
Bayer, J., Flege, O. & Gacek, C. (2000). Creating product line architectures. Lecture Notes in

Computer Science, 1951, 210 - 216. doi: 10.1007/978-3-540-44542-5_23

<http://dx.doi.org/10.1007/978-3-540-44542-5_23>

City Research Online

Original citation: Bayer, J., Flege, O. & Gacek, C. (2000). Creating product line architectures.

Lecture Notes in Computer Science, 1951, 210 - 216. doi: 10.1007/978-3-540-44542-5_23

<http://dx.doi.org/10.1007/978-3-540-44542-5_23>

Permanent City Research Online URL: http://openaccess.city.ac.uk/253/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. Users may download and/ or print

one copy of any article(s) in City Research Online to facilitate their private study or for non-

commercial research. Users may not engage in further distribution of the material or use it for any

profit-making activities or any commercial gain. All material in City Research Online is checked for

eligibility for copyright before being made available in the live archive. URLs from City Research

Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised to

check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/2707681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk
http://www.city.ac.uk/

Creating Product Line Architectures1

Joachim Bayer, Oliver Flege, and Cristina Gacek

Fraunhofer Institute for Experimental Software Engineering (IESE)
Sauerwiesen 6, D-67661 Kaiserslautern, Germany

{bayer, flege, gacek}@iese.fhg.de

Abstract. The creation and validation of product line software architectures are
inherently more complex than those of software architectures for single systems.
This paper compares a process for creating and evaluating a traditional, one-of-
a-kind software architecture with one for a reference software architecture. The
comparison is done in the context of PuLSE-DSSA, a customizable process that
integrates both product line architecture creation and evaluation.

1 Introduction

Product line engineering is an approach to improve development efficiency for families
of systems by facilitating large-scale reuse. It typically focuses on building a reuse
infrastructure that can then be used to derive the product line members. A core asset of
such a reuse infrastructure is a product line architecture (also known as reference
architecture or domain-specific software architecture). Software architectures are a set
of components, connectors, constraints imposed on the components, connectors, and
their composition, and a supporting rationale. They are presentable in various ways —
different views supporting different needs [4]. A product line architecture is a software
architecture for supporting a complete product family, it reflects common parts as well
as variabilities among the various products. Product line architectures define the
essential parts of the reuse infrastructure and thus ensure that shared and instance-
specific components fit together for all product line members.

In this position paper, we illustrate the specific aspects of architecting for product
lines in the context of PuLSE-DSSA, the reference architecture development
component of the PuLSETM (Product Line Software Engineering)2 method [2]. PuLSE
is a method for enabling the conception and deployment of software product lines
within a large variety of enterprise contexts. To achieve this, the different PuLSE
components are customizable to different situations and contexts.

1 This work has been partially funded by the ESAPS project (Eureka Σ! 2023 Programme, ITEA
project 99005).

2 PuLSE is a registered trademark of the Fraunhofer IESE

2 PuLSE-DSSA

PuLSE-DSSA is based on the generic architecture development process shown in
Figure 1. This process is generic because it abstracts from the differences between
one-of-a-kind and product line architecture development, and also from the
customizations necessary to use this process in different application contexts. The only
product line specific aspects shown in Figure 1 are the input and output products of
PuLSE-DSSA. The input is a scope definition and a domain model, where the former
defines the business case for the development of the product line and the latter
describes commonalities and variations of applications within the product line. Output
of PuLSE-DSSA is a product line architecture as defined in the introduction.

In the following subsections, we present for each process step a generic description
and then point out the product line specific aspects, including customizations, that have
to be taken into account when developing a reference software architecture.

Figure 1 PuLSE-DSSA Process Overview

create scenarios

backtrack

iterate

þPuLSE-DSSA

domain decision
model

generic
workproducts

architecture
description

produce/

control

product

process

optional

optional
product

process

consume

decision
yes

analyze problem
➏

no

architecture finished

backtrack

group and sort scenarios
➋

generic

architecture
creation plan

apply scenarios to➍
elaborate architecture

architecture
evaluation plan

integrate existing
components

build architecture
prototypes

architecture architecture
prototype

evaluate➎
architecture

Legend

domain model

scope definition

define test cases
➌

architecture ok?

architecture
decision model

scenarios

flow

➊

2.1 Create Scenarios

The first step in architecture creation is to determine the most important requirements.
These are captured in scenarios that describe critical use-cases (i.e., how the system is
used to perform a specific task) as well as system level quality objectives (i.e., non-
functional requirements) and constraints. This step is necessary for a generic process
in order to decouple it from the various kinds of inputs (i.e., requirements
specifications) that are available in different contexts.

Product Line Aspects. In the PuLSE product line development process, the input for
this step would be a product line model consisting of generic workproducts (i.e.,
products describing requirements in terms of commonalities and variabilities) and a
decision model.3

Conventional scenarios are described on an instance level, which makes it difficult to
convey the variability information needed for product line requirements and to extract
the information that applies to a particular instance. Therefore, it is beneficial to use
generic scenarios that represent commonalities and variabilities like the product line
model’s generic workproducts, and are also instantiable via the domain decision model.

Managing traceability information is important to achieve effective maintenance
and consistent change management. This is even more valid in a product line context,
because a product line infrastructure is a strategic investment and will almost certainly
be maintained for a long time. As a first step towards full traceability, the scenarios
have to be linked to elements of the product line model.

2.2 Group and Sort Scenarios

This step yields the architecture creation plan that defines the iterations in which the
architecture development is performed. The first iteration deals with the most
important group of scenarios, the second one with the second most important group
and so forth. The order in which scenarios are addressed is highly significant, because
each iteration’s design decisions impose constraints on the architecture that delimit its
further evolution. Unfortunately, grouping and ordering of scenarios is also a highly
subjective task, as it relies on a combination of domain knowledge (ability to judge the
importance of a scenario) and system architecting experience (ability to anticipate how
a scenario could affect the architecture).

Product Line Aspects. The judgement of a scenario’s importance cannot be based on
its expected impact on the architecture alone. A complementary factor is the overall
importance a scenario has for the product line. Therefore, the information contained in
the scenarios is insufficient and has to be augmented with the scope definition. Ideally,
the scope definition is based on a process that seeks to estimate the economic value
each distinct feature would have for the product line (e.g., PuLSE-Eco [3]). Assuming

3 A decision model captures variability in a product line in terms of open decisions and possible
resolutions. In a decision model instance, all decisions are resolved. As variabilities in generic
workproducts refer to these decisions, a decision model instance defines a specific instance of each
generic workproduct and thus specifies a particular product line member.

that economic value and importance correlate, some of the subjectivity of this process
step can thus be reduced.

2.3 Define Test Cases

For each group of scenarios, test cases are defined that will be used to evaluate the
architecture at the end of each iteration. It should be possible to conduct the tests
automatically in order to facilitate regression testing, which is particularly important
for an iterative development process. Specifying test cases before the actual
development begins has a number of benefits, including a better understanding of the
requirements and avoidance of creating tests that, due to a fixed perspective, merely
support what has been developed.

It is important to note that evaluation needs have an impact on the choice of how the
architecture should represented, because different notations allow for different kinds of
(automatic) evaluations.

Product Line Aspects. In a product line context, instance- and family-specific test
cases have to be distinguished. The former do not differ from those used in one-of-a-
kind architecture development and are therefore less of a problem. The latter focus on
specific kinds of system level quality objectives such as maintainability,
understandability, and reusability. These qualities play a critical role for the
appropriateness of a reference architecture. However, it is extremely difficult to assess
the degree to which theses qualities are achieved by a given architecture. This problem
is hardly addressed by any architecture evaluation method (e.g., SAAM4 [5], ATAM5

[6]) nor by any architecture description language [7]. Neither have – to our knowledge
– any guidelines been published on how testing should be performed to ensure that a
product line infrastructure will be adequate.

2.4 Apply Scenarios

The group of scenarios associated with the current iteration is used to create the initial
architecture or to refine/extend an already existing, partial architecture. This step also
includes the possible integration of existing components (legacy or COTS) as well as
prototyping. The result is a (partial) architecture description and possibly a prototype.
During the application of scenarios, it is important to capture design decisions and link
them as well as architectural elements to scenarios to ensure traceability.

Product Line Aspects. During architecture development some variabilities might
become apparent that are not driven by the problem domain, but rather by the solution

4 SAAM assesses the impact of anticipated changes (new requirements) to predict modifiability. The
idea behind product lines is to consider anticipated changes already during architecting. Therefore,
we should expect that a SAAM scenario applied to a product line architecture is satisfied by a
particular instance of that architecture without needing any noteworthy changes

5 ATAM provides a framework for evaluating architectures, but does not provide the methods that are
required to use the framework (e.g., once you have a method to describe and assess the
understandability of an architecture, you could use ATAM to investigate the trade-offs between
understandability and other quality attributes).

(e.g., two components addressing the same problem, yet implementing differing
algorithms). In this case, the domain decision model is complemented by an
architecture decision model. All open decisions in both of these models have to be
resolved for instantiation.3w

The following issues address possible customizations of this step. First, an
appropriate representation for the product line architecture has to be chosen, which is a
major problem, because mainstream notations (e.g., UML) and tools do not support the
description and instantiation of generic architectures. Furthermore, different parts of
the architecture might require different representations as described by Perry [8].

Hand in hand with choosing a representation goes choosing (creating) an
instantiation mechanism and process. This may even encompass the construction of
the necessary instantiation infrastructure (tools, etc.). By defining how instantiation is
performed, it is also determined how variability is actually implemented.

Finally, the extent to which prototyping is performed must be defined. As illustrated
earlier, a theoretical groundwork for evaluating reference architectures based on
models (descriptions) is almost not existing, which suggests that prototyping is even
more important than for one-of-a-kind architecture development.

2.5 Evaluate Architecture

In this step, the architecture resulting from the previous step is evaluated according to
the architecture evaluation plan. If the evaluation is successful (i.e., all tests are
passed), the architecture development continues with the next iteration or is finished
once the last group of scenarios has been applied. If, however, at least some test failed,
the process continues with step 2.6 “Analyze Problem”.

Product Line Aspects. Evaluation has to address instance-specific as well as family-
specific aspects and relies on a defined instantiation mechanism. First, the ease with
which instances can be created allows to draw conclusions on critical family-specific
characteristics (i.e., usability, maintainability, etc.). Second, the range of possible
instantiations is used to ensure that the intended products are indeed covered by the
reference architecture. Third, instantiation yields variability-free architectures that can
be evaluated in the same way as one-of-a-kind ones. It is obvious that it is difficult to
both get and interpret these results without relying on a prototype and on an automatic
instantiation mechanism.

A lot of instance-specific tests tend to be applicable for several or even all instances.
It is therefore sensible to use this process step as a starting point for the construction of
an infrastructure for testing and debugging architectures of product family members as
proposed by Balzer [1].

2.6 Analyze Problem

At least one of the tests for evaluating the current architecture failed. In this step, the
underlying problem is examined in order to determine how the architecture
development process can be continued. The examination focuses on whether the
current group of scenarios could be applied successfully to the architecture that
resulted from the previous iterations. If this is deemed to be the case, only the current

iteration needs to be reiterated. Otherwise, some design decisions from an earlier
iteration are presumed to impose constraints that are too stringent for the current set of
scenarios. Therefore, extended backtracking is needed, which may include
reformulating, regrouping, and reordering of some scenarios and then reentering the
process in the appropriate iteration.6

Product Line Aspects. The task of finding out whether a given, partial reference
architecture is compatible with a new set of requirements is significantly more difficult
than to judge that for a one-of-a-kind architecture. Ensuring that an addition does not
break any of the possible instances of the architecture is a highly complex task,
especially when it involves dealing with entities that could not be encapsulated
properly. It is noteworthy that this problem is not only relevant for architecture creation
but also for maintenance. We are not aware of any published guidelines on how this
problem should be addressed.

3 Summary and Future Work

In this paper we have presented the PuLSE-DSSA method, while discussing its
customizability and how it is to be applied for the creation and evaluation of product
line architectures. This discussion was used to highlight how methods supporting
product line architectures must deal with complexities non-existent in those for one-of-
a-kind software architectures.

PuLSE-DSSA presents the framework for most of our current research in software
architectures. Some of the issues we are currently working on include means of
representing product line architectures with their commonalities and variabilities; the
derivation of instance architectures from a given product line architecture; supporting
traceability between architectural elements and various other assets; and the evaluation
of product line architectures.

References

1. R. Balzer, “An Architectural Infrastructure for Product Families,” in Proceedings of the
Second International Workshop on Development and Evolution of Software Architectures for
Product Families, Lecture Notes in Computer Science 1429, pp. 158-160, Springer, 1998

2. J. Bayer et al., “PuLSE: A Methodology to Develop Software Product Lines,” in Symposium
on Software Reusability’99 (SSR 99), pp. 122-131, May 1999

3. J.-M. DeBaud and K. Schmid, “A systematic approach to derive the scope of software
product lines,” in Proceedings of the 21st International Conference on Software Engineering
(ICSE 99), pp. 34-43, 1999

6 In some situations backtracking to the requirements definition phase (e.g., domain modeling) may
be necessary. This involves change management processes that are outside the scope of this paper
but are addressed within PuLSE.

4. C. Gacek, A. Abd-Allah, B. Clark, and B. Boehm, “On the Definition of Software
Architecture,” in Proceedings of the First International Workshop on Architectures for
Software Systems, D. Garlan (ed.), Seattle, WA, pp. 85-95, 24-25 April 1995

5. R. Kazman, G. Abowd, L. Bass, P. Clements, “Scenario-Based Analysis of Software
Architecture,” IEEE Software, vol. 13, no. 6, pp. 47-55, November 1996

6. R. Kazman, M. Barbacci, M. Klein, S.J. Carriere, and S.G. Woods. “Experience with
Performing Architecture Tradeoff Analysis,” in Proceedings of the 21st International
Conference on Software Engineering (ICSE 99), pp. 54-63, 1999

7. N. Medvidovic, “A Classification and Comparison Framework for Software Architecture
Description Languages”, Technical Report UCI-ICS-97-02, University of California, Irvine,
CA, Feb. 1997

8. D. Perry, “Generic Architecture Descriptions for Product Lines,” in Proceedings of the
Second International Workshop on Development and Evolution of Software Architectures for
Product Families, Lecture Notes in Computer Science 1429, pp. 51-56, Springer, 1998

