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Just Forget It
The Semantics and Enforcement of Information Erasure

Sebastian Hunt1 and David Sands2

1 City University, London
2 Chalmers university of Technology, Sweden

Abstract. There are many settings in which sensitive information is made avail-
able to a system or organisation for a specific purpose, on the understanding that
it will be erased once that purpose has been fulfilled. A familiar example is that of
online credit card transactions: a customer typically provides credit card details
to a payment system on the understanding that the following promises are kept:
(i) Noninterference (NI): the card details may flow to the bank (in order that the
payment can be authorised) but not to other users of the system; (ii) Erasure: the
payment system will not retain any record of the card details once the transaction
is complete. This example shows that we need to reason about NI and erasure in
combination, and that we need to consider interactive systems: the card details
are used in the interaction between the principals, and then erased; without the
interaction, the card details could be dispensed with altogether and erasure would
be unnecessary. The contributions of this paper are as follows. (i) We show that
an end-to-end erasure property can be encoded as a “flow sensitive” noninterfer-
ence property. (ii) By a judicious choice of language construct to support erasure
policies, we successfully adapt this result to an interactive setting. (iii) We use
this result to design a type system which guarantees that well typed programs are
properly erasing. Although erasure policies have been discussed in earlier papers,
this appears to be the first static analysis to enforce erasure.

1 Information Erasure

There are many settings in which sensitive information is made available to a system
or organisation for a specific purpose, on the understanding that it will be erased once
that purpose has been fulfilled. Common examples involve erasure of some authentica-
tion token, such as voter identity in e-voting, or biometric data in fingerprint-activated
left-luggage lockers. A more everyday example is an online credit card transaction. A
customer typically provides credit card details to a payment system on the understand-
ing that the following promises are kept:

Noninterference (NI): the card details may flow to the bank (in order that the payement
can be authorised) but not to other users of the system;

Erasure: the payment system will not retain any record of the card details once the
transaction is complete.

In this case, erasure ensures that the transaction does not make the customer or bank
vulnerable to breaches of security in the payment system which occur after the transac-
tion is complete. Two aspects of erasure are illustrated by this example:
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1. We need to be able to reason about NI and erasure in combination: we show that
flow sensitive NI combined with erasure is equivalent to a re-classification of the
erased input.

2. To give a satisfactory account of erasure, we need to consider interactive systems:
the card details are used in the interaction between the customer, the payment sys-
tem and the bank, and then erased; without the interaction, the card details could
be dispensed with altogether and erasure would be unnecessary.

Background The idea and motivations for studying erasure properties of programs
come from recent work of Chong and Myers [CM05], and we borrow some notation
from that paper. Their paper deals with expressive temporal information flow policies
for program variables which include combinations of erasure and declassification. In
their simplest form, erasure policies are written in the form a c↗ b, and are used to
describe a variable whose security level is initially a, but which is erased to level b as
soon as condition c (in principle an arbitrary property of the computation) is satisfied.
Policies as described in [CM05] are quite complex (expressive), and their semantics is
necessarily quite involved. It is perhaps not surprising that they have not described an
enforcement mechanism (e.g. a type system) for their policy language.

In this paper we take a fresh look at the erasure problem with a much less ambi-
tious policy language. We focus on just erasure, independently from declassification
concerns. We show how, together with a judicious choice of language construct to sup-
port erasure policies, we can take advantage of the close relationship between erasure
semantics and noninterference to provide, to our knowledge, the first static analysis to
enforce erasure policies.

Summary We begin (Section 2) by considering what we call end-to-end erasure for
non interactive programs. Consider the following trivial program: y := y + 1 ; cc := 0.
This program erases (the initial value of) cc. On the other hand, (if isVisa(cc) y :=
y + 1) ; cc := 0 does not erase cc, since some information about cc is retained by
y. More generally (following [CM05]) we talk about erasure of a variable to a higher
security level. In this very simple setting we show that:

– an end-to-end erasure property can be encoded as a “flow sensitive” noninterference
property (Proposition 1), and

– if we also require that the program is noninterfering, then this is a necessary and
sufficient condition for erasure (Proposition 2).

while serverUp {
input cc from user
input details from user
payment := process(cc)
output payment to bank
custInfo := custInfo ⊕ details
cc := 0

} . . .

End-to-end erasure is too simple to be useful in
itself. In Section 3 we move on to the study of era-
sure in the presence of fresh inputs and program out-
puts. Consider for example the program to the right.
Here the erasure property we might want is that no
information about the input cc in the first line of the
loop body can be observed after the transaction (the
loop body) is complete. In this case the input is not
erased because it is still present in payment , so if the
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server goes down the credit card information of the last transaction could be retrieved
from this variable and output by the system.

Defining what it means for a program to erase data in the general case is poten-
tially complex and, we suspect, correspondingly difficult to enforce. The key idea that
we introduce in Section 3 is a simple language mechanism to specify a well behaved
class of erasure policies. We introduce a block structured input command of the form
input x from a erased in C (the exact syntactic form accommodates a more general
notion than this and is written input x : a↗ b in C ) thereby tying the semantic
lifetime of the input (from the point of view of certain observers) to code block C. This
facilitates the subsequent development as follows:

– the definition of when a program correctly enforces such erasure policies (we call
such a program input erasing) becomes easy to state (Definition 4)

– because of the block structured nature of the erasure policy, we can apply ideas
from Section 2 to determine a local end-to-end style erasure condition (Defini-
tion 6) which, as for end-to-end erasure, can also be expressed as a reclassified
noninterference property (Theorem 1)

– we can then show that the local erasure condition together with a suitable nonin-
terference property is sufficient to guarantee that a program is input erasing (Theo-
rem 2).

Our final contribution (Section 4) is to use this local characterisation of erasure to de-
sign a type system which guarantees that well typed programs are input erasing. The
type system is a direct adaptation (extension) of a flow sensitive type system for nonin-
terference described in [HS06].

Section 5 discusses some of the subtleties of erasure and the computation model.
Section 6 concludes, revisiting related work and sketching some ideas for further work.

2 End-to-End Erasure

We start by considering erasure in its “purest” form. Consider programs which just
transform some initial memory state to a final memory state. Concretely, we can con-
sider a simple while language with no input or output commands (essentially the lan-
guage described in Figure 2 with all the input-output machinery removed). The se-
mantics of this language can be given as a small-step deterministic transition relation
on configurations, where terminating computations have the form 〈C, s〉 � 〈skip, t〉
(here C is a program and s, t are memory states: finite mappings from the set Var of
variable names to values).

2.1 Flow sensitive End-to-End Noninterference

As in [HS06] we consider a flow sensitive form of noninterference. Let Γ, Γ ′ be finite
mappings from variable names to elements of 〈L,v,t,u〉 a lattice of security levels.
We will call these security type assignments. We write s =X t to mean that states s and
t agree on all variables in the set X . For a ∈ L we write Γ ` s =a t to mean that s and
t are equal to all observers at or below security level a, with respect to the security type
assignment Γ . That is: Γ ` s =a t iff s =X t where X = {x|Γ (x) v a}.
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Definition 1 (Noninterference (NI)). A command C is noninterfering from Γ to Γ ′,
written Γ {C} Γ ′, iff, for all a ∈ L, if Γ ` s =a t and 〈C, s〉 � 〈skip, s′〉 then
〈C, t〉 � 〈skip, t′〉 for some t′ such that Γ ′ ` s′ =a t′.

(Note that, since programs are deterministic, if t′ exists - ie if the program terminates
- it is unique.) In other words, noninterference says that if two initial states are indis-
tinguishable to an observer at a (with respect to Γ ) then the resulting states will also
be indistinguishable (with respect to Γ ′). Note that, unlike [HS06], this is a termination
sensitive NI property, meaning that we do not allow information leaks through termina-
tion/nontermination behaviour. We chose this stronger variant because it is better suited
to a computational model with input-output (Section 3).

2.2 End-to-End Erasure

In what follows we have chosen to model erasure of the information stored in individual
variables. Our choice is essentially pragmatic: it allows us to express the key ideas in
a simple way while supporting reasonably expressive erasure policies. Other choices
are possible. For example we could model erasure of all information stored at a given
security level, or, conversely, partial erasure of the information stored in a variable. To
be more general still, one could model erasure of arbitrary projections on the program
state – and such things could be done in the PER model [SS01] or using abstract non-
interference [GM04]).

We define end-to-end erasure as a simple information flow property. In its simplest
form, say that a program completely erases the information in variable x if varying (just)
the information in x prior to execution has no effect on the final program state. In fact
we want to be more general than this (following [CM05]). We will say that x is erased
to some level b, if varying x leaves the final state unchanged from the viewpoint of all
observers except those at level b or above. In what follows we write ¬x for Var −{x}.

Definition 2 (End-to-End Erasure). Command C erases x to b in Γ ′, written
C : x↗b in Γ ′, iff, whenever s =¬x t and 〈C, s〉 � 〈skip, s′〉 then 〈C, t〉 �
〈skip, t′〉, for some t′ such that ∀c 6w b, Γ ′ ` s′ =c t′.

Note that we can recover complete erasure from the more general definition, in the form
C : x↗> in Γ , as long as we have some security level > such that, for all variables y,
Γ (y) 6w >.

Consider the example programs in Figure 1. We have P1 : zL↗ H in Γ , but P2

does not erase zL↗H because although zL itself is physically overwritten, information
about the initial value of zL is still present in yM . The same goes for P3: it does not
erase zL to H , this time because of an indirect information flow to yM .

Typically, we will wish to enforce policies in which erasure is required in addition
to NI. The programs in Figure 1 satisfy Γ {Pi} Γ (i = 1, 2, 3). If we replaced zL :=
0 with zL := yM in P1 the program would still erase zL to H , but would not be
noninterfering from Γ to Γ .

2.3 Relating End-to-End Erasure and NI

It is clear from the definitions that end-to-end erasure and noninterference are closely
related. In later sections we exploit this relationship in both the design of an erasure
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P1 : xH := xH + yM + zL

yM := yM + 2
zL := 0

P2 : xH := xH + yM + zL

yM := yM + zL

zL := 0

P3 : xH := xH + yM + zL

if (zL = 0) yM := yM + 1
zL := 0

Fig. 1. Example programs, assuming security type assignment Γ =
[xH 7→H, yM 7→M, zL 7→L] with respect to the three point lattice L v M v H .

policy mechanism, and in the adaptation of the flow sensitive type system from [HS06]
to produce a type system which also enforces erasure policies. The key observation is
that every erasure property can be enforced by requiring a related NI property.

Proposition 1. If Γ [x 7→ b] {C} Γ ′ then C : x↗b in Γ ′.

Proof. Assume lhs. Suppose s =¬x t and c 6w b. From the definitions and by assumption
of lhs, it suffices to show that Γ [x 7→ b] ` s =c t: this is immediate from s =¬x t and
Γ [x 7→ b](x) = b 6v c. ut

For example, the Proposition tells us that we can verify P1 : zL↗ H (Figure 1) by
showing that Γ [xL 7→H] {P1} Γ , and this can be done, for example, using the type
system from [HS06].

While useful, this leaves open the possibility that the reclassified NI condition of
Proposition 1 is too strong in general, requiring much more than is necessary to ensure
erasure. In practice, however, we wish to enforce erasure and noninterference together.
The following result shows that, if we already require the NI property Γ {C} Γ ′, then
the reclassified NI property Γ [x 7→ b] {C} Γ ′ is precisely what we need to ensure that
x is erased to b.

Proposition 2. If Γ {C} Γ ′ then C : x↗b in Γ ′ ⇐⇒ Γ [x 7→ b] {C} Γ ′.

Proof. Subsumed by Theorem 1.

3 Erasure in the Presence of Input-Output

The previous section showed how end-to-end erasure policies can be determined by
using reclassification and noninterference. But end-to-end erasure is not the kind of
policy we ultimately want to enforce. If all the attacker does is literally observe the
final values of a computation then Proposition 2 really tells us that an erasure policy
is just a way to fix a noninterference policy for which some data was assigned a level
which is too low.

Our task now is to generalise the notion of erasure to make it more meaningful and
more expressive. To do this we consider a system with inputs and outputs, and a notion
of erasure at an intermediate program point. For simplicity, we will identify security
levels with channels, thus for each a ∈ L, we assume exactly one channel, also named
a, which carries data at level a (c.f. [OCC06]).

It is tempting (and potentially expressive) to introduce separate constructs for input
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input x from a
if (x = 0)(x := −1; erased x to b)
output x on a

and erasure. But consider the example to the
right. Clearly, x is literally overwritten with a
constant in every run which passes the era-
sure assertion. Intuitively though, this pro-
gram should be rejected, since an observer of outputs on a can still deduce something
about the erased data. This is an example of one particular problem; there are poten-
tially many such problems compounded by the interaction between different erasure
operations and the deductions an observer can make though inputs and outputs.

Our key idea is to avoid these problems by combining input and erasure into a single
block structured command:

input x : a↗b in C

which can be read as the policy “input x on channel a then compute C, after which x
will have been erased to level b”. By associating the lifetime of the data with the erasure
policy in a block-structured way we avoid some of the subtle problems of indirect in-
formation flow interacting with the erasure policy. More importantly, we will show that
we can apply the end-to-end erasure definition locally to the command C to achieve a
meaningful global erasure.

To show that this is really the case we must first extend our definitions of noninter-
ference and erasure to take into account the fact that the language now has IO.

3.1 A Language with Input and Output

To be concrete let us take the simple while language and add input as an erasure dec-
laration as above, and a simple output statement. For the operational semantics of this
language we assume the existence of an infinite input stream for each security level.
We let I denote the set of input streams and, for any level a, Ia denotes the stream of
a-inputs, and Ia(m), m > 0 denotes the mth input on channel a.

We assume a small-step operational semantics with configurations of the form 〈C, s, i〉,
where C and s are as before and i ∈ L → N is the input stream pointer which records
how much of the input streams have been consumed so far.

Transitions are written in the form I ` 〈C, s, i〉 `→ 〈C ′, t, i′〉 where the label ` is
either an input event a?v, a silent transition τ , or an output event a!v. We will often
omit the label τ . The syntax and semantics are given in Figure 2. The input streams I
are left implicit in the rules. We assume an expression evaluator [[E]]s which produces
a value from an expression and an environment. We implicitly assume well-typedness
for expressions.

A “vanilla” input command input x from a, i.e. one which is not associated with
an erasure property, can be defined as a shorthand for the trivial erasure input x :
a↗ a in skip (it is trivially erasing because “after executing skip the value input on
channel a will only be visible at level a or above”).

From the single step evaluation relation we define the zero-or-more-step relation α�,
labelled with a sequence of non-silent events, in the obvious way. We write c1 � c2 to
mean that c1

α� c2 for some (possibly empty) α and c1
α� to mean ∃c2.c1

α� c2.
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Expressions E ::= n | x | E op E′

Commands C ::= skip| x := E | C1 ; C2| if E C1 C2|while E C

| input x : a↗b in C | output E on a

Reduction Contexts R ::= [·] | (R[·] ; C)

Ia(n) = v n = i(a) + 1

〈input x : a↗b in C, s, i〉 a?v→ 〈C, s[x 7→ v], i[a 7→ n]〉

[[E]]s = v

〈x := E, s, i〉 τ→ 〈skip, s[x 7→ v], i〉
[[E]]s = v

〈output E on a, s, i〉 a!v→ 〈skip, s, i〉

[[E]]s = v ∈ {true, false}
〈if E Ctrue Cfalse, s, i〉

τ→ 〈Cv, s, i〉

〈while E C, s, i〉 τ→ 〈if E (C ; while E C) skip, s, i〉

〈(skip ; C), s, i〉 τ→ 〈C, s, i〉
〈C, s, i〉 `→ 〈C′, s′, i′〉

〈R[C], s, i〉 `→ 〈R[C′], s′, i′〉

Fig. 2. Syntax and Semantics

3.2 Noninterference and Input Erasure

We extend the equality relation =a to input streams (and input stream pointers) by
saying I =a I ′ (i =a j) whenever Ic = I ′c (i(c) = j(c)) for all c v a. We write α =a β
to mean equality of the projections of α and β to all labels on channel a or lower.

Definition 3 (Input-Output Noninterference). We define a command C to be input-
output noninterfering if for all a ∈ L, and all input streams I and I ′, if I =a I ′ and
I ` 〈C, s, i〉 α� then I ` 〈C, s, i〉 β

� for some β such that α =a β.

Let us now turn to the definition of the erasure property that we want. It says that in
any execution, once control has reached the end of the input block input x : a↗b in C
– i.e. once we have finished executing C – then no information about x should be visible
through subsequent input or output events except at level b or higher.

Definition 4 (Input Erasure). We say that a command C0 is input erasing if for all
input streams I the following property holds. Suppose we have a computation of the
following form:

I ` 〈C0, s0, i0〉 � 〈R[input x : a↗b in C], s, i〉 � 〈R[skip], s1, i1〉 α�

where the computation R[input x : a↗ b in C] � R[skip] is independent of R[·].
Let I ′ be an input stream which only differs from I on channel a at input position
i(a) + 1. Then the input erasing condition requires that there exists a computation of
the following form:

I ′ ` 〈C0, s0, i0〉 � 〈R[input x : a↗b in C], s, i〉 � 〈R[skip], t1, j1〉 β
�
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such that ∀c 6w b we have si =c ti, ii =c ji (i = 1, 2) and α =c β.

Note that the requirement that I ′ ` 〈C0, s0, i0〉 � 〈R[input x : a↗ b in C], s, i〉
is actually vacuous since the computation has not yet reached the point at which I and
I ′ differ. The start state s0 and i0 in the above are universally quantified, but could be
fixed. A natural choice for an initial input pointer would of course be λa.0.

The following proposition formalises the sense in which the “vanilla” input is al-
ways erasing:

Proposition 3. If C is input-output noninterfering and if each input command in C has
the form input x : a↗a in skip for some x and a then C is input erasing.

Proof. Let C be ain input-output noninterferring command with input commands re-
stricted as above. Let C = 〈C, s0, i0〉. Any computation involving an input command
with an input stream I has the form:

I ` C α0� 〈R[input x : a↗a in skip], s, i〉 a?v→ 〈R[skip], s[x 7→ v], i1〉 α�

Suppose I ′ differs only from I at the position corresponding to the input v above. Then
we have a computation of the form:

I ′ ` C α0� 〈R[input x : a↗a in skip], s, i〉 a?w→ 〈R[skip], s[x 7→ w], i1〉

Since C is assumed to be input noninterfering then if we take any c 6w a we have
I =c I ′, and hence I ′ ` C β0� for some β0 such that α0(a?v)α =c β0. Since the
language is deterministic, it follows that β0 must have the form α0(a?w)β for some β

such that α =c β, and where 〈R[skip], s[x 7→ w], i1〉 β
� as required. ut

3.3 Characterising Input Erasure with a Local Erasure Condition

In this section we develop a local characterisation of erasure – a generalisation of end-
to-end erasure which we can apply locally to the command input x : a↗ b in C –
which will help us establish the “global” input erasure condition.

To do this we will need to work with a stronger notion of noninterference than input-
output noninterference. Although the definition of input-output noninterference is a rea-
sonable top level definition (for more discussion on this point see section 5) it is difficult
to work with since it says nothing about the state. For example it is not compositional
with respect to sequential composition: C1 = input x on H ; if x then y := 1 is
IO-noninterfering, and so is C2 = output y on L, but C1 ; C2 is not. It is convenient
therefore to work with a stronger definition which also looks at the initial and terminal
state (in the case that the program terminates).

Definition 5 (Stateful Input-Output Noninterference). A command C is noninterfer-
ing from Γ to Γ ′, written Γ {C} Γ ′, iff, for all a ∈ L, and all input streams I, I ′, if
Γ ` s =a t, I =a I ′, i =a j then

1. if I ` 〈C, s, i〉 α� then I ′ ` 〈C, t, j〉 β
� for some β such that α =a β, and
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2. if I ` 〈C, s, i〉 � 〈skip, s′, i′〉 then I ′ ` 〈C, t, j〉 � 〈skip, t′, j′〉 such that i′ =a j′

and Γ ′ ` s′ =a t′.

Now we will define an extension of the end-to-end erasure property. The idea is that,
when enforced locally on the erasing input command, the property will be sufficient to
ensure the global erasure property.

The definition ensures that if a specific variable x is erased from a to b then it is
neither “visible” in the state except at or above b (precisely as before) nor via the input
pointer:

Definition 6 (Local Erasure). Command C erases x to b in Γ ′, written C : x↗b in
Γ ′, iff, whenever s =¬x t and I ` 〈C, s, i0〉 � 〈skip, s′, i〉 then I ` 〈C, t, i0〉 �
〈skip, t′, j〉, for some t′ and j such that ∀c 6w b, Γ ′ ` s′ =c t′ and i =c j.

Note that we have overloaded some definitions defined in Section 2. It is reasonable
to do this because they are conservative extensions of the earlier definitions. Stated more
precisely:

Proposition 4. For any command C free from input-output statements, define the IO-
free semantics of C to be 〈C, s〉 → 〈C ′, t〉 iff I ` 〈C, s, i〉 τ→ 〈C ′, t, i〉. For any such C
we have that

1. The statement that C is noninterfering from Γ to Γ ′ is identical for Definition 1
and Definition 5.

2. The statement that C erases x to b in Γ ′ is identical for Definition 2 and Definition
6.

Proof. Observing that input-output-free commands compute independently from the
input streams, and to not modify the input stream pointers, then the result is immediate
by specialisising definitions 5 and Definition 6. ut

The local erasure condition ignores the input and outputs that take place before the
computation is complete, but the condition nevertheless demands that i =c j. This is
motivated by the fact that the state of the input pointer can be used as a covert store to
save information about the erased secret. Consider the command C defined as

if (x 6= 0) (input y on M);
x := 0; y := 0 (where L v M v H)

If we ignored the final value of the input pointers, then this command would be con-
sidered to erase x. This would be too weak for our purposes because after the erasure,
information about x will be known to an observer at level M . To see this, consider
using the command (C) in the program to the right. So for example if the M input
stream has the value 0, 1 . . . then the value of y output on M will be 0 if x was 0 and 1
otherwise.
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y := 0 ;
input x : L↗H in C;
input y on M ;
output y on M

Reclassification In the manner of Proposition 1, we
will show that the local erasure property can be char-
acterised in terms of noninterference. But since non-
interference cares about the input output events that
occur during a computation, and local erasure does not, we need a way to “turn a blind
eye” to input output events. Towards this end it is useful – for specification purposes
only – to introduce a language construct which “hides” inputs and outputs:

Definition 7. We extend the language with commands of the form Ĉ with semantics

〈C, s, i〉 α→ 〈C ′, s′, i′〉
〈Ĉ, s, i〉 τ→ 〈Ĉ ′, s′, i′〉 〈ŝkip, s, i〉 τ→ 〈skip, s, i〉

This is essentially just like the hiding operation of CSP, and is commonly used in pro-
cess calculi to specify noninterference properties (see e.g. [Ros95,FG95]), except that
here we are hiding all events, so Ĉ behaves like C but with every input or output label
of C replaced by the silent action τ .

Theorem 1 (Local Erasure as Reclassification). If Γ {C} Γ ′ then

C : x↗b in Γ ′ ⇐⇒ Γ [x 7→ b] {Ĉ} Γ ′

The theorem says that to check noninterference and erasure for a command it is neces-
sary and sufficient to check noninterference and a reclassified noninterference property
but where input and output labels are ignored.

Proof. First we note that we can easily specialise the definition of noninterference to the
case where programs perform no visible IO. In this way we can see that Γ [x 7→ b] {Ĉ}
Γ ′ if and only if for all a,

I =a I ′ ∧ Γ [x 7→ b] ` s =a t ∧ i =a j ∧ I ` 〈Ĉ, s, i〉 � 〈skip, s′, i′〉

⇒ ∃t′, j′. Γ ′ ` s′ =a t′ ∧ i′ =a j′ ∧ I ′ ` 〈Ĉ, t, j〉 � 〈skip, t′, j′〉

The following properties are easy consequences of the definitions and semantics of
hiding, and will be used freely in what follows: (i) Γ {C} Γ ′ ⇒ Γ {Ĉ} Γ ′ and (ii)
C : x↗b in Γ ′ ⇐⇒ Ĉ : x↗b in Γ ′.

For the (⇐)-direction of the theorem it is sufficient to prove that Γ [x 7→ b] {Ĉ}
Γ ′ implies Ĉ : x↗b in Γ ′. Assume the rhs, that s =¬x t, and I ` 〈Ĉ, s, i〉 �
〈skip, s′, i′〉. Since s and t only differ at x, and in Γ [x 7→ b] we have that x is not
visible at level c 6w b we have ∀c 6w b.Γ [x 7→ b] ` s =c t. From the specialised
noninterference property above we have that ∃t′, j′. Γ ′ ` s′ =c t′ ∧ i′ =c j′ ∧ I `
〈Ĉ, t, j〉 � 〈skip, t′, j′〉.

For the (⇒)-direction of the theorem, assume the premise and that I =a I ′∧Γ [x 7→
b] ` s =a t ∧ i =a j ∧ I ` 〈Ĉ, s, i〉 � 〈skip, s′, i′〉.

If a w b, consider whether or not Γ (x) v a. In either case, {y|Γ (y) v a} ⊆
{y|Γ [x 7→ b](y) v a}. Hence, when a w b, Γ [x 7→ b] ` s =a t implies Γ ` s =a t
and the required t′, j′ exist by assumption of noninterference.



Just Forget It 11

Assume then that a 6w b. Let s1 = s[x 7→ t(x)]. Then we have s =¬x s1, and
Γ [x 7→ b] ` s1 =a t. Since s1 and t agree on x then we also have Γ ` s1 =a t. Since
C : x↗b in Γ ′ we have that I ` 〈Ĉ, s1, i〉 � 〈skip, s′1, i1〉 where ∀c 6w b.i′ =c i1 ∧
Γ ′ ` s′ =c s′1. Since in particular a 6w b then i′ =a i1∧Γ ′ ` s′ =a s′1. From Γ {C} Γ ′

we have Γ {Ĉ} Γ ′, and since Γ ` s1 =a t, we get I ′ ` 〈Ĉ, t, j〉 � 〈skip, t′, j′〉 where
i′1 =a j and Γ ′ ` s′1 =a t′. From transitivity of =a we conclude that i =a j and
Γ ′ ` s′ =a t′ as required. ut

3.4 From Local to Global Erasure

We have defined a local erasure condition for commands with IO. The purpose of the
local condition is to provide sufficient conditions for input erasure. But in order to com-
plete this picture we need some noninterference conditions: the local erasure property
can only give input erasure if the rest of the program does not allow the erased infor-
mation to flow back down to a lower level, i.e. it must have a noninterference property.

Annotations To state the noninterference assumptions we need, we will use program
annotations. Annotations will provide the link to compositional program analyses such
as type systems. An annotation here is just a security type assignment. The operational
semantics of an annotation is transparent (otherwise it would not be an annotation!): we
extend the grammar of reduction contexts with the annotated context (R[·])Γ , and spec-
ify the rule 〈skipΓ , s, i〉 → 〈skip, s, i〉. In an annotated subterm CΓ , the annotation
Γ is intended to describe the security levels of the state at the point in execution after
C has been evaluated. This intuition is made concrete in the following definition which
connects annotations to the noninterference property.

Definition 8 (Well-annotated Commands). Command C0 is well annotated iff:

1. every annotated input command (input x : a↗ b in C)Γ in C0 has the local
erasure property C : x↗b in Γ ;

2. whenever a command of the form R[skipΓ ] is reached from any computation be-
ginning with C0, then Γ {R[skip]} Γ ′ for some Γ ′.

Theorem 2. If C0 is a well-annotated command such that every input command in C0

is annotated, then C0 is input erasing.

Proof. Suppose that C0 satisfies the premise of the claim, and that

I ` 〈C0, s0, i0〉 � 〈R[input x : a↗b in C], s, i〉
� 〈R[skip], s1, i1〉 (independent of R[·]).
α�

Since each input command is annotated we know that R[·] = R′[·Γ ] for some R′[·] and Γ .
Suppose further that i(a) = k and that Ia(k + 1) = v. Given this, we know that the above
computation has the form

I ` 〈C0, s0, i0〉 � 〈R′[(input x : a↗b in C)Γ ], s, i〉
a?v→ 〈R′[CΓ ], s[x 7→ v], i[a 7→ k + 1]〉

� 〈R′[skipΓ ], s1, i1〉 α�
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Suppose I ′ is like I except that I ′a(k + 1) = v′. Now we have that

I ′ ` 〈C0, s0, i0〉

� 〈R′[(input x : a↗b in C)Γ ], s, i〉 (i)
a?v→ 〈R′[CΓ ], s[x 7→ v′], i[a 7→ k + 1]〉 (ii)

� 〈R′[skipΓ ], t1, j1〉 → 〈R′[skip], t1, j1〉 (iii)
β
� (iv)

Step (i) holds because the input on which I and I ′ differ has not yet been reached; (ii) follows
from the semantics of input. From the operational semantics it is easily seen that the command
(input x : a↗ b in C)Γ must have been present in the original program: since C0 is well
annotated we have that C : x↗b in Γ , hence computation (iii) exists and ∀c 6w b, Γ ` s1 =c t1
and ii =c ji. Then, since C0 is well annotated, we have Γ {R′[skip]} Γ ′ for some Γ ′, and
hence we have for computation (iv) that there exists such a β satisfying ∀c 6w b, α =c β, as
required. ut

4 Erasure by Typing

In this section we use the results of the previous section to design a type system for
erasure (and noninterference). The idea is that we use Theorem 1 to guide us in the
treatment of the input erasure command, standard subject reduction and noninterference
properties of the type system to establish a well-annotated version of the program, and
Theorem 2 to prove that the type system guarantees input erasure.

Our type system is a simple extension of the flow sensitive system of [HS06] (al-
ternative flow sensitive base systems, such as [AB04], could also be considered). We
modify the system of [HS06] to be termination sensitive: the rules only allow while
loops to be performed over the lowest security level (⊥), and these can only occur in
the context ⊥. This is of course a rather restrictive notion. A more liberal system would
allow high loops when they can be shown to be terminating.

The type rules are shown in Figure 3. For a command C, judgements have the form
p ` Γ {C} Γ ′ where p ∈ L, and Γ, Γ ′ are security type assignments. The idea is that
if Γ gives the security levels of variables before execution of C, then Γ ′ will give their
security levels afterwards. The type p represents the usual “program counter” level and
serves to eliminate indirect information flows: the rules ensure that only variables with
final types (in Γ ′) greater than or equal to p may be changed by C. Similarly, input and
output is only permitted on channels greater than or equal to p.

The purpose of the type system is to guarantee noninterference and input erasure.
Here we provide explanation of the rules for input and output, since they are the new
ones. The rule for input commands follows Theorem 1 rather directly, making use of a
command transformer deleteOutput(C) which simply replaces every output command
in its argument with skip. This is the means by which we ignore outputs when checking
the local erasure requirement. We cannot however ignore inputs, since we still need
to ensure that there are no covert channels via the input pointers. Output is simply
treated like an assignment to a variable of a fixed security type. One can note that if we
specialise the typing rules to “vanilla” inputs, as represented by commands of the form
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input x : a↗ a in skip, then we get what appears to be a flow sensitive version of
the deterministic part of the type system from [OCC06].

Skip
p ` Γ {skip} Γ

Assign Γ ` E : t
p ` Γ {x := E} Γ [x 7→ p t t]

Erase
p ` Γ [x 7→ a] {C} Γ ′ p ` Γ [x 7→ b] {C′} Γ ′ p v a C′ = deleteOutput(C)

p ` Γ {input x : a↗b in C} Γ ′

Output
Γ ` E : b p t b v a

p ` Γ {output E on a} Γ
Annotate

p ` Γ {C} Γ ′

p ` Γ {CΓ ′
} Γ ′

Seq
p ` Γ {C1} Γ ′ p ` Γ ′ {C2} Γ ′′

p ` Γ {C1 ; C2} Γ ′′ If
Γ ` E : t p t t ` Γ {Ci} Γ ′ i = 1, 2

p ` Γ {if E C1 C2} Γ ′

While
Γ ` E : ⊥ ⊥ ` Γ {C} Γ

⊥ ` Γ {while E C} Γ
Sub

p1 ` Γ1 {C} Γ ′
1

p2 ` Γ2 {C} Γ ′
2

p2 v p1, Γ2 v Γ1, Γ
′
1 v Γ ′

2

Fig. 3. Type System

Example Let us reconsider the credit-card transaction server loop from the introduc-
tion. Let us suppose that ⊥ v user v bank v >. To represent the intention that the
credit card data is erased by the end of each loop iteration, the code can be rewritten as

while serverUp {
input cc : user↗> in {

input details from user
payment := process(cc)
output payment to bank
custInfo := custInfo ⊕ details
cc := 0

9>>>>=>>>>; C

}
} . . .

shown to the right. For the purpose of typ-
ing we assume that process(cc) is just some
expression involving cc. Since > is used to
model the level of data that is no longer phys-
ically present, no variables should be given a
final type of >. With this restriction there is
(thankfully) no typing for this program. The
body of the erasure statement C is, in fact,
suitably noninterfering, as shown by the typing
⊥ ` Γ {C} Γ where Γ (serverUp) = ⊥ and
Γ (x) = user for all other variables x. But to type the enclosing erasure input we also
need the typing ⊥ ` Γ [cc 7→>] {deleteOutput(C)} Γ . This is not possible because
payment := process(cc) forces payment to type > instead of user . By appending
payment := 0 to the end of C the program becomes typeable.

4.1 Type Correctness

In this section we prove correctness. In what follows, we say that C is well-typed if, for
some p, Γ, Γ ′, there exists a derivation of p ` Γ {C} Γ ′.

Before verifying the motivating semantic properties of the type system, we show
that it is well behaved with respect to reduction by establishing the obvious subject
reduction property.
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Theorem 3 (Subject Reduction). If p ` Γ {C} Γ ′ and I ` 〈C, s, i〉 � 〈C ′, s′, i′〉,
then p ` Γ ′′ {C ′} Γ ′, for some Γ ′′.

Proof. We prove the property for single-step reductions. This extends immediately to
multi-step reductions by induction on the number of steps.

The proof is by induction on the height of the type derivation and by cases on the
last rule used.

Case Annotate: We have C = DΓ ′
and the final derivation step is:

p ` Γ {D} Γ ′

p ` Γ {DΓ ′} Γ ′

There are two sub-cases to consider:
1. D = skip. In this case C ′ = skip and by Skip we have p ` Γ ′ {skip} Γ ′,

hence we may take Γ ′′ = Γ ′.
2. D = R[D0]. In this case C ′ = R[D′

0]
Γ ′

and the reduction step is justified by:

〈D0, s, i〉
`→ 〈D′

0, s
′, i′〉

〈R[D0]Γ
′
, s, i〉 `→ 〈R[D′

0]
Γ ′

, s′, i′〉

Thus:
〈D0, s, i〉

`→ 〈D′
0, s

′, i′〉

〈R[D0], s, i〉
`→ 〈R[D′

0], s
′, i′〉

By IH (applied to the Annotate premise p ` Γ {R[D0]} Γ ′), we have p `
Γ ′′ {R[D′

0]} Γ ′ for some Γ ′′. Hence, by Annotate, p ` Γ ′′ {R[D′
0]

Γ ′} Γ ′, as
required.

Case While: We have C = while E D and C ′ = if E (D ; while E D) and the
final derivation step is:

While
Γ ` E : ⊥ ⊥ ` Γ {D} Γ

⊥ ` Γ {while E D} Γ

The required type derivation for C ′ is constructed as follows:

If
Γ ` E : ⊥

Seq
⊥ ` Γ {D} Γ ⊥ ` Γ {C} Γ

⊥ t⊥ = ⊥ ` Γ {D ; C} Γ
Skip

⊥ ` Γ {skip} Γ

⊥ ` Γ {if E (D ; while E D)} Γ

Case Erase: We have C = input x : a↗b in D and the final derivation step is:

p ` Γ [x 7→ a] {D} Γ ′ p ` Γ [x 7→ b] {deleteOutput(C)} Γ ′ p v a

p ` Γ {input x : a↗b in D} Γ ′

In this case C ′ = D and the result is immediate by the first premise to the final
derivation step.
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Case Assign: We have C = x := E, Γ ′ = Γ [x 7→ p t t] and the final derivation step
is:

Γ ` E : t
p ` Γ {x := E} Γ [x 7→ p t t]

In this case C ′ = skip and by Skip we have p ` Γ ′ {skip} Γ ′, hence we may
take Γ ′′ = Γ ′.

The remaining cases are similar. ut

The two fundamental semantic properties we require of the type system are:

NI Type Correctness: that it guarantees the stateful input-output NI property, Defini-
tion 5 (and thus the top level input-output NI property, Definition 3).

Erasure Type Correctness: that it can be used to establish the premises of Theorem 2
(and thus to guarantee input erasure).

Theorem 4 (NI Type Correctness). If p ` Γ {C} Γ ′ then Γ {C} Γ ′.

Corollary 1. Well-typed programs are input-output noninterfering.

The proof of the theorem relies on the following three lemmas.

Lemma 1. If p 6= ⊥ and p ` Γ {C} Γ ′, then I ` 〈C, s, i〉 α� 〈skip, s′, i′〉.

Proof. By inspection of the type system, if p ` Γ {C} Γ ′ then all sub-commands of
C are typeable, each for some p′ ≥ p. Since while E C is only typeable for p′ = ⊥
it follows that C contains no loops. By inspection of the transition rules, it is clear
that evaluation of C must terminate in skip. (We note that this relies on the fact that
expression evaluation is assumed total and that no “stuck” configurations exist for the
given semantics.)

Lemma 2. If p ` Γ {C} Γ ′ and p 6v c then Γ ` s =c t ⇒ Γ ′ ` s =c t.

Proof. By induction on the height of the type derivation and by cases on the last rule
used, it is readily proved that p 6v Γ ′(x) ⇒ Γ (x) v Γ ′(x). The lemma follows since,
under assumption p 6v c, we then have Γ ′(x) v c ⇒ p 6v Γ ′(x) ⇒ Γ (x) v Γ ′(x) ⇒
Γ (x) v c; thus Γ ` s =c t ⇒ Γ ′ ` s =c t.

Lemma 3. If p ` Γ {C} Γ ′ and I ` 〈C, s, i〉 α� 〈C ′, s′, i′〉 then c 6w p ⇒ i′ =c

i ∧ α =c ε ∧ Γ ′ ` s′ =c s.

Proof. We prove the property for single-step reductions I ` 〈C, s, i〉 `→ 〈C ′, s′, i′〉.
This extends to multi-step reductions by induction on the number of steps, using Subject
Reduction.

The proof is by induction on the height of the type derivation and by cases on the
last rule used. We show the case for Erase by way of illustration.
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Case Erase: We have C = input x : a↗b in D and the final derivation step is:

p ` Γ [x 7→ a] {D} Γ ′ p ` Γ [x 7→ b] {deleteOutput(C)} Γ ′ p v a

p ` Γ {input x : a↗b in D} Γ ′

In this case: C ′ = D, ` = a?v, s′ = s[x 7→ v], i′ = i[a 7→ i(a) + 1].
Since p v a and p 6v c it follows that a 6v c. From a 6v c we have a?v =c ε and
i′ =c i. From a 6v c we also have Γ [x 7→ a] ` s =c s′ and thus, applying Lemma 2
to the first premise of Erase, Γ ′ ` s =c s′, as required. ut

Proof (of Theorem 4). The proof is by induction on the height of the type derivation
and by cases on the last rule used.

Case If: We have C = if E Ctrue Cfalse and the final derivation step is:

Γ ` E : a p t a ` Γ {Cv} Γ ′ v ∈ {true, false}
p ` Γ {if E Ctrue Cfalse} Γ ′

Assume I =c I ′, Γ ` s =c t, i =c j. Now, assume

I ` 〈C, s, i〉 α� 〈C ′, s′, i′〉

In this case α = τα′ with

I ` 〈C, s, i〉 τ→ 〈Cv, s, i〉 α′
� 〈C ′, s′, i′〉

where v = [[E]]s, and
I ′ ` 〈C, t, j〉 τ→ 〈Cw, t, j〉

where w = [[E]]t. We must show:
1. 〈Cw, t, j〉 β

� 〈C ′′, t′, j′〉 with β =c α′.
2. If C ′ = skip then 〈Cw, t, j〉 � 〈skip, t′, j′〉 with t′ =c s′ and j′ =c j.

There are two sub-cases to consider:
Case v = w: Both parts follow by IH applied to p t a ` Γ {Cv} Γ ′.
Case v 6= w: In this case, a 6v c (since, otherwise, Γ ` s =a t hence [[E]]s =

[[E]]t), thus p t a 6v c. Applying Lemma 1 to the typing premise for Cw gives
〈Cw, t, j〉 β′

� 〈skip, t′, j′〉 and applying Lemma 3 to both premises gives α′ =c

ε =c β. Applying Lemma 2 to either premise (plus assumption Γ ` s =c t)
gives Γ ′ ` s =c t. By assumption, i =c j. Applying Lemma 3 to both premises
gives i′ = i, j = j′, Γ ′ ` s′ =c s and Γ ′ ` t =c t′. Hence i′ =c j′ and
Γ ′ ` s′ =c t′ follow by transitivity of =c.

Case Erase: We have C = input x : a↗b in D and the final derivation step is:

p ` Γ [x 7→ a] {D} Γ ′ p ` Γ [x 7→ b] {deleteOutput(C)} Γ ′ p v a

p ` Γ {input x : a↗b in D} Γ ′

Assume I =c I ′, Γ ` s =c t, i =c j. Now, assume

I ` 〈C, s, i〉 α� 〈C ′, s′, i′〉
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In this case α = a?vα′ with

I ` 〈C, s, i〉 a?v→ 〈D, s[x 7→ v], i[a 7→ n]〉 α′
� 〈C ′, s′, i′〉

(where n = i(a) + 1 and v = Ia(n)) and

I ′ ` 〈C, t, j〉 a?v′

→ 〈D, t[x 7→ v′], j[a 7→ n′]〉

(where n′ = j(a) + 1 and v′ = I ′a(n′)).
Now if a v c, then by the assumptions n = n′ and v′ = v, hence a?v′ =c a?v and
Γ [x 7→ a] ` s[x 7→ v] =c t[x 7→ v′] and i[a 7→ n] =c j[a 7→ n′]. On the other
hand, if a 6v c then a?v′ =c ε =c a?v and Γ [x 7→ a] ` s[x 7→ v] =c t[x 7→ v′] and
i[a 7→ n] =c j[a 7→ n′], regardless of the values v, v′. Stateful NI then follows by
IH applied to the typing premise p ` Γ [x 7→ a] {D} Γ ′.

Case Assign: In this case C is x := E, Γ ′ = Γ [x 7→ p t a] and the final derivation
step is:

Γ ` E : a
p ` Γ {x := E} Γ [x 7→ p t a]

Assume I =c I ′, Γ ` s =c t, i =c j. We have

I ` 〈C, s, i〉 τ→ 〈skip, s[x 7→ v], i〉

where v = [[E]]s, and

I ` 〈C, t, j〉 τ→ 〈skip, t[x 7→ w], j〉

where w = [[E]]t. It suffices then to show

Γ [x 7→ p t a] ` s[x 7→ v] =c t[x 7→ w] (∗)

Now if a v c, then Γ ` s =c t implies Γ ` s =a t, hence v = w, hence (∗) holds.
On the other hand, if a 6v c then (∗) follows from Γ ` s =a t, regardless of the
values v, w.

Case Seq: In this case C = C1 ; C2 and the final derivation step is:

p ` Γ {C1} Γ ′ p ` Γ ′ {C2} Γ ′′

p ` Γ {C1 ; C2} Γ ′′

It is easily verified that any derivation I ` 〈C, s, i〉 α� 〈C ′, s′, i′〉 has one of the
two following forms:
1. I ` 〈C1 ; C2, s, i〉 α� 〈C ′

1 ; C2, s
′, i′〉 where I ` 〈C1, s, i〉 α� 〈C ′

1, s
′, i′〉

2. I ` 〈C1 ; C2, s, i〉 α� 〈C ′
2, s

′, i′〉 where I ` 〈C1, s, i〉 α′
� 〈skip, s′′, i′′〉 and

I ` 〈C2, s
′′, i′′〉 α′′

� 〈C ′
2, s

′, i′〉, with α = α′τα′′.
In either case the result follows straightforwardly by application of IH to the premises
of the type derivation.

The remaining cases are similar. ut
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Theorem 5 (Erasure Type Correctness). If C is well-typed then C is well-annotated.

Corollary 2. Well-typed programs are input erasing.

Proof. By inspection of the type system, any derivation of a typing for a program must
include a sub-derivation p ` Γ {input x : a↗b in C} Γ ′ for every input command,
and we can use each such Γ ′ to annotate the corresponding input command. By insert-
ing uses of Annotate into the original type derivation we can clearly recover a derivation
for the annotated program. By Theorem 5 the annotated program is well-annotated and
hence, by Theorem 2, is input erasing. Since the annotated program is semantically
equivalent to the original, it follows that the original is input erasing. ut

Proof (of Theorem 5). The proof of the theorem is in two parts, corresponding to the
two parts of the definition of well-annotation. For the first part we rely on Theorem 1,
which shows that well-annotation of input commands is a corollary of the following
lemma:

Lemma 4. If p ` Γ {(input x : a↗b in C)Γ ′} Γ ′′ then Γ [x 7→ b] {Ĉ} Γ ′.

For the second part, we rely on the following lemma:

Lemma 5. If p ` Γ0 {R[skipΓ ]} Γ ′ then Γ {R[skip]} Γ ′.

The second part of well-annotation then follows by subject reduction. ut

The proofs of the lemmas follow.

Proof (of Lemma 4). Assume lhs. By inspection of the type system, we have a sub-
derivation p1 ` Γ1[x 7→ b] {deleteOutput(C)} Γ ′

1, with p v p1, Γ v Γ1, Γ ′
1 v Γ ′. By

Theorem 4, Γ1[x 7→ b] {deleteOutput(C)} Γ ′
1. Since Γ v Γ1, it follows that Γ [x 7→

b] v Γ1[x 7→ b], hence Γ [x 7→ b] {deleteOutput(C)} Γ ′, by montonicity. It is clear
that the behaviours of deleteOutput(C) and Ĉ are identical except that any non-τ event
labels on the transitions of deleteOutput(C) are replaced by τ on the transitions of Ĉ.
It follows that Γ [x 7→ b] {Ĉ} Γ ′, as required. ut

Proof (of Lemma 5). By induction on the structure of R[·].

Case R[·] = [ · ]: We have a derivation p ` Γ0 {skipΓ } Γ ′ and we must show Γ {skip}
Γ ′, which will follow if Γ v Γ ′. This latter is easily seen to hold because the given
derivation must end with a single use of Annotate followed by zero or more uses of
Sub.

Case R[·] = R′[·] ; C ′: We have a derivation p ` Γ0 {R′[skipΓ ];C ′} Γ ′. This deriva-
tion must end with Seq followed by zero or more uses of Sub, hence we have
derivations p′ ` Γ ′

0 {R′[skipΓ ]} Γ ′′ and p′ ` Γ ′′ {C ′} Γ ′′′ with Γ ′′′ v Γ ′. By
IH Γ {R′[skip]} Γ ′′ and by Theorem 4 Γ ′′ {C ′} Γ ′′′. Hence, by compositionality
and monotonicity, Γ {R′[skip];C ′} Γ ′, as required.

Case R[·] = R′[·]Γ ′′
: We have a derivation p ` Γ0 {R′[skipΓ ]Γ

′′} Γ ′. This derivation
must end with Annotate followed by zero or more uses of Sub, hence we have
derivation p ` Γ1 {R′[skipΓ ]} Γ ′′ with Γ0 v Γ1, Γ ′′ v Γ ′. By IH Γ {R′[skip]}
Γ ′′ hence, by monotonicity, Γ {R′[skip]} Γ ′. Since the operational semantics of
annotations are transparent, it follows that Γ {R′[skip]Γ

′′} Γ ′, as required. ut
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5 On the Adequacy of the Input-Output Model

We have adopted a simple stream-based model of input-output. In a general nondeter-
ministic setting, such a model does not adequately model a “high” attacker who is trying
to pass information to “low” through the program, and it becomes necessary to quantify
over all possible strategies adopted by the principals. This is a well known problem in
the noninterference literature [WJ90]. See [OCC06] for a recent language-based take
on the issue. Fortunately, since we deal with deterministic programs, it turns out that
simple stream models are nevertheless adequate, as shown recently by Clark and Hunt
[CH07].

What about erasure? Are there potential problems that arise from not modelling an
active attacker’s strategy? In fact the problem here is that we cannot reasonably model
inputs as coming from an attacker with an arbitrary strategy, because it only makes
sense to promise to erase data if the supplier is not an adversary. A payment system
typically promises, on completion of a transaction, to erase the credit card data but to
retain the shipping address. The system will not succeed in erasing the credit card data
if the user’s strategy is to re-input the credit card data as a response to a subsequent
request for the shipping address, but clearly we do not want to admit such strategies.

There are more subtle cases which show that we must assume even more about the
data supplier’s behaviour. Suppose that, before the credit card is erased, the program
sends back to the user a special offer code “zahojasf23” with the promise “present this
code when you next shop with us for a 10% discount”. What if this code is simply an
encryption of the credit card number? The program in this case may well have erased
the credit card number by the end of the transaction, but if the user re-inputs this code
then the program will have reconstructed the credit card number.

What assumptions are reasonable for the data supplier? We assume, from a nonin-
terference perspective, that attackers can make arbitrarily accurate semantic deductions
based on their observations and complete knowledge of the program. For a non attacker
it seems reasonable to assume the opposite – the honest user sees the program as a black
box. How then can we solve the problem from the example above if the user cannot be
relied upon to know whether “zahojasf23” contains their credit card information? Our
proposed solution is to:

– assume that the user is aware of the erasure “contract”; they know that they are
providing an input which is scheduled for erasure, and they are notified when the
erasure is complete, and

– assume that the user treats any outputs from the program (at their level) as poten-
tially tainted with data currently scheduled for erasure.

We believe that the stream model that we have used here correctly captures these as-
sumptions, but it is beyond the scope of this paper to explicitly model such user strate-
gies in order to prove that the stream model is indeed correct in this sense.

6 Conclusions and Further Work

We have studied the semantics of erasure and shown its connection to noninterfer-
ence. We have introduced a particular idiom for expressing erasure policies in code,
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and shown that a natural global erasure property can be enforced by a combination of
noninterference and a local erasure property, which in turn can also be established by
a noninterference property. This leads to a fairly direct definition of a type system for
which well typed programs correctly erase their data. We conclude here by returning to
the related work, before finishing with some remarks about further work.

Related work In addition to Chong and Myers work [CM05], Hansen and Probst
[HP06] describe what they call simple erasure policies which correspond to a specific
instance of our end-to-end erasure policies, but stated in terms of the erasure of a whole
level rather than a single variable. Neither of these works describe an implementation
of erasure, either by encoding into standard noninterference or developing a specific
program analysis.

There are several fundamental differences between the definition of erasure devel-
oped here and that of Chong and Myers. Ignoring the fact that [CM05] also deals with
declassification policies, we note the following differences. Firstly, [CM05] does not
consider a system with interaction, something that we feel is central to making notions
of erasure meaningful. Secondly, in the abstract system model in [CM05] the state of
the system is just a store. The obvious way to encode an imperative program as such
a system would be to use a program counter variable, but there is no suitable policy
in their language which one could attach to such a program counter. Thus their model
might not be suitable for modelling imperative programs – at least not with a straight-
forward encoding. Thirdly, they require a “physical erasure” condition which says that
at the point where a variable is erased it should contain a predefined constant. This is
stronger than necessary. Although we can satisfy erasure properties in that way, there
is nothing to stop us from erasing data to level b by e.g. overwriting it with something
else from a lower level. Lastly, since erasure can be thought of as a dual to declassi-
fication (since it is used to strengthen as opposed to weaken NI) we can see that their
erasure condition and ours tackle different dimensions of erasure: using the terminol-
ogy of [SS05], their erasure properties deal with when erasure takes place, whereas our
input-centric erasure determines where (in the code) erasure takes place.

Finally, we note that our use of a block structured erasure command is similar in
spirit to Almeida Matos and Boudol’s [AB05] block structured declassification con-
struct, flow F in C, which locally extends the global information flow policy with
flows F for the duration of C.

Further Work There are several obvious avenues for further work.
We can follow the “dimensions” and consider, for example, refinement of what is

erased. For example, erasure of all except the first four digits of a credit card number.
Work on corresponding “what” declassification policies [SS05] can be applied directly.

The input erasure construct used here can be generalised in a number of potentially
useful ways. One possibility is to introduce an erasure region – a code block in which
all subsequent inputs are erased.

A naive implementation of the type system as presented is potentially exponential
in the depth of nesting of erasure statements, because the body of the erasure statement
appears twice in the premise of the Erase rule. By building on results from [HS06], we
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are hopeful that this behaviour can be avoided by obtaining the two typings for the body
of an erasure input as specialisations of a single principal type.

On the theoretical side we noted at the end of the previous section the need for fur-
ther work on modelling attacker strategies and “honest” participants. A process calculus
setting may prove more suitable to conduct such an investigation.
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