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ROW AND COLUMN REMOVAL
IN THE q-DEFORMED FOCK SPACE

JOSEPH CHUANG, HYOHE MIYACHI, AND KAI MENG TAN

Abstract. Analogues of James’s row and column removal theorems
are proved for the q-decomposition numbers arising from the canonical
basis in the q-deformed Fock space.

1. Introduction

Throughout we fix an integer n ≥ 2. Lascoux, Leclerc, and Thibon [11, 7]
used the representation theory of the quantum affine algebra Uq(ŝln) to in-
troduce for every pair of partitions λ and σ a polynomial dλσ(q) with integer
coefficients (which depends on n). They conjectured these polynomials to
be q-analogues of decomposition numbers for Hecke algebras and quantized
Schur algebras at complex n-th roots of unity. These conjectures were proved
by Ariki [1] and by Varagnolo-Vasserot [14] respectively. The dλσ(q)’s are
also known to be parabolic affine Kazhdan-Lusztig polynomials.

Leclerc’s lectures [10] are a good introduction to this subject as well as a
convenient reference for the results we need here.

The purpose of this note is to prove the following theorem (see below for
definitions).

Theorem 1. Let λ = (λ1, λ2, . . .) and µ = (µ1, µ2, . . .) be partitions.

(1) (Row removal) Suppose that λ1 + . . .+ λr = µ1 + . . .+ µr for some
r and let

λ(0) = (λ1, . . . , λr), µ(0) = (µ1, . . . , µr),

λ(1) = (λr+1, λr+2, . . .), µ(1) = (µr+1, µr+2, . . .).

Then dλµ(q) = dλ(0)µ(0)(q)dλ(1)µ(1)(q).
(2) (Column removal) Suppose that λ′1 + . . . + λ′r = µ′1 + . . . + µ′r for

some r and let

λ(0)′ = (λ′1, . . . , λ
′
r), µ(0)′ = (µ′1, . . . , µ

′
r),

λ(1)′ = (λ′r+1, λ
′
r+2, . . .), µ(1)′ = (µ′r+1, µ

′
r+2, . . .).

Then dλµ(q) = dλ(0)µ(0)(q)dλ(1)µ(1)(q).
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Example. Let n = 2. We have

d(5,5),(6,4)(q) = q,

d(4,4),(3,2,2,1)(q) = q3 + q,

d(5,5,4,4),(6,4,3,2,2,1)(q) = q4 + q2

= d(5,5),(6,4)(q)d(4,4),(3,2,2,1)(q).

If we put q = 1 in Theorem 1 and use Ariki’s and Varagnolo-Vasserot’s
theorems, we recover a result of James [5, Theorem 6.18 and Corollary
6.20] on the decomposition numbers of Hecke algebras and quantized Schur
algebras, albeit only at complex roots of unity. James’s result, which is
valid for any Hecke algebra or quantized Schur algebra, generalizes earlier
work of himself [4] and of Donkin [2]. The names ‘row removal’ and ‘column
removal’ come from the original work [4], which dealt with the special case
r = 1.

After introducing the polynomials dλσ(q) as the coefficients of canonical
basis vectors in the Fock space representation of Uq(ŝln), we prove ‘column
removal’ by a direct calculation in the Fock space. Then ‘row removal’ is
deduced from this using a theorem of Leclerc.

2. Background

A composition is a sequence γ = (γ1, γ2, . . .) of nonnegative integers with
finite sum |γ| = γ1 + γ2 + · · · . A nonincreasing composition is called a
partition. Let P be the set of partitions. We identify a partition λ =
(λ1, λ2, . . .) with its Young diagram

{(j, k) ∈ N× N | 1 ≤ k ≤ λj} .

The standard lexicographic and dominance orders on P are denoted by >
and B respectively, and λ′ is the partition conjugate to λ.

Given any partition λ = (λ1, λ2, . . . ), write l(λ) for the largest integer r
such that λr 6= 0. We say λ is n-restricted if λi − λi+1 < n (1 ≤ i ≤ l(λ))
and is n-regular if λ′ is n-restricted.

If γ = (γ1, γ2, . . . ) and δ = (δ1, δ2, . . . ) are compositions, write γ+δ for the
composition (γ1 + δ1, γ2 + δ2, . . .). If λ and µ are partitions then so is λ+µ,
and if in addition µ′1 ≤ λ′λ1

, we write λ⊕µ instead of λ+µ to emphasize that
the new partition is formed simply by putting λ and µ side by side. Also, if
λl(λ) ≥ µ1 we define (λ, µ) to be the partition (λ1, . . . , λl(λ), µ1, µ2, . . . ).

The algebra U = Uq(ŝln) is the associative algebra over C(q) with gener-
ators ei, fi, ki, k−1

i (0 ≤ i ≤ n − 1), d, d−1 subject to certain relations for
which the interested reader may refer to, for example, [10, §4]. The subal-
gebra obtained by omitting the generators d and d−1 is denoted U ′ and the
subalgebra generated by the fi’s is denoted U−.

For any integer r, we denote by θr the automorphism of U− which sends
fi to fi+r, where we read the subscripts modulo n.

An important U -module is the Fock space representation F [3, 13], which
as a C(q)-vector space has a basis {s(λ)}λ∈P . For our purposes an explicit
description of the action of just the fi’s on F will suffice.
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A node γ = (j, k) in a Young diagram µ is called an i-node (i ∈ {0, 1, . . . , n−
1}) of µ if k − j is congruent to i modulo n. If in removing γ we obtain a
Young diagram λ then we call γ a removable i-node of µ or an indent i-node
of λ. Let N(λ, µ) be the number of indent i-nodes of λ situated to the right
of γ minus the number of removable i-nodes of λ situated to the right of γ.
We have

fis(λ) =
∑
µ

qN(λ,µ)s(µ),

where the sum is over all Young diagrams µ obtained from λ by adding an
indent i-node.

The submodule of F generated by s(∅) is a highest weight module for
U , called the basic representation. Following [8] we describe operators Vk
(k ∈ N) on F in terms of ribbon tableaux:

Vks(λ) =
∑
µ

(−q)− spin(µ/λ)s(µ),

where the sum is over all partitions µ such that µ/λ is a horizontal n-ribbon
strip of weight k, and spin(µ/λ) is the spin of the strip. We will not need
to define these terms here; for us the important observation is that the
coefficient of s(µ) depends only on the skew diagram µ/λ. The operators
Vk commute pairwise and also with the action of U ′; in fact C(q)[Vk; k ≥
1]s(∅) is equal to the whole space of U ′-highest weight vectors in F [11,
12]. It follows that F = A−s(∅) where A− = U− ⊗ C(q)[Vk; k ≥ 1]. The
automorphisms θr extend uniquely to automorphisms of A− fixing each Vk.

Let 〈−,−〉 denote the inner product on F for which {s(λ) | λ ∈ F} is
orthonormal.

Lemma 2. Let λ , ν, and α be partitions such that ν ′1 ≤ λ′λ1
, and let

ξ ∈ A−. Then 〈ξs(λ⊕ ν), s(α)〉 6= 0 implies that either α′1 + . . .+ α′λ1
> |λ|

or α = λ⊕ µ for some partition µ with µ′1 ≤ λ′λ1
. Moreover

〈ξs(λ⊕ ν), s(λ⊕ µ)〉 = 〈θ−λ1(ξ)s(ν), s(µ)〉 .

Proof. It’s easy to check that the lemma holds when ξ = fi or ξ = Vk.
Next, observe that given α with the property α′1 + . . . + α′λ1

> |λ|, both
fis(α) and Vks(α) are linear combinations of s(β)’s for β’s satisfying the
same property. Thus the lemma holds when ξ is a monomial in the fi’s and
Vk’s (and therefore for all ξ ∈ A−) by induction on degree. �

In order to define the canonical basis in F , Leclerc and Thibon [11] intro-
duce an involution x→ x on F characterized by the following properties:

s(∅) = s(∅),

φ(q)x+ y = φ(q−1)x+ y, (φ(q) ∈ C(q);x, y ∈ F),

fix = fix, (i = 0, . . . , n− 1;x ∈ F),

Vkx = Vkx, (k = 1, 2, . . . ;x ∈ F).

Theorem 3 (Leclerc-Thibon [11]). For each σ ∈ P there is a unique ele-
ment G(σ) ∈ F such that G(σ) = G(σ) and such that, defining dλσ(q) :=
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〈G(σ), s(λ)〉, we have

dσσ(q) = 1,(2.1)

dλσ(q) ∈ qZ[q] for all λ ∈ P, |λ| = |σ|, λ C σ,

dλσ(q) = 0 for all other λ ∈ P.

Moreover B = {G(σ)}σ∈P is a basis of F .

Taking just the G(σ)’s for n-regular partitions one obtains a basis of
the basic representation Us(∅) of U which coincides with Kashiwara’s lower
global basis [6].

3. Column removal

We reformulate part 2 of Theorem 1:

Theorem 4 (Column removal). Let λ, µ, σ, and τ be partitions such that
|λ| = |σ|, λ1 = σ1 (= r, say), µ′1 ≤ λ′r , and τ ′1 ≤ σ′r. Then

dλ⊕µ,σ⊕τ (q) = dλσ(q)dµτ (q).

Fix σ and τ as in the statement of Theorem 4. We of course may as-
sume that τ 6= ∅. Write G(τ) = ξτs(∅), where ξτ ∈ A−. We define
X := θr(ξτ )G(σ), regarding it as a sort of ‘first approximation’ to G(σ⊕ τ).
We may assume that ξτ =

∑
ξτ,j where each ξτ,j is a monomial in the Fi’s

and Vk’s and such that {ξτ,js(∅)} is a linearly independent set in F . Then
G(τ) = G(τ) implies that the coefficient φτ,j(q) in each monomial ξτ,j must
satisfy φτ,j(q−1) = φτ,j(q). It follows then that X = X.

Let Pbad be the set of partitions α satisfying α′1 + · · · + α′r > |σ| and
let Fbad be the span in F of the α ∈ Pbad. Note that if α ∈ Pbad then
G(α) ∈ Fbad.

We have

X = θr(ξτ )G(σ)

=
∑
λ∈P
|λ|=|σ|

dλσ(q)θr(ξτ )s(λ).

If λ1 > r, then λ 5 σ, and therefore dλσ(q) = 0. On the other hand if
λ1 < r, then θr(ξτ )s(λ) ∈ Fbad. Hence working modulo Fbad we have, by
Lemma 2, that

X ≡
∑
λ∈P

|λ|=|σ|,λ1=r

dλσ(q)θr(ξτ )s(λ)

≡
∑
λ∈P

|λ|=|σ|,λ1=r

∑
µ∈P
µ′

1≤λ′
r

dλσ(q) 〈ξτs(∅), s(µ)〉 s(λ⊕ µ)

≡
∑
λ∈P

|λ|=|σ|,λ1=r

∑
µ∈P
µ′

1≤λ′
r

dλσ(q)dµτ (q)s(λ⊕ µ),

In particular 〈X, s(σ ⊕ τ)〉 = 1, and 〈X, s(α)〉 ∈ qZ[q] if α /∈ {σ⊕ τ} ∪Pbad.
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Set E = G(σ ⊕ τ)−X. Write

E =
∑
α∈P

bα(q)G(α)

where bα(q) ∈ C(q); we have bα(q−1) = bα(q) because E = E. Note that
bα(q) 6= 0 implies α ∈ Pbad: otherwise, let γ be the largest partition in the
lexicographic order such that bγ(q) 6= 0 and γ /∈ Pbad; then

bγ(q) = 〈E, s(γ)〉 = 〈G(σ ⊕ τ)−X, s(γ)〉 ∈ qZ[q],

a contradiction. Consequently E ∈ Fbad; hence for any λ, µ ∈ P as in the
statement of the theorem we have

d(λ⊕µ),(σ⊕τ)(q) = 〈G(σ ⊕ τ), s(λ⊕ µ)〉
= 〈X, s(λ⊕ µ)〉
= dλσ(q)dµτ (q).

4. Row removal

Given a partition α with r parts or less, let n(α)i be the number of
elements in {α1 + r− 1, α2 + r− 2, . . . , αr} which are congruent to i modulo
n. Define

n(α) =
n−1∑
i=0

(
n(α)i

2

)
.

It is easy to see that n(α+ (1r)) = n(α).
We also define α# = (αr, αr−1, . . . , α1).
Keeping these notations, we have the following theorem.

Theorem 5 (Leclerc [9]). Let λ and σ be two partitions such that λ1, σ1 ≤ r.
Let σ′ = nσ(1) + σ(2) be the unique decomposition of σ′ with σ(2) being n-
restricted. Then

dλσ(q) = q(
r
2)−n(λ′)d

λ̃σ̂
(q−1),

where λ̃ = (Kr) + λ′, K = (n− 1)(r − 1) and

σ̂ = (2n− 2)(r − 1, r − 2, . . . , 1, 0) + nσ(1) + (σ(2))#.

Using this theorem and the ‘column removal’ theorem proved in the last
section, we obtain a special case of ‘row removal’:

Proposition 6. Let λ and σ be two partitions such that λ1 = σ1 = r. Let
µ = (λ2, λ3, . . . ) and τ = (σ2, σ3, . . . ). Then

dλσ(q) = dµτ (q).

Proof. We keep the notations of Theorem 5. Note first that λ̃ = (1r) + µ̃.
Let τ ′ = nτ (1) + τ (2) be the unique decomposition of τ ′ with τ (2) being n-
restricted. Then σ′ = (1r)+nτ (1)+τ (2) = n(τ (1)+ε(1r))+((1r)+τ (2)−ε(nr))
is the analogous unique decomposition of σ′, where

ε =

{
1, if (1r) + τ (2) is not n-restricted;
0, otherwise.
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It is then easy to check that σ̂ = (1r) + τ̂ . Hence,

dλσ(q) = q(
r
2)−n(λ′)d

λ̃σ̂
(q−1) (by Theorem 5)

= q(
r
2)−n((1r)+µ′)d(1r)+µ̃,(1r)+τ̂ (q−1)

= q(
r
2)−n(µ′)dµ̃τ̂ (q−1) (by Theorem 4)

= dµτ (q) (by Theorem 5).

�

The general case of ‘row removal’ can now be deduced easily from The-
orem 4 and Proposition 6 using an argument of James [5, Corollary 6.20].
The following is just a reformulation of part 1 of Theorem 1.

Theorem 7 (Row removal). Let λ, µ, σ, and τ be partitions such that
|λ| = |σ|, r = λ′1 = σ′1, µ1 ≤ λr , and τ1 ≤ σr. Then

d(λ,µ),(σ,τ)(q) = dλσ(q)dµτ (q).

Proof. We only need to consider the case where λ E σ and µ E τ since the
theorem holds trivially otherwise. Then,

µ1 ≤ τ1 ≤ σr ≤ λr.
Let s = σr, and let partitions α and β be defined by λ = (sr) ⊕ α and
σ = (sr)⊕ β. Then (λ, µ) = (sr, µ)⊕ α and (σ, τ) = (sr, τ)⊕ β. Thus

d(λ,µ),(σ,τ)(q) = d(sr,µ)⊕α,(sr,τ)⊕β(q)

= d(sr,µ),(sr,τ)(q)dαβ(q) (by Theorem 4)

= dµτ (q)d(sr),(sr)(q)dαβ(q) (by Proposition 6)

= dµτ (q)d(sr)⊕α,(sr)⊕β(q) (by Theorem 4)

= dλσ(q)dµτ (q).

�
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