by a star, as illustrated in Figure

4.

Fig. 4.

In summary, we have shown

Proposition 2.1 The algebras TLB(n) and TL′
B(n) are isomorphic as A-

algebras.

This result can also be proved by mimicking the proof of [3, (4.5) Satz], or

9



directly using projection algebra methods. (We outline the latter approach in

the Appendix, leaving details to the reader.)

There is an injective algebra homomorphism from TLA(n) into TLA(n + 1)

obtained by adding a propagating line to the left-hand side of each diagram

(there is a right-hand analogue, but we do not consider it here). We identify

TLA(n) with its image under this embedding. We can now define the (left-

hand) global Temperley-Lieb algebra by setting TLA(∞) = limn→∞TLA(n).

This is an algebra consisting of all finite A-linear combinations of Temperley-

Lieb diagrams (where we identify such diagrams with those obtained by adding

infinitely many propagating lines on the left-hand side). In a similar manner we

can define an injective algebra homomorphism from TLB(n) into TLB(n+ 1)

by adding a propagating line to the right-hand side of each diagram. (Note

that there is no left-hand analogue in this case.)

Clearly, we also have embeddings of HA(n) into HB(n), and also of TLA(n)

into TLB(n). By specialising Q to a unit in Z[x, x−1] we may regard all of these

algebras as Z[x, x−1]-algebras. With this identification it is a routine exercise

to verify

Proposition 2.2 Suppose that Q = −x−2y. Then we have an algebra homo-

morphism τ : HB(n) → TLB(n) given on generators by

T0 7−→ (x− x−1)x−yU0 +Q and Ti 7−→ xUi + q (for i > 0).

This restricts to give a homomorphism from HA(n) to TLA(n).

Henceforth we shall assume that Q = −x−2y so that the above proposition

holds. For simplicity we will also assume that q 6= ±1.

3 Quasi-heredity and standard modules

The definition of the blob algebra given in Section 1 differs somewhat from the

original definition in [1]. In this section we shall relate these two definitions,
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and recall certain basic results about representations of these algebras from

[1] and [2].

We begin by recalling the original definition of the blob algebra. Let B =

Z[x, x−1, y−] and b(n) be the B-algebra generated by elements Vi (for 1 ≤ i ≤

n− 1), • and 2, which we shall represent diagrammatically as in Figure 5.

21 i i+1 n 1 2 n 1 2 n

Fig. 5. Vi, • and 2

Multiplication of two diagrams corresponding to elements in b(n) is given

by concatenation of diagrams as for TLB(n). We also impose the additional

relations

•+2 = 1

•2 = 2 • = 0

•2 = •

(3)

and identify a diagram containing a closed internal loop with no decoration

(respectively decorated by a blob) with the same diagram without the loop,

multiplied by [2] (respectively by y−). We set y+ = [2]− y−.

Consider the B-algebra generated by elements V ′
i , for 0 ≤ i ≤ n − 1, with

defining relations

V ′
0
2 = V ′

0

V ′
i
2 = [2]V ′

i if i > 0

V ′
i V

′
j = V ′

jV
′
i if |i− j| 6= 1

V ′
i V

′
jV

′
i = V ′

i if |i− j| = 1 and i, j > 0

V ′
1V

′
0V

′
1 = y−V

′
1 .

This is a projection algebra with the same projection graph as TLB(n), and

exactly as for TLB(n) we can show using Theorem A.1 that it can identified

with b(n) via the homomorphism which takes V ′
i to Vi for i ≥ 1 and V ′

0 to •.
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Over k, the algebra b(n) is quasi-hereditary, as the construction of the heredity

chains and corresponding standard modules given in [2, (3.2)] does not rely on

the characteristic of the underlying field. (The proof of quasi-hereditary in [2]

uses the well-known fact that if e is an idempotent in an algebra A such that

AeA is a direct summand of A and eAe is semisimple then AeA is a hereditary

ideal; confer [16, Example 1.5].) Further, the explicit construction of these

standard modules in terms of the ket diagram basis given in [2, Section 4] also

carries over. Just as for TLB, there is a canonical inclusion b(n − 1) →֒ b(n)

which adds an undecorated propagating line to the right-hand end of each

diagram.

Arguing as is [1, Section 2.3] we see that the representation theory of b(n) over

k splits into three distinct cases depending on the number of integer values of

a for which

[a]y− = [a− 1] (4)

in k. If there is no solution to (4) then b(n) is semisimple, by the arguments in

[1]. When q is not a root of unity there is a unique solution, and we say that

b(n) is singly critical. If however q is a root of unity then there are infinitely

many solutions, and we say that b(n) is doubly critical. In this latter case we

shall henceforth assume that q is a primitive lth root of unity. As noted in the

introduction, we may then assume that −l < y ≤ l, as in this case we have

that [t] = [t + 2l] for all t ∈ Z.

It is easy to verify that any solution of (4) must satisfy [a] 6= 0 in k. Thus in

the singly critical case we have y− = [a − 1]/[a] and y+ = [−a − 1]/[−a] in

k for some a ∈ N. In the doubly critical case we have y− = [a′ − 1]/[a′] and

y+ = [b′ − 1]/[b′] in k for some a′, b′ ∈ N. In this latter case we shall choose

a′ and b′ minimal with this property, and note that it is easy to verify that

a′ + b′ = 2l. We choose a and b such that −l < a, b ≤ l with a ≡ a′ (mod (2l))

and b ≡ b′ (mod (2l)).

The algebras b(n) and TLB(n) are defined over different ground rings. How-

ever, for the cases of interest in this paper (when we consider specialisations

to a field k) we have

12



Proposition 3.1 In either critical case, with y− and y+ as above, we have an

isomorphism of algebras θ : b(n) → TLa
B(n) given by

Vi 7→ −Ui, • 7→
[a]1 + U0

[a]
, 2 7→ −

U0

[a]
.

Further, we have another such isomorphism θ′ : b(n) → TLb
B(n) where we

interchange the roles of • and 2 above, and replace all occurrences of [a] by

[−a] (respectively [b]) in the singly (respectively doubly) critical case.

PROOF. By our earlier remarks, these algebras are both free with the same

rank. The proof is now an elementary exercise in checking that the morphism

is compatible with the relations defining each of our algebras.

Recall the explicit description of the standard modules for the blob algebra

given in [2, Section 4]. For n + t even with 0 ≤ t ≤ n, the ket diagram

basis of W̃±t(n) is the subset of the set of diagrams with n northern and t

southern nodes and no closed internal loops, with the following properties.

Each diagram has t propagating lines (and hence no southern arcs) in which

the leftmost propagating line (if any) is decorated with a blob (in the case

of −t) or a box (in the case of +t). Further, every northern arc which can

be deformed ambient isotopically to touch the western edge of the frame is

decorated with either a blob or a box. The action of b(n) on this basis is by

composition of diagrams (acting from above), except that composites with

fewer than t propagating lines are set to zero.

It will be convenient to introduce two other (isomorphic) realisations of these

modules with bases consisting of blob (respectively box) ket diagrams. The

blob ket diagrams are identical to the usual ket diagrams described above,

except that every northern arc which can be deformed ambient isotopically to

touch the western edge is now either undecorated or decorated with a blob.

Notice that every element in b(n) can be written as a linear combination of

diagrams containing no boxes; the action of such diagrams on the blob ket

basis is given by composition of diagrams (acting from above), except that

13



composites with fewer than t propagating lines are set to zero. There is a

corresponding description of the box ket diagrams interchanging the roles of

blobs and boxes. It may help the reader to note that the blob ket diagrams for

W̃+t(n) contain a box as well as blobs, but only on the leftmost propagating

line. (And similarly box ket diagrams for W̃−t(n) contain a blob as well as

boxes.) As an example, we give the blob ket diagram basis of W̃1(3) in Figure

6.

Fig. 6.

To see that the module defined by the blob ket diagrams is isomorphic to that

arising from the usual ket diagrams consider the linear map that takes a ket

diagram with s boxes on northern arcs to the signed sum of the 2s blob ket

diagrams obtained by replacing each box by either a blob or an undecorated

arc. From the first relation in (3) we see that the sign of such a diagram is

(−1)t where t is the number of new blobs in the diagram. It is easy to verify

that this induces a module isomorphism. Again, there is a similar isomorphism

in the box ket diagram case.

We next define certain representations of the algebra TLB(n), in terms of our

alternative presentation. For n + t even with 0 ≤ t ≤ n we let W±t(n) be the

TLB(n)-module with basis the set of diagrams with n northern and t south-

ern nodes and no closed internal loops, with the following properties. Each

diagram contains t propagating lines (and hence no southern arcs), all propa-

gating lines are undecorated, and the only northern arcs that may possibly be

decorated (in this case with a star) are those that can be deformed ambient

isotopically to touch the western edge of the frame. In the case of W+t(n),

the action of TLB(n) on this basis is by composition of diagrams, except that

composites with fewer than t propagating lines or a decorated propagating line

are set to zero. In the case ofW−t(n), the action of TLB(n) on this basis is also

by composition of diagrams, except that composites with fewer than t prop-
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agating lines are set to zero, while a diagram with a decorated propagating

line is replaced with −[y] times the corresponding undecorated diagram. Note

that W±n(n) is one dimensional; we denote the corresponding basis element

by e±n (or just e in the case +n).

Proposition 3.2 Via the isomorphism θ between b(n) and TLa
B(n) of Propo-

sition 3.1, we may identify W̃±t(n) with W∓t(n). Similarly, via the isomor-

phism θ′ between b(n) and TLb
B(n) we may identify W̃±t(n) with W±t(n).

PROOF. We define a linear map from W̃±t(n) to W∓t(n) on the box ket

basis by replacing each box on a northern arc by a star, and removing the

decoration from the leftmost propagating line. It is now an easy exercise to

show that this is compatible with the map θ. For the θ′ case the argument is

similar, using the blob ket basis.

When q is a root of unity, we will find it useful to relate modules Wt(n) for

TLa
B(n) and TLb

B(n). We shall temporarily denote byW y
t (n) the moduleWt(n)

defined for TLy
B(n).

Corollary 3.3 Suppose that q is a primitive lth root of unity and a′ ∈ N is

such that 0 < a′ ≤ 2l with [a′] 6= 0, and set b′ = 2l − a′. Let a and b be the

corresponding representatives mod 2l in the interval (−l, l]. Via the isomor-

phism θ′θ−1 from TLa
B(n) to TLb

B(n) we may identify W a
t (n) with W

b
−t(n) for

all −n ≤ t ≤ n with n+ t even.

As our choice of notation implies, there is a close connection between TLB(n)

and the generalised Temperley-Lieb algebra of type B defined in [14]. The

relationship between the two (in terms of the original definition of the blob

algebra) is outlined in [17].

Motivated by Proposition 3.1, we shall henceforth assume that [y] 6= 0. As

the arguments for the semi-simple and singly critical cases given in [2] go

through unchanged in positive characteristic, we shall also assume that we are
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in the doubly critical case, with q a root of unity. Thus for the remainder of

this paper, unless explicitly stated otherwise, we shall assume that q ∈ N is a

primitive lth root of unity with −l < y ≤ l and [y] 6= 0 (so in particular y 6= 0).

TLB(n) will always denote the algebra TLa
B(n) where a is as in Corollary 3.3

4 Ringel duality and TLA-modules

In this section we shall review the relationship between TLA(n) and the q-

Schur algebra Sq(2, n) associated to the quantum general linear group q-GL(2)

defined by Dipper and Donkin [18]. We follow the notation and conventions

in [19], to which the reader is referred for the basic definitions and results

concerning Schur algebras, quasi-hereditary algebras and Ringel duality that

we shall require. Throughout this section we shall suppose that l > 2, or that

l = 1 and p > 2.

We begin with a brief review of Specht module theory for HA(n). Details can

be found in [19, Section 4.7] and [20]. For each partition λ of n we may define

a Specht module Sλ for HA(n) (see [21] for details of their construction).

Given a cosaturated subset of row-regular weights Donkin has determined

[19, 4.7(5)] corresponding quotients HA(n)/I(π) of HA(n) such that Sλ is an

HA(n)/I(π)-module for each λ ∈ π.

Taking π to be the set of 2-part partitions of n (which is always saturated,

and row regular by our assumptions on l and p), and using [22] (see also [23])

we may identify TLA(n) with the quotient HA(n)/I(π). By Ringel duality,

it is now easy to determine the composition multiplicities [Sµ : Dλ] of the

simple modules Dλ in the Specht modules Sµ for TLA. (These composition

multiplicities are well-known, and were first obtained for l = 1 by James [24].

Further, when l = 1 the full submodule lattice of the Specht module is known

[25].) These results will be used in Section 5, after we have given an explicit

construction of Specht modules using diagram bases.

Let S ′(2, n) be the Ringel dual of S(2, n). The main result that we shall require
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is

Theorem 4.1 The algebra S ′(2, n) is Morita equivalent to TLA(n), and under

this equivalence, the standard modules for S ′(2, n) correspond to the Specht

modules labelled by 2-part partitions of n.

PROOF. This is a special case of [19, Section 4.7], which is a q-generalisation

of [20, (4.3) and (4.4)].

We adopt the usual convention for labelling weights, so that the set of dom-

inant polynomial weights Λ+(2, n) for q-GL(2) is identified with the set of

2-part partitions of n. Given a dominant polynomial weight µ, we let ∇(µ) be

the induced module of highest weight µ for q-GL(2), and T (µ) be the corre-

sponding tilting module. Tilting modules have a filtration by induced modules,

with multiplicities independent of the choice of filtration. We denote the mul-

tiplicity of ∇(µ) in such a filtration of T (λ) by (T (λ) : ∇(µ)). There are two

labelling conventions for Specht modules commonly in use; we adopt that for

which [Sµ : Dλ] 6= 0 implies that λ ≥ µ in the dominance order on weights.

By Ringel duality we have

Proposition 4.2 For all λ, µ ∈ Λ+(2, n) we have

[Sµ : Dλ] = (T (λ) : ∇(µ)) and Hom(Sλ, Sµ) ∼= Hom(∇(λ),∇(µ)).

PROOF. See [19, A4.6 and A4.8(ii)].

Henceforth we shall identify a weight µ = (µ1, µ2) in Λ+(2, n) with µ1 − µ2,

and thus regard Λ+(2, n) as a subset of N. For i ≥ −1 we call an integer µ an

lpi-wall if µ ≡ −1 (mod lpi), where we interpret lp−1 as 1. When we refer to

the least lpi-wall above µ (or the lpi-wall immediately above µ) we include the

possibility that this wall is µ itself.
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Corollary 4.3 We have Hom(Sλ, Sµ) isomorphic to k if λ is a reflection of

µ about the least lpi-wall above µ (for some i) and to zero otherwise.

PROOF. This follows immediately from Proposition 4.2 and [26, Theorem

5.1].

It will be convenient to consider the (l, p)-adic expansion of various weights

in what follows. We adopt the convention that in any expression of the form

a =
∑

i≥−1 ailp
i we shall interpret lp−1 as 1, and require (unless otherwise

stated) that 0 ≤ ai ≤ p− 1 (or l − 1 if i = −1).

Theorem 4.4 Suppose that λ ≥ l − 1, and let m be the unique non-negative

integer such that lpm − 1 ≤ λ < lpm+1 − 1. Writing λ in the form (lpm − 1) +

a+ lpmb with 0 ≤ a =
∑

i≥−1 ailp
i ≤ lpm − 1, we have

(T (λ) : ∇(µ)) =







1 if µ = λ− 2aJ for some J ⊆ [−1, m− 1]

0 otherwise

where aJ =
∑

i∈J ailp
i.

PROOF. See [19, 3.4(3)].

We need to invert this formula in order to determine [Sµ : Dλ] for a given

µ. In the notation of the theorem, all non-zero composition factors Dλ have

labels of the form

λ+ 1 = lpm(b+ 1) +
m−1∑

i=−1

ailp
i (5)

with 0 ≤ b ≤ p− 2. Thus we must have

µ+ 1 = lpm(b+ 1) +
m−1∑

i=−1

J(i)ailp
i (6)

where J(i) equals −1 if i ∈ J and +1 otherwise. Now any expression for µ+1

of this form will arise from some λ, so we just need to determine all such
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expressions (subject to the constraint that λ ≤ n). When l = 1 the following

Proposition is a re-expression of a result of James [24].

Proposition 4.5 The following algorithm gives the composition factors of Sµ.

(i) Let M be maximal such that lpM ≤ n, and set cf(µ) = {µ} and i =M .

(ii) For each τ ∈ cf(µ) from the preceding stage, if the least lpi-wall w above

τ is not an lpi+1-wall then reflect τ about w, and if the result wτ satisfies

τ < wτ ≤ n then add it to cf(µ).

(iii) If i > 0, let i = i− 1, and repeat from step (ii).

Before proving this we illustrate it with an example. Suppose that l = 5 and

p = 3, and that µ is the weight represented by a in Figure 7. The horizontal

line represents the set of weights (embedded into R and decreasing from left

to right) while the vertical lines represent lpi walls, where the length of a line

increases with i. Thus in the diagram there are 3 lp2-walls, 4 lp-walls that are

not lp2-walls, and 12 remaining l-walls.

ab cefd

Fig. 7.

The first stage of the algorithm reflects our weight about the central lp2 wall

as indicated to give b. The next stage produces the two additional weights c

and d obtained by the remaining reflections above the line of weights, while

the final stage produces the final pair of weights e and f obtained by the

reflections below the line of weights. Note that in this last step two potential

new reflections are omitted, as they would involve l-walls that are either lp-

or lp2-walls.

Proof of Proposition 4.5 For fixed µ we must show that the set of com-

position factors obtained by our algorithm agrees with those elements λ of

degree at most n arising from Theorem 4.4. First we show that any output λ

from the algorithm satisfies (T (λ) : ∇(µ)) = 1.
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Given a weight τ that is not an lpj-wall, suppose that w is an lpj-wall (but

not an lpj+1-wall) immediately above it. Let m be the unique non-negative

integer such that lpm − 1 ≤ wτ < lpm+1 − 1. Now writing wτ + 1 in the form

(wτ) + 1 = lpm(b+ 1) +
m−1∑

i=−1

ailp
i (7)

with 0 ≤ b ≤ p−2, 0 ≤ a−1 ≤ l−1 and 0 ≤ ai ≤ p−1 for i ≥ 0, we have that

τ + 1 = lpm(b+ 1) +
∑m−1

i=−1 ailp
i − 2(

∑j−1
i=−1 ailp

i)

= lpm(b+ 1) +
∑m−1

i=−1 J(w, i)ailp
i

(8)

where J(w, i) = +1 if i ≥ j and −1 if i < j. Indeed, if we relax the restriction

on the ai in equation (7) to 0 ≤ |a−1| ≤ l − 1 and 0 ≤ |ai| ≤ p − 1 for

0 ≤ i ≤ j − 1 (but still require that 0 ≤ ai ≤ p− 1 for i ≥ j), then equation

(8) still holds.

Suppose that λ ∈cf(µ). By construction λ = wt(wt−1(. . . (w1µ)) . . .) where for

each j we have that wj is an lp
fj -wall but not an lpfj+1-wall lying immediately

above wj−1(wj−2(. . . (w1µ)) . . .), and ft < ft−1 < · · · < f1. Now by induction

using equations (7) and (8) we see that if λ+ 1 is of the form in equation (5)

then µ+ 1 is of the form in equation (6), and so by Theorem 4.4 we see that

(T (λ) : ∇(µ)) = 1.

For the other direction, consider some λ which gives rise to an expression for

µ + 1 of the form (6). When ai = 0, the element J(i) may be chosen freely;

in such cases we set J(i) = J(i+ 1) if i < m− 1 and J(i) = 1 otherwise. We

also set J(m) = 1. Let K be the subset {k1, . . . kt} of [−1, m − 1] consisting

of those i for which J(i) 6= J(i + 1), arranged so that kt < · · · < k1. We now

define weights wi inductively (for 1 ≤ i ≤ t) by setting wi to be the lpki+1-wall

immediately above the weight wi−1(wi−2(. . . (w1µ)) . . .). It is now easy to see

that the weight λ can be obtained from µ by using this set of walls in our

algorithm.

In fact we have complete knowledge of the submodule structure of the Specht

modules in the case l = 1 and p > 2. In order to state this result we need to
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introduce some more notation, based on [25]. Given a weight µ with µ+ 1 =
∑

i≥0 aip
i we set B−

µ = {i | ai 6= 0} and B+
µ = {i | ai 6= p − 1}. We then

define Âµ to be the family of sets of natural numbers comprising of the empty

set along with any set I of the form I = [i1, i2) ∪ [i3, i4) ∪ . . . ∪ [i2t−1, i2t),

with i1 < i2 < . . . < i2t and i2j−1 ∈ B−
µ and i2j ∈ B+

µ for 1 ≤ j ≤ t.

For such a set I we define δI =
∑

i∈I(p − 1 − ai)p
i +

∑t
j=1 p

i2j−1 and set

Aµ = {I ∈ Âµ | µ+ 2δI ≤ n}. For I ∈ Aµ we set νI(µ) = µ+ 2δI .

It is straightforward to verify that

νI(µ) + 1 =
∑

i/∈I

āip
i +

∑

i∈I

âpi (9)

where āi =







ai + 1 if i = i2j for some j

ai otherwise

and âi =







p− ai if i = i2j−1 for some j

p− ai − 1 otherwise.

Note that the conditions on the sets B−
µ and B+

µ ensure that the coefficients

in each summation in (9) lie between 0 and p− 1. Further, it is easy to verify

that

µ+ 1 =
∑

i/∈I

āip
i −

∑

i∈I

âpi. (10)

We can now state

Theorem 4.6 When l = 1 and p > 2 the composition factors of Sµ are given

by the set {DνI(µ) | I ∈ Aµ}, and there is a lattice isomorphism between the

submodule lattice of Sµ and the lattice structure defined on Aµ by the relation

I ≥ J if I ⊆ J .

PROOF. See [25, Corollary 3.4]. (Note that the first part of the theorem

follows from a comparison of equations (5) and (6) with (9) and (10), by the

remarks before Proposition 4.5.)

The proof in [25] uses the ‘truncated inverse Schur functor’ defined in [27,
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Section 2], which gives an equivalence of categories between kΣn-Mod and

the full subcategory of S(n, n)-modules with p-restricted socle and head. The

result then follows from work of Adamovich [28,29] on the structure of certain

Weyl modules for GL(n). An alternative proof of Theorem 4.6 can be found

in [30], using Ringel duality and results of Doty [31] on the submodule struc-

ture of the symmetric powers of the natural representation for GLn(k). These

methods should extend to the case l > 2 (using Thams’ generalisation [32] of

the results of Doty), but we do not pursue this here.

Although we shall not use it directly in what follows, Theorem 4.6 motivates

our definition of certain submodules Ξi
λ(n) of S

λ in Section 5, which will play

a key role in what follows.

5 Standard module morphisms for TLA(∞)

In this section we define certain standard modules for the global Temperley-

Lieb algebra (defined after Proposition 2.1), and homomorphisms between

them. By restricting to the finite Temperley-Lieb algebras, we shall obtain all

morphisms between standard modules for these algebras.

n

n-2r

µ

Fig. 8.

For r ≥ 0 we define ∆r(∞) to be the k-module of arbitrary k-linear combi-

nations of diagrams of the form in Figure 8, where the shaded region µ is a

Temperley-Lieb diagram with n northern and n−2r southern nodes containing

no arcs on the southern edge, for some n >> 0. A diagram in TLA(∞) acts on

this k-module via the usual composition of diagrams, except that composites

containing a southern arc (and hence with more than r arcs on the northern

edge) are set to zero. In this way ∆r(∞) becomes a left TLA(∞)-module.
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When 2r ≤ n, we have a similar module ∆r(n) for TLA(n), the free k-module

with basis those diagrams having no closed loops, no arcs on the southern

edge, t = n− 2r propagating lines, and r arcs on the northern edge.

By restriction, ∆r(∞) is an (infinite dimensional) TLA(n)-module. We have

an injective TLA(n) homomorphism from ∆r(n) into ∆r(∞) given by adding

infinitely many vertical lines to the left-hand side of each diagram. We shall

identify ∆r(n) with its image under this morphism. Clearly, as a k-module,

∆r(n) is a direct summand of ∆r(∞).

Given a diagram D in ∆r(∞), we may choose n >> 0 such that D is of

the form shown in Figure 8. Any line e ∈ µ divides the interior of the frame

into two regions (possibly containing other lines), and we define h(e) ∈ A,

by setting h(e) = [a], where a is the number of lines (including e itself) in

the region which does not include the western edge of µ. This is the same as

defining a to be the number of lines to the right of (and including) e after we

have deformed the diagram by a (not necessarily edgewise) frame preserving

ambient isotopy so that e becomes a propagating line. As examples of this

procedure, consider the two lines e and f in Figure 9(a). The line e is already

propagating with h(e) = [4]. The diagram can be deformed so that f is a

propagating line as shown in Figure 9(b), and hence h(f) = [2].

f e.... fe....

Fig. 9. (a) and (b)

We can now define the hook product h(µ) by setting

h(µ) =
[n− r]!
∏

e∈µ h(e)

where [n]! = [n][n − 1] . . . [1]. This is independent of our choice of n, and

so we may denote it just by h(D). Note that this is a Laurent polynomial

with integer coefficients by [33] (see [8, (3.3) Proposition]). The importance of

the hook product arises from its role in Theorem 5.1, the proof of which will
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require the following notion of ‘nipping’.

.... ....

JJ

Fig. 10. (a) and (b)

Given an interval J on the northern edge of the frame of a diagram we say that

a line in the diagram is exposed to J if it can be deformed ambient isotopically

to touch it. If it is deformed to touch and cross J , and the segment outside the

frame is then removed, this process is called nipping the line at J . Note that

this procedure adds two new northern nodes to the diagram. For example,

nipping the diagram in Figure 10(a) as shown produces the diagram in Figure

10(b).

Theorem 5.1 For all r ≤ s, there is a non-zero TLA(∞) homomorphism

θrs : ∆r(∞) → ∆s(∞) which acts on a diagram E by

E 7−→
∑

D∈∆s−r(∞)

h(D)ED (11)

where ED denotes the composition of E with D, and the sum runs over those

diagrams D in our basis of ∆s−r(∞). When r = 0 this is (up to scalars) the

unique such morphism of standard modules.

PROOF. We begin by noting that this infinite summation makes sense, as

only finitely many terms contribute to the coefficient of any given basis element

of ∆s(∞). If E ∈ ∆r(∞), D ∈ ∆s−r(∞) and ED 6= 0, then this is equivalent

to D ∈ ∆s−r(n− 2r) and E ∈ ∆r(n) for large enough n.

To show that θrs is a homomorphism, we must verify that for all diagrams

E in ∆r(∞) we have θrs(UE) = Uθrs(E), for any U which is the image in

TLA(∞) of an element of some TLA(n) of the form Ui. Clearly, if UE is a

non-zero diagram in ∆r(∞) (i.e. has no southern arcs and no closed loops) we
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have

θrs(UE) = θrs(
∑

D∈∆s−r(∞)h(D)UED)

= U(
∑

D∈∆s−r(∞)h(D)ED) = Uθrs(E).

(12)

Also, any closed loop arising in the product UE will also occur in Uθrs(E) by

construction, and so it remains to check that UE = 0 implies that Uθrs(E) =

0. Note that this does not follow from (12), as it is possible for UE to have

more than r northern and at least one southern arcs, while for some D in

the sum the product UED has s northern and no southern arcs. Most of the

remainder of the proof is devoted to showing that the contributions to our

sum arising from such terms cancel.

Given such elements E and U we fix n >> 0 such that all but the n − 1

rightmost northern nodes of both E and U have propagating lines. We then

number the northern nodes n, n − 1, . . . from right to left, and the southern

nodes n+ 1, n+ 2, . . . from right to left. Having fixed n thus, we will number

the nodes in any diagram in the same manner. Given a diagram D, any line

e in D can now be uniquely specified by declaring the nodes at its endpoints,

as in e = (a, b), with a < b.

Having fixed n (and hence the numbering of the nodes) in this way, suppose

that the unique northern arc in U is labelled (i, i+1). We will label this element

U as Ui (note that this depends on our choice of numbering of the nodes). As

we are assuming that UiE = 0, we must have that E has propagating lines

at node i and i + 1. For the purposes of comparing diagrams, we may thus

suppress all arcs in E, which shall play no role in what follows. That is, we

may assume that E consists entirely of propagating lines (i.e. r = 0).

Write Uiθ
rs(E) =

∑

D∈∆s(∞)CDD. We wish to show that CD = 0 for all D.

Clearly any D for which CD 6= 0 must contain the line (i, i+1) (as this occurs

in Ui). If we write the image of E under θrs in the form
∑

F∈∆s(∞) h(F )F

(using our assumption that E only contains propagating lines) then there are

in general several diagrams F which can contribute to the coefficient CD.

Let D− be the diagram obtained from D by removing e = (i, i + 1), and let
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J be the interval of the frame of D− which was of the form [i, i + 1] in D.

Further, let e′ be any line exposed to the interval J in D−. Then nipping e′

at J produces a diagram which contributes to CD. Note that if a diagram F

does contribute to CD then all lines in F which do not end either at i or i+1

remain unchanged in UiF = D. Thus F differs from D only in that the end of

the lines at i and i+ 1 in F are connected in D, and a northern arc is added

at (i, i + 1). Thus the diagrams F which can contribute to CD are precisely

those obtained by nipping as described above, and D itself.

..

i i+1

.. −2

−1

+1 +2

Fig. 11. (a) and (b)

As an example, consider the diagram D in Figure 11(a), with i and i + 1 as

indicated. In this case D− is the diagram shown in Figure 11(b), and the lines

that can be nipped at J are those numbered ±1 and that numbered −2/+2.

If we nip line −1 (as indicated in Figure 11(b)) we get the diagram shown

in Figure 12(a), and clearly the product of Ui with this (as shown in Figure

12(b)) equals D.

..

..

Fig. 12. (a) and (b)

It is convenient to number the lines e′ in D− exposed to J by ±j for the jth

nearest exposed line to the right/left of J (as illustrated for the above example

in Figure 11(b)). Note that at most one line can be given two such labels; such

a line must consist of a northern arc whose nodes are on opposite sides of the

interval J (such as the line labelled −2/+2 in Figure 11(b)). We now use this

labelling to distinguish the various diagrams that can give rise to D. Given
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j ∈ Z, if there exists no line labelled by j, or such a line exists but there is

some m > j labelling the same line, then we set Dj = 0. Otherwise we let Dj

denote the diagram obtained from D− by nipping the corresponding line at

J . (In our example D−2 = 0 and D−1 is the diagram in Figure 12(a).) With

this notation we have

CD = −[2]h(D) +
∑

j

h(Dj) (13)

where h(0) = 0.

In order to complete the proof of the theorem, we will need the following

lemma. Suppose that the diagram D contains e1 = (a, b), e2 = (b + 1, c),

and (c + 1, c + 2), and that D′ is the same, except for having e = (a, c) and

m = (b, b+1) in place of e1 and e2. In other words,D′ = UbD. We will represent

D and D′ by the diagrams in Figures 13 (a) and (b) respectively (where the

shaded areas represent collections of lines common to both diagrams, whose

exact form will not concern us in what follows).

a b b+1 c c+1 c+2a b b+1 c c+1 c+2a b b+1 c c+1 c+2

Fig. 13. (a) and (b)

Lemma 5.2 Suppose that D and D′ are as above, with i = c + 1. Then we

have that CD = 0 if and only if CD′ = 0.

PROOF. We will show that CD′ = 0 implies CD = 0 (the other case is

similar). Given a line v (say), we will denote by the corresponding capital

letter (in this case V ) the integer satisfying [V ] = h(v). With this convention

we have h(e) = [E1 + E2]. We will consider the expression for CD given in

(13), and the corresponding expression for CD′ obtained by replacing each D

by D′ (which we will refer to as (13′)).

Every diagram X in the right-hand side of (13) except D−1 and D−2 corre-
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sponds to a diagram X̂ in the right-hand side of (13′) which differs from X

only in the replacement of the lines (a, b), (b+1, c) by the lines (a, c), (b, b+1)

(in particular D̂ = D′). Consequently, for all such X we have

h(X) =
[E1 + E2]

[E1][E2]
h(X̂). (14)

The only diagram in the right-hand side of (13′) not obtained under this

correspondence is (D′)−1, and as CD′ = 0 we have

h((D′)−1) = [2]h(D′)−
∑

j 6=−1

h((D′)j). (15)

Substituting (14) and (15) into (13) we see that

CD = h(D−1) + h(D−2)−
[E1 + E2]

[E1][E2]
h((D′)−1).

For convenience, the diagrams D−1, D−2 and (D′)−1 are illustrated in Figures

14 (a), (b) and (c) respectively.

a b b+1 c c+1 c+2

a b b+1 c c+1 c+2

a b b+1 c c+1 c+2a b b+1 c c+1 c+2

Fig. 14. (a), (b) and (c)

All shaded regions contribute equally to the respective hook products, and

hence by considering the contributions to these products from the remaining

lines we see that CD is proportional to

1

[E1][E2 + 1]
+

1

[E2][E2 + 1][E1 + E2 + 1]
−

[E1 + E2]

[E1][E2][E1 + E2 + 1]
.

We may regard this expression (and similar ones later in the paper) as making

sense even when some of the terms in the denominators are zero, by recalling

that all the hook products are elements of A, and hence that we may alter the
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constant of proportionality by a common factor which cancels any zeroes that

occur. (This factor will be implicit in any such equation, and ignored in the

discussions of them.) Thus it is enough to show that the numerator of

[E2][E1 + E2 + 1] + [E1]− [E2 + 1][E1 + E2]

[E1][E2][E2 + 1][E1 + E2 + 1]

is zero, which is an easy exercise using the definition of Gaussian coefficients.

We return to the proof of Theorem 5.1. Recall that the value of h(D) does

not change if we deform D by moving southern points ambient isotopically

anticlockwise round the frame to the northern side. Thus we may assume that

D is of the form shown in Figure 15. Here we have omitted all lines which are

not exposed to e from the diagram, as their effect will be accounted for in the

labels. Each of the lines shown (after e is removed) may be nipped to produce

a diagram contributing to CD in Uiθ
rs(E).

a

b b l c c

i i+1

s 1 1 t

...

...
...
...

Fig. 15.

There are four kinds of contribution. Those from D itself, from nipping lines

bj , from nipping lines cj , and those from nipping a. By repeated applications

of Lemma 5.2 (and its analogue with (i, i+ 1) on the other side of e1 and e2)

we may assume that s and t are each at most one.

Let h(b1) = [B] and h(c1) = [C] (where these are taken to be 1 if b1 or c1 does

not exist). Then h(a) = [B+C+2] and the coefficient of D is proportional to

−[2]

[B][C][B + C + 2]
+

1

[B + 1][C + 1][B][C]

+
1

[B + 1][C][B + C + 2]
+

1

[B][C + 1][B + C + 2]

=
−[2][B + 1][C + 1] + [B + C + 2] + [B][C + 1] + [C][B + 1]

[B][C][B + 1][C + 1][B + C + 2]
= 0.
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as required. (Recall our convention introduced in the proof of Lemma 5.2

concerning the interpretation of such fractions.)

..

.... ....

..

.... ....

r

....

s−r s

Fig. 16. (a) and (b)

We have shown that θrs is a homomorphism; to see that it is non-zero it is

enough to consider the diagram E consisting of r nested northern arcs to

the left of precisely s − r propagating lines (as illustrated in Figure 16(a)).

Consider the coefficient in θrs(E) of the diagram containing s nested northern

arcs at the righthand end (illustrated in Figure 16(b)). It is easy to verify that

this coefficient is 1, as the only diagram D in (11) contributing to this term is

the diagram with s− r nested northern loops at the righthand end, and this

satisfies h(D) = 1 as required.

For the final part of Theorem 5.1 suppose that r = 0, and that we have

a morphism θ from ∆0(∞) to ∆t(∞). We must show that this is a scalar

multiple of θ0t. As we wish to consider all diagrams in ∆t(∞), and hence

cannot fix an n >> 0 beyond which all lines propagate, we will now label the

northern nodes of diagrams in increasing order from right to left, starting at

1. As usual we will denote by Ui the image in TLA(∞) of some generator Uj

of some TLA(n) whose northern arc connects i and i+ 1.

With this convention we can now associate diagrams in our usual basis for

∆t(∞) with subsets I ⊂ N of size t, by associating a diagram to the set of

labels of those nodes lying at the righthand end of an upper arc. To complete

the proof of Theorem 5.1 it is enough to show that θ is determined by the

coefficient of the diagram corresponding to {1, 2, . . . , t}.

We partially order the t-element subsets of N by setting I ≤ J if im ≤ jm for

1 ≤ m ≤ t. Here I = {i1, . . . , it} and J = {j1, . . . , jt} are arranged so that

the entries are in increasing order. Let J be such a subset, and suppose that
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J 6= {1, . . . , t}. Then there exists a unique minimal element 1 < i ∈ J such

that i − 1 /∈ J . Let K be the set obtained from J by replacing i by i − 1.

Now the coefficient of K in Ui−1L is non-zero only if L = J or L ≤ K < J

(as nipping always moves some k ∈ K to the right). Inductively we know the

coefficients of all L < J in Im θ, and hence (as Ui−1Im θ = 0) we can determine

the coefficient of J . This completes the proof of Theorem 5.1.

By the second part of the last Theorem, we see that each standard module

∆u(∞) contains a unique one-dimensional submodule annihilated by all the

Ui. We fix a basis vu for this submodule. Further, each morphism θrs acts on

a diagram E by E 7−→ λEvr−s for some (fixed) scalar λ, where vr−s is our

fixed basis vector in ∆r−s(∞). It is now routine to verify that, given TLA(∞)-

homomorphisms

∆r(∞)

θrt

$$H

H

H

H

H

H

H

H

H

H

H

H

H

H

θrs //∆s(∞)

θst

��
∆t(∞)

we must have θstθrs = arstθ
rt for some arst ∈ k. Indeed, over A, it is easy

to compute arst. By considering the coefficient of the diagram with t nested

northern arcs to the right of the first propagating line we see that

arst =






t− r

t− s




 =






t− r

s− r




 where






a

b




 =

[a]!

[b]![a − b]!
. (16)

Let θrs(n) be the linear map obtained by restricting θrs to ∆r(n) and then pro-

jecting the image onto ∆s(n). We shall refer to θrs(n) as the map engendered

by θrs. Clearly the θrs(n) inherit the composition rules given above.

The importance of the θrs is that they engender all morphisms between finite

standard modules that we shall require.

Theorem 5.3 The map θrs engenders a non-zero TLA(n)-homomorphism

θrs(n) : ∆r(n) → ∆s(n) if and only if n ≡ r + s − 1 modulo lpj for some

j, with 0 ≤ s− r < lpj.
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PROOF. By definition, as a linear map θrs(n) is of the desired form. So it

just remains to verify that this is a TLA(n)-homomorphism. The only case in

which the proof given for TLA(∞) above fails here is when (in the notation

above) it is not possible to deform the finite diagram corresponding to (and

also denoted by) D so that e is contained inside an arc a (as in Figure 15). This

can only occur when D has no propagating lines to the left of e = (i, i+ 1).

Here the discrepancy from vanishing in the coefficient of D in Uiθ
rs(n)(E)

may be computed by thinking of it as (minus) the coefficient of the missing

diagram (the diagram which would have contributed and cancelled the others

in the global case). However, since this diagram, D′ say, is that obtained from

D by adding the requisite propagating line to the left of e, removing e, then

nipping the propagating line in the interval vacated by e, the diagram has a

total of n− r − s+ 1 lines and the coefficient is of the form

[n− r − s+ 1]!
∏

f∈D′ h(f)
. (17)

Thus θrs(n) will be a TLA(n)-homomorphism if and only if this expression is

zero for all possible D′ arising above.

Clearly for any m = ab we have xm−x−m = (xa−x−a)(x(b−1)a+x(b−3)a+ . . .+

x(1−b)a). From this it is easy to deduce that for any u ≥ v and 0 < c, d < p we

have

[clpu]

[dlpv]
=







0 if u > v

(−1)c−d
(
c
d

)

if u = v.
(18)

In general [n − r − s + 1]! contains a number of factors of the form [hlpu]

with 0 < h < p; factors which vanish in k. The value of (17) will be non-zero

precisely when such factors can all be cancelled by factors in the denominator.

If n − r − s + 1 6≡ 0 (mod l) then it is easy to construct a D giving rise to

a D′ with this property, and hence it only remains to consider the case when

n− r − s + 1 = mlpj for some j, with 0 < m < p.

It will be evident that the greatest number of factors of the form [hlpu] in

the denominator of (17) occurs when D′ is a diagram with just two sets of
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nested northern arcs — one ending at i, one beginning at i + 1. By (18),

the critical case is when the position of i partitions the lines between the two

factorials so that the greatest possible number of factors of form [hlpj ] appear,

as illustrated in Figure 17.

i+1is-r-x-1 edges

........

n-2s edges x edges

Fig. 17.

Here the region in the frame represents D, x is the excess of s− r over lpj, if

any, and the missing diagram D′ is that obtained by removing e = (i, i + 1)

and nipping the additional propagating line as shown. In this case we have

h(D′) =







[mlpj ]!
[s−r]![n−2s+1]!

if s− r < lpj

[mlpj]!
[lpj]![(m−1)lpj ]!

if s− r ≥ lpj .

Thus the coefficient vanishes if s− r < lpj , and not otherwise. This completes

the proof of Theorem 5.3.

Henceforth, it will be more convenient to denote the modules ∆r(n) by ∆t(n),

where t = n−2r, the number of propagating lines. This notation could not be

introduced earlier, as it makes no sense in the context of TLA(∞)-modules.

In a similar manner, we shall denote the morphism θrs(n) by θtu(n), where

t = n− 2r and u = n− 2s. It is clear (for example by drawing the diagram of
∏r

i=1 U2i−1) that

∆t(n) ∼=
TLA(n) (

∏r
i=1 U2i−1)

(

TLA(n) (
∏r

i=1 U2i−1)
)

∩
(

TLA(n)(
∏r+1

i=1 U2i−1)TLA(n)
)

and the latter module can be identified with the Specht module Sλ where

λ ∈ Λ+(2, n) is given by λ1 − λ2 = t (see [15, Chapters 6 and 9]). We denote

the simple head of this by Lt(n), and note that all simple TLA(n)-modules

arise in this manner.
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Remark 5.4 By Corollary 4.3, it is clear that Theorem 5.3 constructs (up to

scalars) all non-zero homomorphisms between standard modules.

By Theorem 5.3, for fixed t we obtain for each i ≥ 0 a non-zero TLA(n)-

homomorphism of the form θtt′(n) from ∆t(n) to ∆t′(n), by reflection around

the nearest lpi wall below t (provided that a suitable element t′ exists). We

shall denote such a map by θit(n) and set

Ξi
t(n) =







∆t(n)/Ker θit(n) if there exists such a θit(n)

Lt(n) otherwise.

It will occasionally be convenient to denote ∆t(n) by Ξ−1
t (n), and the identity

morphism by θ−1
t .

t t’ s s’

Fig. 18.

Our next aim is to construct certain homomorphisms between Ξi
t(n) and Ξi

s(n),

for suitable s and t. For simplicity, we shall often suppress the argument n

on morphisms where it is clear from context. Fix t and let t′ (respectively s′)

be its reflection about the nearest lpi-wall (respectively lpi+1-wall) below t.

Then s is chosen so that it is the reflection of s′ about the nearest lpi-wall

above s′. (An example of such a quartet of weights is given in Figure 18.) By

considering the maps engendered by our TLA(∞) morphisms on the various

∆(n)’s, and verifying that atss′ = att′s′ = 1 using (16), we obtain the following

commutative diagram of k-linear maps of TLA(n)-modules:

∆t(n)
θts(n) //

θit(n)

��

θi+1

t (n)

$$H

H

H

H

H

H

H

H

H

H

H

H

H

H

∆s(n)

θis(n)

��
∆t′(n) θt′s′ (n)

//∆s′(n).

(19)

Here the horizontal maps will not in general be TLA(n)-homomorphisms. How-

ever, we have

θi+1
t (∆t(n)) = θis(θts(∆t(n))) ≤ θis(∆s(n))
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and hence we induce a TLA(n)-homomorphism from ∆t(n) to ∆s(n)/Ker θis(n).

Further, if for x ∈ ∆t(n) we have θit(x) = 0, then

θi+1
t (x) = θt′s′(θ

i
t(x)) = 0

and hence θi+1
t (Ker θit) = 0, and we have a commutative diagram

0

##H

H

H

H

H

H

H

H

Ker θi+1
t

%%K

K

K

K

K

K

K

K

0 //Ker θit

OO

//∆t(n) //

%%K

K

K

K

K

K

K

K

Ξi
t(n)

��

// 0

0

OO

Ξi+1
t (n)

�� ##H

H

H

H

H

H

H

H

0 0.

(20)

Thus we see from (19) that θts(Ker θit) ≤ Ker θis, and so we obtain a non-zero

TLA(n)-homomorphism

θits(n) : Ξ
i
t(n) −→ Ξi

s(n).

We shall call Lv(n) a combinatorial composition factor (ccf) of Ξi
t(n) if Lv(n)

is a composition factor of ∆t(n), and v ≡ t (mod 2lpi). Unsurprisingly, our

main result about combinatorial composition factors is

Proposition 5.5 The module Lv(n) is a combinatorial composition factor of

Ξi
s(n) if and only if it is a composition factor of Ξi

s(n).

PROOF. We begin by showing that every ccf of Ξi
s(n) is a composition factor

of Ξi
s(n). First note that for fixed s the result is clear for i >> 0, as then

Ξi
s(n) = Ls(n). Thus we shall proceed by descending induction on i.

Let s and t be as in the definition of θits(n) (see Figure 18). If Lv(n) is a ccf

of Ξi
s(n) then Proposition 4.5 implies that v is obtained from s by a series

of reflections about lpj-walls. Therefore either v ≡ s (mod 2lpi+1) or v ≡ t
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(mod 2lpi+1), as these are the only two equivalence classes of weights in ∆s(n)

which are congruent to s mod 2lpi. In the first case we immediately see that

Lv(n) is a ccf of Ξi+1
s (n), but in the second we must also show that Lv(n) is a

composition factor of ∆t(n) before we can deduce that it is a ccf of Ξi+1
t (n).

Consider the second case: writing

v + 1 = lpm(b+ 1) +
m−1∑

j=−1

ajlp
j (21)

as in (5), and recalling that Lv(n) is a composition factor of ∆s(n), we have

that

s+ 1 = lpm(b+ 1) +
m−1∑

j=−1

J(j)ajlp
j (22)

for suitable J(j) = ±1 as in (6). Further, as v ≡ t (mod 2lpi), we must have

J(j) = +1 for j < i and J(i) = −1. Now setting J ′(j) =







J(j) if j 6= i

1 if j = i
an

easy calculation shows that

t + 1 = lpm(b+ 1) +
m−1∑

j=−1

J ′(j)ajlp
j

and hence that Lv(n) is a composition factor of ∆t(n) (by the remarks after

(6)). Thus we have shown that if Lv(n) is a ccf of Ξi
s(n) it must be a ccf of

either Ξi+1
s (n) or Ξi+1

t (n). By induction we deduce that it is a composition

factor of one of these two modules.

We have a commutative diagram

∆t(n)
θts(n) //

θi+1

t (n)

##H

H

H

H

H

H

H

H

H

H

H

H

H

H

∆s(n)

θis(n)

��
∆s′(n).

Note that the horizontal map is just a k-linear map, and that not all the

modules are necessarily distinct. We deduce that Ξi+1
t (n) ∼= Im θi+1

t is a sub-

module of Im θis (and hence of Ξi
s(n)), while from (20) we have that Ξi+1

s (n)

is a quotient of Ξi
s(n). As Lv(n) is a composition factor of Ξi+1

s (n) or Ξi+1
t (n)

we deduce that it is also a composition factor of Ξi
s(n) as required.
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It remains to show that any composition factor of Ξi
s(n) is a ccf of Ξi

s(n). We

proceed by induction on i. Given a composition factor Lv(n) of Ξ
i
s(n), either it

must be a composition factor of both ∆s(n) and ∆s′(n), where s
′ is obtained

from s by reflection about the nearest lpi-wall below s, or if no such s′ exists

then v = s. Thus we may assume that s′ exists.

As Lv(n) is a composition factor of Ξi−1
s (by (20)) we know by induction that

v ≡ s (mod 2lpi−1). (For the base case i = 0 this is clear.) Writing v as in (21)

and s as in (22) we deduce that J(j) = +1 for j < i − 1. It remains to show

that J(i− 1) = +1. If ai−1 = 0 then we may choose J(i− 1) freely, so we may

assume that ai−1 6= 0.

Suppose that J(i−1) = −1. Now Lv(n) is a composition factor of ∆s′(n), and

hence we have

s′ + 1 = lpm(b+ 1) +
m−1∑

j=−1

J ′(j)ajlp
j

for some J ′(j) = ±1. But

s′ + 1 = s+ 1− 2
i−2∑

j=1

J(j)ajlp
j − 2ai−1lp

i−1

which implies that

m−1∑

j=1

(J(j)− J ′(j))ajlp
j = 2

i−1∑

j=1

J(j)ajlp
j + 2ai−1lp

i−1.

We deduce that J ′(j)aj = −J(j)aj for j ≤ i− 2 and

(−1− J ′(i− 1))ai−1lp
i−1 ≡ 2ai−1lp

i−1 (mod 2lpi).

But this latter equivalence is impossible, and so we are done.

The importance of the Ξi
t(n) is clear from

Corollary 5.6 Let i ≥ −1 and suppose that 0 ≤ s′ ≤ s < t′ ≤ t ≤ n are

such that we have the commutative diagram (19). Then there is a short exact

sequence

0 → Ξi+1
t (n) → Ξi

s(n) → Ξi+1
s (n) → 0.
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If s is such that there does not exist a quadruple (s′, s, t′, t) satisfying the

conditions above then we have Ξi
s(n) = Ξi+1

s (n).

PROOF. First suppose that no such quadruple exists for a given s. Then in

the quadruple arising from (19), either s′ = t′, s′ < 0 or t > n. In the first

two cases we have Ξi
s(n) = Ξi+1

s (n) by definition, while in the third the result

follows from Proposition 5.5 and Proposition 4.5.

Now suppose that we do have such a quadruple of integers. As noted in

Proposition 5.5 Ξi+1
t (n) (respectively Ξi+1

s (n)) is a sub- (respectively quotient)

module of Ξi
s(n), and every composition factor of Ξi

s(n) occurs in Ξi+1
s (n) or

Ξi+1
t (n). The result now follows as these latter two modules clearly have no

common composition factors (by the combinatorial composition factor condi-

tion), and Ξi
s(n) has no composition factor repeated (being a quotient of such

a module by Theorem 4.4).

By repeated application of this result, we obtain for each i a filtration of any

given standard module by Ξi
t(n)’s, and hence (for i large enough) a composition

series of our standard module.

To illustrate these results we return to the example considered in Figure 7. In

this case Ξ0
a(n) has composition factors labelled by a, d, e, and f , while Ξ1

a(n)

has composition factors labelled by a and d and Ξ2
1(n) is the simple module

labelled by a. It is easy to verify that Ξ0
5(n) has composition factors labelled

by b and c. There is a short exact sequence

0 → Ξ0
c(n) → ∆a(n) → Ξ0

a(n) → 0

and similar sequences for the other Ξ’s.
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6 Standard module morphisms for TLB

In this section we will construct morphisms between standard modules for

TLB(n), which will be our main tool in determining the composition factors

of these standard modules. These morphisms were given in [2, (6.1) and (9.1)

Theorem] over a field of characteristic zero. From our explicit description we

shall see that these maps can also be constructed in positive characteristic. The

proof of this will be similar to that for TLA(n) standard module morphisms

in the previous section.

For D a diagram in our standard basis of Wt(n), we number the northern

nodes from 1 to n, left to right, and the southern nodes n + 1 to n + t from

right to left. Now a line e in D can be uniquely specified by declaring the

nodes at its endpoints, as in e = (a, a+2b+1), with b > 0. We assign to each

line e in D an element h(e) of A by setting

h(e) =







[b+ 1] if e is undecorated

[(a+ 2b+ 1)/2] [(n + t− a+ 1)/2] otherwise.

Note that for undecorated lines e, this agrees with the value of h(e) from the

previous section. We also define

h′(e) =







−h(e) if e is undecorated

h(e) otherwise.

We now define the hook products h(D) and h′(D) by setting

h(D) =
[n+t

2
]![n−t

2
]!

∏

e∈D h(e)
and h′(D) =

[n+t
2
]![n−t

2
]!

∏

e∈D h
′(e)

.

(Note that n+t
2

and n−t
2

are the total number of lines and northern arcs re-

spectively in D.)

Lemma 6.1 We have h(D), h′(D) ∈ A.

PROOF. We show that h(d) ∈ A, the other case is similar. Recall that a

partially ordered set is called a forest [33] if, whenever x ≤ y and x ≤ z, we
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have y ≤ z or z ≤ y. We shall begin by associating a pair of forests to our

given diagram D, corresponding to two related diagrams D′ and D′′.

We set D′ to be the diagram obtained from D by replacing each decorated arc

e = (a, b) by an undecorated propagating line e′ starting at a, with the node b

deleted. We also set D′′ to be the diagram on n− t nodes obtained from D by

taking the first n−t
2

lines (ordered by lowest numbered node), and replacing

each decorated line e = (a, b) with an undecorated line e′′ containing all arcs

to the west of b. If e is not a decorated arc, we denote the corresponding lines

in D′ and D′′ by e′ and e′′ respectively (where the latter is taken to be zero if

the corresponding line does not exist).

Fig. 19.

For example, if D is the diagram in Figure 19 then D′ and D′′ are given by

the diagrams in Figures 20(a) and 20(b) respectively.

Fig. 20. (a) and (b)

Note that for all e we have that h(e) divides h(e′)h(e′′) (where we define

h(e′′) = 1 if e′′ is zero), and that the (sets of lines in the) diagrams D′ and D′′

are both forests via the partial order inducing the h function (i.e. e1 ≤ e2 if

e1 is to the right of e2 after the diagram is deformed to make e2 propagating).

Clearly, it is enough to show that

[n+t
2
]!

∏

e∈E(D′) h(e)

[n−t
2
]!

∏

e∈E(D′′) h(e)
∈ A

but this is immediate from [8, (3.3) Proposition].

We shall again use nipping of diagrams to analyse various cases in the following
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theorem, just, as in the previous section. When nipping a decorated line, either

one or three possible nippings can occur, as we may choose to decorate either

(or both) of the new lines obtained by nipping (and must decorate at least

one) provided that they are allowed to be decorated (i.e. are exposed to the

western edge of the frame). Note that in the following Theorem we will drop

our standing assumption that q is necessarily a root of unity.

Theorem 6.2 Let t = m+u ≥ 0 with 0 ≤ u ≤ m and eitherm ≡ y (mod l) or

m = y if q is not a root of unity. Then there exists a non-zero homomorphism

of TLB(n)-modules φ :Wt(n) →Wt−2u(n) given on diagrams by

E 7→
∑

D∈Wt−2u(t)

h(D)ED

if m ≡ y (mod 2l), and by

E 7→
∑

D∈Wt−2u(t)

h′(D)ED

otherwise, where the sums run over those diagrams in our basis of Wt−2u(t).

When t = n this is the unique (up to scalars) such morphism of standard

modules.

PROOF. Note that if m ≡ y (mod l) then we either have [m] = [y] and

[m + 1] = [y + 1] (if m ≡ y (mod 2l)), or [m] = −[y] and [m + 1] = −[y + 1]

(otherwise).

Consider the case when q is a primitive lth root of unity and m ≡ y (mod 2l).

(The other root of unity case is very similar, and left to the reader.) By

considering the defining relations (2) we see that the algebras TLy
B(n) and

TLm
B (n) may be identified. Thus we may assume that m = y.

We proceed much as in the proof of Theorems 5.1 and 5.3. As there we may

suppress all arcs arising in E. We first verify that multiplication by U0 annihi-

lates φ(E). Terms in φ(E) in which the node 1 is connected to the south side

are killed by U0, while the remaining terms appear in pairs D,D′, identical

except for the decoration of the line from 1 in D′. Let e = (1, 2a) be the line
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in question. The contribution to h(D) from this line is effectively [a]−1, and

to h(D′) is ([a][y])−1. Thus the combined contribution to the coefficient of D′

in U0φ(E) is proportional to

1

[a]
+

−[y]

[a][y]
= 0.

(Recall the convention by which we interpret such fractions introduced in the

proof of Lemma 5.2.)

It remains to show that multiplication by Ui annihilates φ(E) for all i > 0. If

we write Uiφ(E) =
∑

D∈Wt−2u(t) CDD then we must show that CD = 0 for allD.

Clearly, anyD for which CD 6= 0 must contain an undecorated line e = (i, i+1)

(as this occurs in Ui). Let D be such a diagram and CD be its coefficient in

Uiφ(E). As for TLA(n), in general several diagrams will contribute to CD.

These are just those diagrams obtained by nipping D− (the diagram with two

fewer northern nodes obtained from D by removing e = (i, i + 1)), D itself

and (if it exists) the diagram D∗ obtained from D by decorating e.

Numbering the lines in D− as in the TLA(n) case, we let Dj denote the (sum

of) the diagram(s) obtained from D− by nipping the corresponding line at J ,

where J is the interval of the frame of D− which was of the form [i, i+ 1] in

D. (As in the TLA(n) case, we set Dj = 0 if there is no line labelled by j, or

there exists some x > j labelling the same line.) Note that Dj can consist of

more than one diagram for at most one j ∈ Z (i.e when D can be pictured as

in Figure 21(a) — where the shaded areas denote any suitable array of lines

— and j is the decorated line). For such a j the three diagrams obtained by

nipping the decorated line are of the form shown in Figure 21(b) where one

or both of e1 and e2 are decorated. We will denote these by Dj
l , D

j
r and Dj

b

where respectively the left line, the right line or both are decorated. We then

have

CD =







−[2]h(D) +
∑

f h(D
f ) + [y + 1]h(D∗) if D∗ exists

−[2]h(D) +
∑

f h(D
f ) otherwise.

(23)

where if j is such that Dj consists of three diagrams we define h(Dj) by

h(Dj) = h(Dj
l ) + h(Dj

r)− [y]h(Dj
b).
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We begin by considering the case where one of the Dj above consists of three

diagrams. Let D′ be the diagram obtained from D by removing the decoration

from line j. We claim that CD = 0 if CD′ = 0. (We will show that C ′
D = 0

shortly.)

2(s+a+b)i

r lines

2s+1 2(s+a) 2(s+a+b)

r lines

e
1 2

2s+1

e

Fig. 21. (a) and (b)

To show this, we may assume that D is given by the diagram in Figure 21(a)

where j is the decorated line (as noted above), and thatD′ is the same diagram

without the decoration. The three diagrams obtained by nipping the decorated

line are of the form shown in Figure 21(b) where one or both of e1 and e2 are

decorated. The diagram obtained by nipping the corresponding line in D′ is

also of this form, but with neither e1 nor e2 decorated.

Arguing as in Lemma 5.2 we will compare the expression for CD given in (23)

with the corresponding expression for CD′ obtained by replacing each D by

D′ (which we shall refer to as (23′)). Each diagram X in the right-hand side of

(23) except those occuring in Dj corresponds to a diagram X̂ in the right-hand

side of (23′) which differs from X only in the removal of the decoration from

line j (in particular D̂ = D′ and ˆ(D∗) = (D∗)′). Consequently, for all such X

we have

h(X) =
[a + b]

[s + a+ b][a + b+ r]
h(X̂). (24)

The only diagram in the right-hand side of (23′) not obtained under this

correspondence is (D′)j, and as CD′ = 0 we have

h((D′)j) = [2]h(D′)−
∑

l 6=j

h((D′)j)− [y + 1]h((D′)∗). (25)

Substituting (24) and (25) into (23) and using the definition of h(Dj) we see

that

CD = h(Dj
l ) + h(Dj

r)− [y]h(Dj
b)−

[a + b]

[s+ a+ b][a + b+ r]
h((D′)j).
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By considering the contributions to these hook products of lines not common

to both Dj and (D′)j (and noting that n + t = 2(s + a + b + r)) we see that

CD is proportional to

1

[r + a+ b][a + s][b]
+

1

[s+ a+ b][b+ r][a]
−

[y]

[s+ a+ b][b + r][a+ s][a+ b+ r]

−
[a + b]

[s + a+ b][a + b+ r][b][a]

Simplifying, using that y = a+ b+ r + s, this reduces to showing that

[s+a+b][a][b+r]+[a+b+r][b][s+a]−[a+b+s+r][a][b]−[a+b][s+a][b+r] = 0

an easily verified q-integer identity, and so the claim follows.

The analogue of Lemma 5.2 also holds in this case (with the same proof)

provided we require that e1 and e2 are undecorated. With this, the proof

proceeds just as in the TLA(n) case if e = (i, i+1) is not exposed to the west

wall, so we may assume that e is so exposed.

Let D be a diagram with a decorated line exposed to e. By our assumption,

and after ambiently deforming D, we may assume that D has no propagating

lines. We will also assume that our decorated line is to the left of e — the

other case is similar.

Suppose there is more than one such line to the left of e, and let f be the

decorated line furthest from e to the left. Let D′ be the diagram identical to D

except for f being undecorated (and denote this undecorated line by f̄). Note

that the diagram obtained after removing e and nipping f (respectively f̄) at

the interval where e was does not contribute to CD (respectively to CD′). Thus

CD = h(f̄)
h(f)

CD′. As h(f) is non-zero in A, we infer that CD = 0 in A if CD′ = 0

(in A). We wish to show that this remains true in the specialisation that we

are considering. However h(f), being a product of q-integers, is polynomial in

q and q−1. Therefore the implication holds on an open subset of the choice of

q parameter and hence — as CD ∈ A — everywhere.

Now suppose that f is the only decorated line to the left of e. Repeating the
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arguments of the preceding paragraph (as none of the arcs to the left of f can

be nipped at the interval formerly occupied by e) we see that CD = 0 if and

only if CDs
= 0, where Ds is obtained from D by replacing all exposed arcs to

the left of f by a single arc g (say). Thus Ds is of the form shown in Figure

22.

i+1i

R−1 arcs

fg

Fig. 22.

Here the exact structure of the areas in grey will not play a role in what follows.

We claim that CDs
= 0 if and only if CD′ = 0, where D′ is obtained from Ds by

removing the decoration on f . Once again, the argument is similar to that used

in the proof of Lemma 5.2. We may assume that h(g) = [G], and h(f) = [F ],

and shall consider the case where CD′ = 0. As before we compare diagrams

contributing to the coefficients CDs
and CD′ : every diagram X contributing to

CDs
apart from that obtained by nipping f corresponds to a diagram X̂ which

differs from X only in the removal of the decoration from f . Consequently for

all such X we have

h(X) =
[F ]

[F +G][L−G]
h(X̂)

where L is the total number of lines in a diagram. The only diagrams contribut-

ing to CD′ that do not arise under this correspondence are those obtained by

nipping f or g. As before, by considering the different contributions to CDs
and

CD′ obtained by nipping the remaining lines, we see that CD is proportional

to

1

[R][F +G+R][G][L−G]
−

[F ]

[F +G][L−G]

(

1

[G][R]
+

1

[F ][F +G+R]

)

which equals zero by an easy q-integer identity.

After repeating the above argument for decorated arcs to the right of e, it only

remains to show that CD = 0 when D has no decorations, and e is exposed to

the west. By Lemma 5.2 we can reduce to a D that differs from that displayed

45



in the proof of Theorem 5.1 only by the lack of a line a. However, in this case

we also have a diagram D∗ contributing to CD which differs from D in having

e decorated (to become e∗). But h(e∗) equals the product of the values of h

coming from the two lines arising from nipping a, and so we are done by the

arguments given at the end of the proof of Theorem 5.1.

Next consider the diagram E containing n− t (undecorated) nested northern

loops at the right-hand end (similar to that illustrated in Figure 16(b)). It

is straightforward to verify that the coefficient in φ(E) of the product of E

with the element in Wt−2u(t) containing u decorated loops (similar to that

illustrated in Figure 24) is 1, and hence φ is non-zero.

Finally, suppose that t = n, and that we have a morphism φ from Wn(n) to

Ws(n). As in the proof of Theorem 5.1 we associate to each diagram in our

basis for Ws(n) a subset I ⊂ N of size 1
2
(n− s). By regarding all diagrams as

if they were undecorated, we may associate to each a subset of N (and hence

induce a partial preorder on diagrams) just as in the proof of Theorem 5.1 on

page 30. We denote the undecorated version of a diagram X by X.

We proceed by induction with respect to this partial preorder. Let J be a

subset of N, and suppose that J 6= {1, . . . , n−s
2
}. Then there exists a unique

1 < i ∈ J such that i − 1 /∈ J . Let D(J) be some diagram corresponding to

J , and E be the diagram Ui−1D(J). We label the line starting at 1 in E by a.

The coefficient of E in Ui−1L is non-zero only if L = D(J) or L ≤ E < D(J).

If a is undecorated then the only diagram L with L = D(J) that contributes

is D(J). By induction we know the coefficients of all L < D(J) in Imφ, and

hence (as Ui−1Imφ = 0) we can determine the coefficient of D(J).

Now suppose that a is decorated. There are now three diagrams L with L =

D(J) which can contribute to the coefficient of E. These are obtained by

removing the arc (i − 1, i), nipping a at this interval, and decorating one or

both of the resulting arcs. We shall denote these three diagrams by Ll, Lr and

Lb depending on whether the lefthand, righthand, or both arcs are decorated.
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The diagram obtained by not decorating either arc we shall denote by L0.

Note that we have already determined the coefficient of L0 by the argument

above.

First consider Ll. The only diagrams that contribute to the coefficient of Ll

in U0L
l are Ll and L0, and hence (as U0Imφ = 0) we can determine the

coefficient of Ll in Imφ. In a similar manner, the only diagrams contributing

to the coefficient of Lb in U0L
b are Lb and Lr, and hence we can write the

coefficient of Lb in Imφ in terms of the (as yet unknown) coefficient of Lr.

Now return to considering the coefficient of E in Ui−1L. By the arguments

above (and induction) we know the coefficients of all such L in Imφ except

for Lr and Lb, and the latter coefficient can be written in terms of the former.

Hence (as Ui−1Imφ = 0) we can determine the coefficient of Lr (and hence

Lb) in Imφ.

This shows that the map φ is entirely determined by the coefficients of the

undecorated diagram corresponding to {1, . . . , n−s
2
}, and hence is unique up

to scalars as required.

It is now easy to give an explicit description of the other main class of standard

morphisms for TLB(n).

Theorem 6.3 Let t = m+u with u ≥ m ≥ 0 and m ≡ y (mod l). Then there

exists a non-zero homomorphism of TLB(n)-modules ψ : Wt(n) → Wt−2u(n)

given on diagrams by

E 7→
∑

D∈W0(2m)

h(D)EAu−m(D)

if m ≡ y (mod 2l), or by

E 7→
∑

D∈W0(2m)

h′(D)EAu−m(D)

otherwise, where the sum runs over those diagrams in our basis of W0(2m)

and Au−m(D) is the diagram in Wt−2u(n) obtained by adding a further u−m
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propagating lines to the right-hand side of D.

PROOF. We consider the case m ≡ y (mod 2l); the other case is similar. As

in the last theorem, it is enough to consider the case where E has no arcs.

By the last theorem, it is clear that ψ(E) will be non-zero and annihilated by

the elements of TLB(2m). Clearly, it will also be annihilated by the Ui with

i > 2m by the definition of the basis of Wt−2u(n). Thus it only remains to

check the action of U2m.

2m2m

Fig. 23. (a) and (b)

A typical diagram in ψ(e) is of the form shown in Figure 23(a), where the

line from 2m may be decorated. The decorated and undecorated forms of this

diagram are precisely those which contribute to the coefficient of the diagram

in Figure 23(b) in U2mΨ(e). Setting the length of the line from 2m to be b, we

have that the coefficient is proportional to

1

[b]
+

−[y]

[m][b]
= 0

(as [y] = [m]) and so we are done.

Recall that we have fixed y = a for some a as in Corollary 3.3 to define TLB(n),

but that all of our results also hold if we replace a by b = 2l−a in the defining

relations. Thus by working with TLb
B(n), and then using Corollary 3.3, we

obtain the following analogue of Theorems 6.2 and 6.3.

Theorem 6.4 (i) Let t = m+u ≥ 0 with 0 ≤ u ≤ m and m ≡ l− y (mod l).

Then there exists a non-zero homomorphism of TLB(n)-modules

φ : W−t(n) →W−(t−2u)(n).
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(ii) Let t = m+ u with u ≥ m ≥ 0 and m ≡ l − y (mod l). Then there exists

a non-zero homomorphism of TLB(n)-modules

ψ : W−t(n) → W−(t−2u)(n).

We denote a map φ : Ws(n) → Wt(n) arising from Theorem 6.2 or Theorem

6.4(i) by φst, and similarly denote the maps ψ arising from Theorem 6.3 or

Theorem 6.4(ii) by ψst.

Motivated by the type A case, we impose an alcove structure on Z by defining

all elements of the form y + al with a ∈ Z to be B-walls. Now the homomor-

phisms arising from Theorems 6.2, 6.3 and 6.4 correspond to reflections about

some B-wall.

Proposition 6.5 The maps φst and ψ−ut are injective.

PROOF. We consider the map φst (the other case is similar). By Corollary

3.3 we may assume that s and t are positive. Recall that the map φst on a

diagram E is given by the sum over certain diagrams D of hDED. Let D0 be

the diagram D with all arcs decorated. It is easy to see that hD0
= 1. We shall

denote the number of decorated lines in a diagram D by d(D). Note that for

any diagram E, any composite F = ED occurring in φst(E) is a diagram and

satisfies

d(F ) ≤ d(E) + d(D0)

with equality if and only if D = D0.

Suppose that φst is not injective. Then there exists some set of non-zero scalars

{λE} such that

φst(
∑

E

λEE) = 0.

By the above remarks we must have

∑

E′

λE′E ′D0 = 0
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where the sum runs over the set of diagrams E ′ such that d(E ′) is maximal

with λE′ 6= 0. But E ′ can be recovered from the composite E ′D0 by replacing

the rightmost d(D0) decorated lines with pairs of propagating lines, and so we

must have λE′ = 0 for all E ′, giving the desired contradiction.

7 The blocks of TLB

In this section we shall show that the blocks of TLB are just the equivalence

classes given by the relation generated by s ∼ t if there exists φst or ψst. As

all such maps are injections, it is clear that the blocks of TLB must be unions

of such classes; it remains to show that each class lies in a distinct block.

It is easy to verify that for all t > 0 and n > 0 we have the short exact

sequence

0 →Wt−1(n) → resBnWt(n + 1) →Wt+1(n) → 0 (26)

obtained by identifying Wt−1(n) with the set of diagrams in our usual basis for

Wt(n+1) whose rightmost line is propagating. We can also make the identifi-

cation of the quotient module with Wt+1(n) explicit. A basis of this quotient

module can be identified with the set of diagrams in Wt(n+ 1) containing an

arc of the form (e, n + 1) for some e. Then the isomorphism is given by the

map which takes this diagram to the element of Wt+1(n) obtained by moving

the endpoint of the arc at n + 1 ambient isotopically to the southern edge to

form a propagating line. If t+1 > n we interpret Wt+1(n) as the zero module.

There is a similar result for t < 0 with the roles of t− 1 and t + 1 reversed.

For t = 0 and n > 0 we have the short exact sequence

0 →W−1(n) → resBnW0(n+ 1) → W+1(n) → 0. (27)

In this case we identify diagrams in W−1(n) with those diagrams in W0(n+1)

whose rightmost arc is decorated, via the map obtained by deforming the

propagating line ambient isotopically into a decorated northern arc.

In HB(n) we define elements Li for 0 ≤ i ≤ n− 1 recursively by L0 = T0 and
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Li = q−1TiLi−1Ti for i > 0, and set Pj = LjLj−1 . . . L0. It is well-known (see

for example [34, Lemma 3.3]) that all symmetric polynomials in the Li (and

hence in particular Pn−1) are central in HB(n). It is also clear that for i > 0

we have Li = PiP
−1
i−1. We will abuse notation and denote by Ti, Li and Pi

the images of the corresponding elements in HB(n) under the quotient map

in Proposition 2.2. It will be convenient to define elements T ′
i in TLB(n) by

T ′
i = x−2Ti = 1 + x−1Ui for i > 0 and T ′

0 = −x2yT0 = 1− (x− x−1)xyU0

and to set L′
i = T ′

iT
′
i−1 . . . T

′
1T

′
0T

′
1 . . . T

′
i−1T

′
i for 0 ≤ i ≤ n − 1. Note that

L′
j = −qy−j−1Lj . It will also be convenient to write T ′

0 = 1 +KU0.

We will need to consider certain special basis elements inside the Wt(n). Let

ηt be the element in Wt(n) represented by the diagram with (n−|t|)
2

decorated

northern arcs and |t| propagating lines shown in Figure 24.

....

t21

....

Fig. 24.

The key to our block calculation is

Lemma 7.1 For all 0 ≤ i ≤ n − 1 and TLB(n)-modules Wt(n) the element

Li acts by a scalar on ηt.

PROOF. As Li = Pi(Pi−1)
−1 for all i > 0, it is enough to show that Pi acts

as a scalar on ηt for all 0 ≤ i ≤ n − 1. Consider the restriction of Wt(n) to

TLB(n−1). By repeated applications of (26) and (27) we see that ηt lies inside

a submodule isomorphic to some Ws(i+ 1) as a TLB(i+ 1)-module. As Pi is

central in TLB(n + 1), and Ws(i + 1) is generically irreducible, Pi must act

generically on ηt as a scalar by Schur’s lemma. Hence Pi acts on ηt as a scalar

over A by restriction, and over our field k by specialisation.
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We now wish to determine the value of this scalar. Consider the element

L′
jηt = T ′

jT
′
j−1 . . . T

′
1

︸ ︷︷ ︸

(∗)

T ′
0T

′
1 . . . T

′
j−1T

′
jηt.

Any undecorated arc introduced by one of the terms arising in (∗) cannot be

eliminated later, and so cannot contribute to the coefficient of ηt. Hence each

of the factors in (∗) must act as 1, leaving the coefficient of ηt unchanged, and

so it is enough to calculate the coefficient of ηt in T
′
0T

′
1 . . . T

′
j−1T

′
jηt.

.... ....

.... ....

Fig. 25.

First suppose that n > j > n− |t|. In this case we have Ujηt = 0, and hence

T ′
n−|t|+1 . . . T

′
jηt = ηt. Thus if n > j > n − |t| we only need to calculate the

coefficient of ηt in T ′
0T

′
1 . . . T

′
j−1T

′
n−|t|ηt. Consider the effect of Un−|t| on ηt as

shown in Figure 25.

The only way to remove the undecorated arc using terms from T ′
0 . . . T

′
n−|t|−1

is via U0U1 . . . Un−|t|ηt. For example, with two decorated arcs this gives the

diagram shown in Figure 26.

....

....

Fig. 26.

This diagram differs from ηt in the decoration of its leftmost propagating line,
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and hence

U0U1 . . . Un−|t|ηt =







−[y]ηt if t < 0

0 otherwise.

Similar arguments show that for j < n − |t|, the only way to remove an

undecorated arc introduced by Uj is via a product of the form

U0U1 . . . Ujηt =







[y + 1]ηt if j odd

−[y]ηt if j even.

(after using the defining relations in TLB(n) to remove decorated loops or

double decorations on arcs).

Combining the above results we can now calculate the value of T ′
0 . . . T

′
jηt for

n > j ≥ n− |t|. The only terms that can contribute to this are those arising

from the expressions U0 . . . Uiηt for i ≤ n − |t| and from 1ηt. Summing the

coefficients of each of these terms we see that the coefficient of ηt in the above

expression is given by

1 +Kx|t|−n(X(t) + x[y + 1]− x2[y] + x3[y + 1]− · · · − [y]xn−|t|)

where X(t) equals −[y] (respectively 0) when t < 0 (respectively t ≥ 0). After

expanding and cancelling terms, it is routine to verify that when n > j ≥ n−|t|

we have

L′
jηt = T ′

0 . . . T
′
jηt =







xt−nηt if t > 0

x2y−t−nηt if t < 0.

(Note that this case cannot arise when t = 0). For j < n−|t| similar arguments

give

L′
jηt = T ′

0 . . . T
′
jηt =







x−j−1ηt if j odd

x2y−jηt if j even.

Setting P ′
n−1 = L′

n−1L
′
n−2 . . . L

′
0 it is now easy to show that

P ′
n−1ηt = x

1

2
(n−t)(2y−n−t)ηt = x−

1

2
[(n−y)2−v2]ηt

for all ηt with t = y + v and |t| ≤ n.

When q is not a root of unity, the element P ′
n−1 is sufficient to distinguish the

blocks of TLB(n). In general however, we will need to consider all symmetric
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polynomials in the Lj . As T0 = −x−2yT ′
0, and Ti = x2T ′

i for i > 0, it is easy

to verify that

Ljηt =







−x2j+2−2y+t−nηt if j ≥ n− |t| and t > 0

−x2j+2−t−nηt if j ≥ n− |t| and t < 0

−xj+1−2yηt if j < n− |t| and j odd

−xj+2ηt if j < n− |t| and j even.

(28)

We shall write Ljηt = ajtηt. Arguing as in [35, (5.9) Proposition] we see that

if the multiset As = {ajs : 0 ≤ j ≤ n − 1} is not equal to the multiset

At = {ajt : 0 ≤ j ≤ n− 1} then there exists a symmetric polynomial S in the

Lj such that Sηs 6= Sηt. Hence, as S is central by our earlier remarks, to show

that s and t lie in different blocks it is sufficient to show that As 6= At.

Lemma 7.2 Suppose that q is a primitive lth root of unity and t = y+ v with

t + n even and |t| ≤ n. For any s with s + n even and |s| ≤ n we have that

As = At if and only if s ≡ y ± v (mod 2l).

PROOF. Using (28) it is easy to verify that for all t the multiset At is of the

form

{−qi : 1 ≤ i ≤
n− t

2
} ∪ {−qi−y : 1 ≤ i ≤

n+ t

2
}.

We may assume that s ≥ t. First suppose that s = t + 2lm for some m > 0.

Then

As = {−qi : 1 ≤ i ≤ n−t
2

− lm} ∪ {−qi−y : 1 ≤ i ≤ n+t
2

+ lm}

= {−qi : 1 ≤ i ≤ n−t
2

− lm} ∪ {−qi−y : n+t
2
< i ≤ n+t

2
+ lm}

∪{−qi−y : 1 ≤ i ≤ n+t
2
}.

Clearly we have {−qi−y : n+t
2
< i ≤ n+t

2
+ lm} = {−qi : n−t

2
− lm < i ≤ n−t

2
}

as each multiset consists of m copies of each distinct power of q. Therefore we

have that As = At when s = t+ 2lm.

To complete the proof, it is enough to show that if s = t+ 2a with 0 < a < l

and t = y + v then As = At if and only if s ≡ y − v (mod 2l). Arguing as
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above, we see that As = At if and only if

{−qi−y :
n+ t

2
< i ≤

n+ t

2
+ a} = {−qi :

n− t

2
− a < i ≤

n− t

2
}.

As each of these multisets contains a consecutive powers of q, and a < l,

each is determined by its initial element. Thus these two sets are equal if and

only if −q
n+t
2

+1−y = −q
n−t
2

+1−a. Rearranging we see that this is equivalent to

qt+a−y = 1, i.e. that t+ a ≡ y (mod l). Now t = y + v, so As = At if and only

if a ≡ −v (mod l), i.e. s = y + v + 2x ≡ y − v (mod 2l). This completes the

proof of Lemma 7.2.

Combining Lemma 7.2 with the partial block results arising from the existence

of the various injective maps φst and ψst we obtain

Theorem 7.3 For q a primitive lth root of unity, and t = y+ v, the modules

Ds(n) and Dt(n) lie in the same block of TLB(n) if and only if s ≡ y ±

v (mod 2l).

8 Decomposition numbers for TLB

In this section we shall determine the decomposition numbers for the blob

algebra. We begin by restricting our attention to the case when t ≥ 0 with

t ≡ y − 1 (mod l). Our strategy will be to define certain quotients X0
t (n) of

standard modules for TLB(n), and identify these on restriction to TLA(n) with

the modules Ξ0
t (n) defined in Section 5. We will then show that a composition

series of these as TLA(n) modules can be lifted to TLB(n). Similar results hold

when t ≤ 0 with t ≡ y + 1 (mod l).

For the remaining values of t we are able to prove a version of the translation

principle, which enables us to reduce the calculation to the case considered

above. Combining these various results, we are then able to determine induc-

tively the composition factors of the standard modules.

We will need an explicit description of Wt(n)↑, where (as in [2]) we denote
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by ↑ the left adjoint to the restriction functor. For this we shall use certain

globalisation functors F (n), following [2, Sections 3 and 4]. The constructions

given in [2] for the original blob algebra all transfer easily to our setting, so

we shall recall the definitions given there.

We define an exact functor pru : Mod (TLB(n)) → Mod (TLB(n − 1)). On

modules this is given by restriction to TLB(n − 1) followed by projection

onto the block containing Wu(n − 1), and on morphisms by restriction to

the corresponding domain. We also define resBn to be restriction from Mod

(TLB(n+ 1)) to Mod(TLB(n)).

As [2] 6= 0 in k, we can consider for n ≥ 2 the idempotent xn = Un−1/[2].

This lies in a hereditary chain for TLB(n) (confer [2, Section 3.2]), and we

have an algebra isomorphism TLB(n−2) ∼= xnTLB(n)xn which we view as an

identification. The globalisation functor F = F (n) from TLB(n − 2)-mod to

TLB(n)-mod is given by TLB(n)xn ⊗TLB(n−2) −. Using this we can prove

Proposition 8.1 For all t we have

Wt(n)↑∼= Wt+1(n+ 1) +Wt−1(n+ 1)

where the sum is direct if t does not lie on a B-wall.

PROOF. By the results in [19, Section A3] we have F (Wt(n)) ∼= Wt(n + 2)

(see [36, Proposition 3]). Also, by (26) we have

resBn+1F (Wt(n)) ∼= Wt+1(n+ 1) +Wt−1(n+ 1)

and Theorem 7.3 implies that this sum is direct for t not on a B-wall. Thus

it is enough to show that Wt(n)↑∼= resBn+1F (Wt(n)).

The modules Wt(n)↑ and F (Wt(n)) consist of linear combinations of diagrams

of the form shown in Figures 27(a) and 27(b) respectively, where A is a diagram

in TLB(n+ 1) and M is a diagram in Wt(n).

Under restriction, the diagrams associated to F (Wt(n)) can be deformed am-
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Fig. 27. (a) and (b)

bient isotopically without changing the module structure so that the extra

line a becomes a propagating line. There is now an obvious bijection between

diagrams in Wt(n)↑ and diagrams in resBn+1F (Wt(n)) obtained by removing

the loop u in the right-hand diagram. This induces the desired isomorphism.

A version of the above result was used implicitly in the proof of [2, Theorem

8.2(ii)].

Lemma 8.2 For t ≥ 0 the restriction of W±t(n) to TLA(n) has a filtration of

TLA(n)-modules

0 =W−1
±t (n) ⊆W 0

±t(n) ⊆ · · · ⊆W i
±t(n) ⊆ · · · ⊆ W±t(n)

such that W i
±t(n)/W

i−1
±t (n) ∼= ∆t+2i(n).

PROOF. Recall that we denote the number of decorated lines in a diagram

D by d(D). Let W i
t (n) be the subspace of Wt(n) spanned by all diagrams D

in the basis such that d(D) ≤ i. It is routine to verify that the map that

takes the class of a maximally decorated diagram D in W i
t (n)/W

i−1
t (n) to the

same diagram with the i decorated northern arcs replaced with 2i propagating

lines, obtained by nipping these arcs at the southern edge of Wt(n), is an

isomorphism of TLA(n)-modules.

Until the end of Proposition 8.6 we shall assume (unless explicitly stated

otherwise) that t ≡ y − 1 (mod l), and that t ≥ 0. Then by the results in

Section 6 we have injective TLB(n)-homomorphisms φst : Ws(n) → Wt(n)

and ψ−ut :W−u(n) → Wt(n) with s = t+ 2 and u = t+ 2(l− y) (respectively
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u = t− 2y) if y > 0 (respectively y < 0). (The elements s and −u correspond

to those marked s1 and −u1 in Figure 2.) We set Yt(n) = Wt(n)/φst(Ws(n))

and X0
t (n) = Wt(n)/(ψ−ut(W−u(n)) + φst(Ws(n))). If t is near to n then one

or both of these maps may no longer exist — these are degenerate cases of

the following, and we leave it to the reader to make the appropriate (easy)

modifications, similar to those in Proposition 5.6.

Lemma 8.3 Suppose that t ≥ 0 with t ≡ y − 1 (mod l). Then, considered as

a TLA(n)-module, we have

Yt(n) ∼= ∆t(n).

PROOF. Recall that under the map φst, a diagram E gets mapped to ED0

plus diagrams with fewer decorations. In this case d(D0) = 1, and so it is clear

that as a vector space we have Wt(n) ∼= φst(Ws(n)) ⊕∆t(n). But this is also

a TLA(n)-module decomposition, and so we are done.

Proposition 8.4 Suppose that t ≥ 0 with t ≡ y−1 (mod l). Then, considered

as a TLA(n)-module, we have

X0
t (n)

∼= Ξ0
t (n).

PROOF. We begin by noting that the modules Wt(n) and ∆t(n), along with

the maps θtt′ , φst and ψ−ut are all defined over Z[q, q−1]/(ql − 1). Thus we can

consider specialisations of these maps to any field containing a primitive lth

root of unity q. (Recall that we always assume that l > 2.) Now Yt(n) has

simple head Dt(n) by the quasi-heredity of TLB(n), which cannot occur as a

composition factor ofW−u(n). We claim that we cannot have ψ−ut(W−u(n)) ⊆

φst(Ws(n)), and hence that X0
t (n) is a proper quotient of Yt(n).

To see this, first note that both maps are injections, and hence we would induce

a non-zero TLB(n)-homomorphism from W−u(n) into Ws(n). By adjointness

we have

Hom(W−(u−1)(n− 1)↑,Ws(n)) ∼= Hom(W−(u−1)(n− 1), resBnWs(n))
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and Proposition 8.1, together with (26), (27), and our assumption imply that

the left-hand side is non-zero. By Theorem 7.3 and Proposition 8.1, the right-

hand side is isomorphic to

Hom(W−(u−1)(n− 1),Ws+1(n− 1))⊕ Hom(W−(u−1)(n− 1),Ws−1(n− 1))

and by another application of Theorem 7.3 we see that the second of these

Hom-spaces must be zero. Thus we deduce that Hom(W−(u−1)(n−1),Ws+1(n−

1)) is non-zero.

Repeating the above argument we see that Hom(W−(u−i)(n− i),Ws+i(n− i))

is non-zero for all 0 ≤ i ≤ l − 1. But by quasi-heredity we know that there

are no non-zero homomorphisms when u− i ≤ s+ i. We will show that there

exists a 0 ≤ i ≤ l − 1 satisfying this latter inequality to deduce the desired

contradiction. First suppose that y > 0. Then u − i ≤ s + i is equivalent to

l − y − 1 ≤ i. As y 6= 0 we are done in this case. Next suppose that y < 0.

Then u − i ≤ s + i is equivalent to |y| − 1 ≤ i, and as y > −l we again

deduce the desired contradiction, and our claim follows. (When n− t is small

this argument needs to be slightly modified, as Ws+i(n − i) may not exist

for i large. Again, we leave it to the reader to make the appropriate easy

modifications.)

In characteristic zero, the only proper TLA(n) quotient of Yt(n) is Ξ
0
t (n). By

the exactness of the θ0tt′ maps in Corollary 5.6 we see by induction on t that

the dimension of Ξ0
t (n) is independent of the ground field. By base change,

the spanning set for Im (φst) + Im (ψ−ut) in characteristic zero induced from

our usual bases must also give a spanning set in characteristic p, and hence

the dimension of this space in characteristic p is at most that in characteristic

zero. Thus we see that the dimension of X0
t (n) in characteristic p is at least

that in characteristic zero.

We have a non-zero TLB(n)-morphism from W−u(n) to Yt(n), which restricts

to a non-zero TLA(n)-morphism. The head of W−u(n) is D−u(n), and the

restriction of this to TLA(n) contains a copy of Lu(n). Now as a TLA(n)-

module, Yt(n) contains a unique composition factor Lu(n), which occurs as
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the head of a copy of Ξ0
u(n). Hence this copy of Ξ0

u(n) must be annihilated in

X0
t (n), and so we are done by the dimension estimate above.

Suppose t′ is such that we have a non-zero TLA(n)-homomorphism Ξ0
t (n) →

Ξ0
t′(n). Note that such a t′ must also satisfy t′ ≡ y − 1 (mod l).

Lemma 8.5 Let t and t′ be as above. Via the identifications in Proposition 8.4

the TLA(n)-homomorphism θ0tt′ induces a TLB(n)-homomorphism X0
t (n) →

X0
t′(n).

PROOF. We have an embedding of TLA(n − 1) into TLA(n) obtained by

adding a single propagating line to the left of each diagram; let resAn−1 be the

corresponding restriction functor from TLA(n)-mod to TLA(n− 1)-mod. It is

easy to verify that we have a short exact sequence of TLA(n− 1)-modules

0 → ∆t−1(n− 1) → resAn−1∆t(n) → ∆t+1(n− 1) → 0 (29)

obtained by identifying ∆t−1(n−1) with the set of diagrams in our usual basis

for ∆t(n) whose leftmost line is propagating. This is the TLA(n) analogue of

(26). Hence, as a TLA(n− 1)-module, we have

Yt(n) ∼= ∆t−1(n− 1)⊕∆t+1(n− 1)

where the sum is direct because t−1 and t+1 lie in different TLA(n−1) blocks

by our assumption on t. (Clearly a corresponding isomorphism holds for Yt′(n)

considered as a TLA(n−1)-module.) It is easy to verify using our identification

of the diagram basis for ∆t−1(n − 1) inside ∆t(n) that on ∆t−1(n − 1) the

element U0 acts as 0. Further, by identifying ∆t+1(n − 1) with the quotient

of ∆t(n) by the span of these basis elements, and considering the action of

U0 on elements representing basis elements of ∆t+1(n− 1), a simple diagram

calculation shows that U0 acts as −[y] on ∆t+1(n− 1). Similar results hold for

Yt′(n).

Now consider the map θ0tt′ from Ξ0
t (n) to Ξ0

t′(n). As TLA(n−1)-modules these

modules decompose into summands corresponding to the two blocks, which
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must be respected by the map θ0tt′ . By our calculations of the U0 action and

the relative positions of t and t′ we see that the actions of θ0tt′ and U0 must

commute, and hence θ0tt′ induces a TLB(n)-homomorphism from X0
t (n) to

X0
t′(n).

We now wish to show that all of the Ξi
t(n) defined in Section 5, and the

associated maps θitt′ , inherit a TLB(n) structure. We proceed by induction

on i. By Corollary 5.6 we see that either Ξi+1
t (n) can be defined in terms of

θitt′ or θ
i
ut for some u and t′, or Ξi+1

t (n) = Ξi
t(n). Thus it is enough to show

that the map θirs (for suitable r and s) becomes a TLB(n) map. But this

follows in exactly the same way as for θ0rs above, using (29). We denote the

TLB(n)-module obtained in this way from Ξi
t(n) by X

i
t(n). Thus our TLA(n)

composition series for Ξ0
t (n) lifts to a TLB(n) filtration for X0

t (n). It is also

clear that the successive quotients in this filtration are irreducible TLB(n)-

modules.

Note that the above arguments all extend to the case when t ≤ 0 and t ≡

y + 1 (mod l), provided we extend the labelling of TLA(n)-modules to Z by

defining ∆t(n) = ∆−t(n) for t < 0 (and similarly for the Ξi
t). Thus for such

values of t we can again define modules X0
t (n), and lift a TLA(n) filtration

to TLB(n). We will now use this fact to determine the TLB(n) composition

factors of Yt(n) when t ≥ 0 and t ≡ y − 1 (mod l).

Proposition 8.6 Suppose that t ≥ 0 with t ≡ y − 1 (mod l) and set u =

t + 2(l − y) (respectively u = t − 2y) if y > 0 (respectively y < 0). Then we

have a short exact sequence of TLB(n)-modules

0 → X0
−u(n) → Yt(n) → X0

t (n) → 0.

As −u ≡ y+1 (mod l) we thus obtain from the arguments above a composition

series for Yt(n).

PROOF. Let s = t + 2, and choose x and y minimal such that we have

maps φxs and φ−y−u. By our choice of t and u we have that X0
−u(n) =

61



W−u(n)/(ψx−u(Wx(n)) +φ−y−u(W−y(n))). As ψ−ut is an injection, it will thus

be enough to show that

Yt(n) ∼= Wt(n)/(φst(Ws(n)) + ψ−ut(ψx−u(Wx(n)) + φ−y−u(W−y(n)))) (30)

and that for any ψx−u(Wx(n)) + φ−y−u(W−y(n)) ⊂ V ⊆W−u(n) we have

Yt(n) 6∼= Wt(n)/(φst(Ws(n)) + ψ−ut(V )). (31)

As in Proposition 8.4 we shall use the fact that our modulesWa(n) and ∆a(n),

along with the maps φab and ψab are defined over Z[q, q−1]/(ql−1). Specialising

to characteristic zero, it is easy to see from [2, (9.4) Theorem] that (30) and

(31) must hold in this case. However, the dimensions of the various Wa(n),

Ya(n) and X
0
a(n) are independent of the characteristic of the field. Thus by a

base change argument as in Proposition 8.4 we see that (30) and (31) must

also hold in positive characteristic.

Again, we can obtain a similar result in the case t ≤ 0 with t ≡ y+1 (mod l).

Thus in these two cases we have determined the composition factors (with

multiplicities) of the Yt(n).

For arbitrary values of t we cannot apply the methods above, as it is no longer

the case that the simple TLA(n)-modules can be endowed with a TLB(n)-

module structure. However, for the remaining values of t it is possible to deduce

the desired results from those above using an analogue of [2, (8.3)Proposition],

which allows us to prove a version of the ‘translation principle’ for TLB(n). We

shall assume that t ≥ 0; the corresponding results for t < 0 can be obtained

in a similar manner.

We first prove an analogue of [2, (8.3) Proposition]. As usual we shall denote

the simple head of Wt(n) by Dt(n).

Theorem 8.7 Suppose that t > 0 does not lie on a B-wall, and let u ∈ {±1}.
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Then we have

prt+uDt(n) ∼=







0 if t+ u lies on a B-wall and u = +1

0 if t+ u > n

Dt+u(n− 1) otherwise.

PROOF. This can be shown by arguments as in [2, (8.3) Proposition]; how-

ever we shall give a slightly different proof. The case when t = n is easy, and

left to the reader. If t+ u ≤ n then by Theorem 7.3 and the assumption on t

we have that

prt+uWt(n) ∼= Wt+u(n− 1). (32)

When u = −1 or t+ u does not lie on a B-wall, this implies that Dt+u(n− 1)

must occur in the head of prt+uDt(n), as by induction on n−t and Theorem 7.3

we see that Dt(n) is the only composition factor ofWt(n) which can contribute

such a factor in Wt+u(n − 1). In the remaining case we have that Dt(n) and

Dt+2(n) are both composition factors of Wt(n) by Theorems 6.2 and 6.5. Now

if prt+1Dt(n) had a composition factor isomorphic to Dt+1(n − 1) then (32)

and the above argument applied to prt+1Dt+2(n) would imply that Dt+1(n−1)

occurs in Wt+1(n− 1) with multiplicity at least two, a contradiction. Thus in

all cases it is enough to show that no Ds(n − 1) can occur in the socle of

prt+uDt(n) for s 6= t+ u.

Suppose that Ds(n − 1) is a composition factor of the socle of prt+uDt(n).

Then we must have

Hom(Ws(n− 1), resBn−1Dt(n)) 6= 0

(as Ds(n− 1) is the head of Ws(n− 1)) and hence by Proposition 8.1 we see

that

Hom(Ws+1(n)⊕Ws−1(n), Dt(n)) 6= 0.

This implies that s = t ± 1; by block considerations we see that s = t + u as

required.

Analogues of Proposition 8.1 and Theorem 8.7 can also be proved for the
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corresponding TLA(n)-modules in exactly the same way.

Combining our various results it is now easy to determine the composition

factors of Wt(n) for all t. We shall assume that t ≥ 0 and proceed by induc-

tion on n − t. (The case t < 0 is similar.) When n = t the result is trivial.

By repeated applications of (26) and Theorem 8.7 with u = −1 (which does

not change the value of n − t) we may assume that (for fixed n) the compo-

sition factors of Wt′(n) are known for all t′ > t, and that t lies immediately

below a B-wall (i.e., t ≡ y − 1 (mod l)). For such a t, there is an injection

φ(t+2)t from Wt+2(n) into Wt(n), and the quotient of Wt(n) by the image of

this map is precisely Yt(n), whose composition factors we have already deter-

mined in Proposition 8.6. As the composition factors of Wt+2(n) are known

by assumption, the composition factors of Wt(n) can now be determined.

To give a more precise description of the composition factors of Wt(n) we

need a little more notation. For −n ≤ t ≤ n with t+n even we wish to define

sets of simple modules [X0
t (n)]. If t ≥ 0 and t ≡ y − 1 (mod l), or t < 0

and t ≡ y + 1 (mod l) let [X0
t (n)] equal the set of composition factors (with

multiplicities) of X0
t (n). In the remaining cases, for ±t ≥ 0 let [X0

t (n)] be

either {Dt(n)} if there is no B-wall between t and ±n, or prt[X
0
t±1(n + 1)]

otherwise, where prt acts on a set element-wise.

By Proposition 4.5, the composition factors of the X0
t (n) with t just below

a B-wall are ‘independent of n’, in the sense that for |s| ≤ min(n, n′) the

multiplicities [Wt(n) : Ds(n)] and [Wt(n
′) : Ds(n

′)] are equal. Using this,

it is now easy to determine the composition factors arising from the above

procedure:

Theorem 8.8 For t not on a B-wall, the composition factors of Wt(n) are
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given by the sets

[X0
t (n)]

[X0
s1
(n)] [X0

−u1
(n)]

[X0
s2(n)] [X0

−u2
(n)]

[X0
s3
(n)] [X0

−u3
(n)]

...
...

(33)

where the elements si and −ui are exactly as in (1). For weights on walls the

weights si and si−1 coincide for i odd (where s0 = t), and similarly for the

−ui, with the roles of odd and even reversed. In this case the set of composition

factors of Wt(n) is given by (33) after the removal of the sets [X0
si
(n)] with i

odd and [X0
−ui

(n)] with i even.

9 Conclusion

We have determined the decomposition numbers of the standard modules

for the blob algebra in all cases where the algebra is quasi-hereditary. This

completely determines the decomposition numbers for the original blob algebra

[1] in all cases except [2] = 0, by the remarks in Section 3.

In order to determine decomposition numbers for those standard modules over

the extended affine Hecke algebra described in the introduction, the work of

the second author and Lehrer [7] requires knowledge of decomposition numbers

for the blob algebra without restriction on the defining parameters. Thus, to

complete this analysis, it remains to determine decomposition numbers for the

blob algebra in the non-quasi-hereditary cases.

For all choices of the parameters, the second author and Lehrer have shown [7]

that the blob algebra is cellular in the sense of [35]. Most of the arguments in

the present paper go through in this more general setting, with the exception

of those given in Sections 4 and 8. Cellularity is a rather weaker property than

quasi-heredity, and hence the modifications required in these sections would

significantly lengthen this work. For this reason we shall present them in a
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later paper.

The blob algebra is amenable to a series of generalisations where higher-

dimensional alcove geometry plays a similar role. This provides scope for sig-

nificant generalisation of the methods used here. The basic machinery to do

this has been constructed in [37].

Appendix: Projection Algebras

Projection algebras were introduced in [14] as a framework in which to study a

large class of quotients of Hecke algebras. For the convenience of the reader we

collect here those definitions and results required in the body of our paper, and

indicate how they apply to the algebras TLB(n) and TBn defined in Section

2.

A projection graph G = (G,m,Z) is a finite graph G such that for each edge J

(regarded as a subset of the vertex set V (G) of G) we have an integer mJ ≥ 0

(called the multiplicity of J) and a subset ZJ ⊆ J . Given such a projection

graph G and a commutative ring A, let δ : V (G) → A be some function,

and for each edge J choose a monic polynomial fJ(X) ∈ A[X ] of degree mJ .

Then the projection algebra TG(A, δ, f) is the associative, unital A-algebra

with generators Bs for s ∈ V (G) and defining relations

(1) If s ∈ V (G) then B2
s = δ(s)Bs.

(2) If r, s ∈ V (G) but {r, s} is not an edge in G then BrBs = BsBr.

(3) If J = {r, s} is an edge in G then

(a) If r /∈ ZJ then BrfJ(BsBr) = 0.

(b) If s /∈ ZJ then BsfJ(BrBs) = 0.

(c) If J = ZJ then BrBsfJ(BrBs) = 0 = BsBrfJ(BsBr).

Consider the case where G is the graph on n vertices shown in Figure 28

0 1 n−12 n−2

Fig. 28.
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with mJ = 1 for all J and ZJ = ∅ for J 6= {0, 1} and Z{0,1} = {0}, and let A be

a field k, containing a non-zero element x used to define our usual Gaussian

coefficient [m]. If we set fJ(X) = X − 1 for J 6= {0, 1} and f{0,1}(X) =

X − [y + 1], and δ(i) = −[2] for 1 ≤ i ≤ n − 1 and δ(0) = −[y], then the

resulting projection algebra is just the algebra TLB(n). Thus the results in

[14, Chapter 6] can be applied in this case. However, in order to state them,

we first need some more notation.

Let a and b be elements of a partially ordered set (P,≤). We say that a covers

b if a > b and there is no c ∈ P with a > c > b, and that a and b are

incomparable if a 6≤ b and b 6≤ a. A subset D of P is called convex if a > c > b

with a and b in D implies that c ∈ D also. Given a projection graph G, a

G-sequence is a finite poset (P,≤) and a function h : P → G such that if

a and b are incomparable then h(a) and h(b) are not adjacent (i.e. do not

form an edge in G). A G-morphism θ from a G-sequence (P,≤P , hP ) to a

G-sequence (Q,≤Q, hQ) is a map between the underlying sets such that the

image is convex in Q, hP = hQ ◦ θ, and θ(a) <Q θ(b) implies that a <P b for

a, b ∈ P . If θ is a bijective G-morphism whose inverse is also a G-morphism,

then θ is a G-isomorphism.

A G-set is a G-sequence (P,≤, h) such that every surjective G-morphism

with domain P is a G-isomorphism. By [14, Proposition 6.13], a G-sequence

(P,≤, h) is a G-set if and only if for each pair a, b ∈ P we have

(1) If a and b are incomparable then h(a) 6= h(b).

(2) If a covers b then h(a) and h(b) are adjacent.

Note that if (D,≤D, hD) is a G-set such that for some edge J in G we have

h(d) ∈ J for all d ∈ D, then this G-set must be totally ordered, and hence

contain a unique minimal element. If (D,≤D, hD) and (P,≤P , hP ) are G-sets,

D is a subset of P , and the inclusion map is a G-morphism, then we say

that (D,≤D, hD) is a G-subset of (P,≤P , hP ). Finally, a G-set (P,≤P , hP ) is

called complex if there exists an edge J in G and a G-subset (D,≤D, hD) of

(P,≤P , hP ) such that h(d) ∈ J for all d ∈ D and either |D| ≥ 2mJ + 2, or
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|D| = 2mJ + 1 and s /∈ ZJ , where s is the image under hD of the unique

minimal element of D. (We call such an s the divisor of D.) We denote by

MG the set of G-isomorphism classes of non-complex G-sets.

We can now state the main result from [14, Chapter 6].

Theorem A.1 Let TG(A, δ, f) be a projection algebra. If {r, s} is an edge of

multiplicity zero then assume both that Z{r,s} = {s, t} and that if t is a vertex

adjacent to s and t /∈ Z{s,t} then t is also adjacent to r. If {r, s} and {s, t} are

edges of multiplicity one with r /∈ Z{r,s} and t /∈ Z{t,s}, and r and s are not

adjacent, then futher assume that

δ(r)fts(0) = δ(t)frs(0).

Under these assumptions, the projection algebra has a unique basis {Bp : p ∈

MG} such that Bbs = Bs if s ∈ V (G) and

BpBq = Bpq if p, q and pq ∈ MG with l(p) + l(q) = l(pq)

where l(p) denotes the cardinality of a G-set in the class p.

PROOF. See [14, Theorem 6.20].

It is clear that TLB(n) satisfies the hypotheses of this theorem. In this case a

G-set is complex if there exists a convex subset D and an edge J such that

h(d) ∈ J for all d ∈ D and either |D| ≥ 4 or |D| = 3 and s 6= 0, where s is

the divisor of D.

Note that TBn can also be realised as a projection algebra with the same un-

derlying projection graph as for TLB(n); it satisfies the conditions of Theorem

A.1 and hence (as the conditions for a G-set to be complex only depend on

the projection graph) is free of the same rank as TLB(n).

As noted after Proposition 2.1, it is possible to construct directly a bijection

between our diagram basis for TLB(n) and non-complex G-sets. We conclude
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0 1 2 3 4 5 6 7

Fig. 29. (a), (b) and (c)

by sketching this correspondence. Any non-complex G-set (for our G) can be

represented as a planar graph of the form shown in Figure 29(a) (where we

ignore all dotted lines). Here we represent the elements of the set as vertices

in the graph, with the relation induced by a ≤ b if a and b are connected by an

edge with b more northerly than a. The values of the function h are indicated

by the dotted lines.

We convert any such graph into a diagram basis element by replacing each

vertex a with either a matching northern and southern arc (if h(a) 6= 0) or by

a star (if h(a) = 0), and adding a boundary frame. We illustrate the change

from nodes into arcs for a graph on four vertices (none of which correspond

to the vertex 0 in our projection graph) in Figure 29(b), and for the graph in

Figure 29(a) in Figure 29(c). For this latter example the resulting diagram is

shown in Figure 30.

Fig. 30.
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