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SYMMETRIC GROUPS, WREATH PRODUCTS, MORITA
EQUIVALENCES, AND BROUÉ’S ABELIAN DEFECT

GROUP CONJECTURE

JOSEPH CHUANG AND RADHA KESSAR

Abstract. It is shown that for any prime p, and any non-negative
integer w less than p, there exist p-blocks of symmetric groups of defect
pw, which are Morita equivalent to the principal p-block of the group
Sp o Sw. Combined with work of J. Rickard, this proves that Broué’s
abelian defect group conjecture holds for p-blocks of symmetric groups
of defect at most p5.

1. Introduction

Broué has made some deep conjectures involving the derived categories of
blocks of finite groups. One such is his Abelian Defect Group Conjecture [1]:
a p-block of a finite group G with abelian defect group D and its Brauer cor-
respondent in NG(D) should be derived equivalent over a complete discrete
valuation ring with residue field of characteristic p.

We show that this conjecture is true for a family of blocks of symmetric
groups; this family is given by a certain combinatorial criterion and contains
blocks whose defect groups have arbitrarily large rank (as long as we allow
p to vary). Our work is the construction of Morita equivalences of blocks
in this family and blocks of wreath products of symmetric groups. These
equivalences, which were conjectured to exist by Rouquier, appear below in
Theorem 2. When composed with certain derived equivalences described by
Andrei Marcus in [8] they produce derived equivalences predicted by Broué’s
conjecture.

We construct Morita equivalences only for blocks in the aforementioned
family, but taken together with unpublished work of Jeremy Rickard they
imply that Broué’s conjecture holds for all p-blocks of symmetric groups
whose defect groups have order less than or equal to p5 (Corollary 3 below).
This generalizes the main result of [3], in which the same was proved for
blocks whose defect groups have order less than or equal to p2.

2. Preliminaries

Let p a prime number and let O be a complete discrete valuation ring
with maximal ideal J such that its residue field k = O/J has characteristic
p and is algebraically closed, and its fraction field K has characteristic 0.
To indicate reduction modulo J of elements of O or of group algebras over
O, we use the conventional bar notation. We will write ⊗ in place of ⊗O.
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2 JOSEPH CHUANG AND RADHA KESSAR

Let G be a finite group. We state the Abelian Defect Group Conjecture of
Broué:

Conjecture 1. (Broué) Let b be a block idempotent of OG with abelian
defect group D, and let c be the Brauer correspondent block idempotent
of ONG(D). Then OGb and ONG(D)c are derived equivalent, i.e., there
is an equivalence of triangulated categories between their derived module
categories.

We will be making use of the Brauer quotient and the Brauer homomor-
phism, which we briefly describe (see [2] for more details). Let M be an
OG-module and P a p-subgroup of G. The Brauer quotient

M(P ) = MP /

∑
Q<P

TrPQ(MQ) + JMP


is defined by taking the quotient of the P -fixed points of M by relative
traces from proper subgroups and then passing to the residue field; M(P )
is a kNG(D)-module. If M is a summand of a permutation module, then
M(P ) 6= 0 if and only if M has a direct summand which has a vertex
containing P . In the case that M = OG and G acts by conjugation, we
have OG(P ) = kCG(P ), and the natural quotient map

BrGP : (OG)P → kCG(P ),

which may be given by the rule

BrGP

∑
g∈G

agg

 =
∑

g∈CG(P )

agg,

is a homomorphism of O-algebras, called the Brauer homomorphism with
respect to P . If H is a subgroup of G containing P , and i ∈ (OG)H is
an idempotent, then OGi is a summand of OG as an O(G × H)-module,
and writing ∆P for the diagonally embedded subgroup {(x, x) | x ∈ P} ≤
G × H, we have that (OGi)(∆P ) and kCG(P ) BrGP (i) are isomorphic as
kNG×H(∆P )-modules.

We introduce some combinatorics relating to partitions. Removing rim p-
hooks from the diagram of a partition λ we obtain the diagram of a partition
which is called the p-core of λ; it is independent of the manner in which the
hooks are removed. The number of hooks removed is called the p-weight of
λ. A partition with p-weight 0 is called a p-core. For our purposes it is useful
to represent partitions on an abacus with p runners, following Gordon James
[6, pages 77-78 ]. We label the runners of the abacus 0, . . . , p−1, from left to
right, and label its rows 0, 1, . . ., from the top down. If λ = (λ1, λ2, . . .) is a
partition with less than or equal to m nonzero parts then we may represent
λ on the abacus using m beads: for i = 1, . . . ,m, we write λi+m−i = s+pt,
with 0 ≤ s ≤ p − 1, and place a bead on the s-th runner in the t-th row.
Sliding a bead up one row on its runner into a previously vacant position
corresponds to removing a p-hook. Thus sliding all the beads in an abacus
representation of a partition up their runners as far as possible produces an
abacus representation of the p-core of that partition.
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Fix an abacus representation of λ, and for i = 0, . . . , p − 1, let λ(i)
1 be

the number of unoccupied positions on the i-th runner which occur above
the bottommost bead on that runner, let λ(i)

2 be the number of unoccupied
positions on the i-th runner which occur above the next to bottommost bead
on that runner, and so on. Then λ(i) = (λ(i)

1 , λ
(i)
2 , . . .) is a partition, and

the p-tuple (λ(0), . . . , λ(p−1)) is called the p-quotient of λ. We note that it
depends on the number of beads used in the abacus representation. The
weight of λ is equal to

∣∣λ(0)
∣∣+ . . .+

∣∣λ(p−1)
∣∣ .

Given a p-core κ and a nonnegative integer w, consider partitions with
p-core κ and p-weight w. Choosing m so that any such partition has less
than or equal to m nonzero parts and representing these partitions on an
abacus with m beads, we have a p-quotient for each one. This gives a
bijection between this set of partitions and the set of p-tuples (σ0, . . . , σp−1)
of partitions satisfying

∣∣σ(0)
∣∣+ . . .+

∣∣σ(p−1)
∣∣ = w.

3. Blocks of symmetric groups

For any nonnegative integer n denote by Sn the symmetric group of degree
n, and for any finite set V denote by S(V ) the symmetric group on V . The
irreducible characters χλ of KSn (or of KS(V ), if |V | = n) are indexed
by partitions λ of n. Nakayama’s rule (see, e.g., [6, page 245, Theorem
6.1.20]) states that two characters are in the same p-block of KS(V ) if and
only if the associated partitions have the same p-core. Hence the p-blocks of
characters of KS(V ) are labelled by p-cores, and all the partitions associated
to characters in a given p-block have the same p-weight. Thus it makes sense
to speak of the weight of a p-block.

Let e be the primitive central idempotent of OS(V ) corresponding to a
p-block which has weight w and is labelled by a p-core κ. Let U be a subset
of V of cardinality pw and let D be a Sylow p-subgroup of S(U). Then D
is a defect group of OS(V )e (see, e.g., [6, page 263, Theorem 6.2.39]). Thus
OS(V )e has abelian defect groups if and only if w < p.

As our main interest is Conjecture 1, we will consider only blocks with
abelian defect groups; we will therefore assume that w < p for the remainder
of this paper.

We have
CS(V )(D) = D × S(V − U)

and
NS(V )(D) = NS(U)(D)× S(V − U).

A theorem of Puig [9] tells us that

(1) BrS(V )
D (e) = 1kD ⊗ e0,

where e0 is the block idempotent of OS(V − U) corresponding to the p-
block labelled by the p-core κ. Thus the Brauer correspondent of OS(V )e
in NG(D) is

ONS(U)(D)⊗OS(V − U)e0.

This block is Morita equivalent to ONS(U)(D) because OS(V − U)e0 is a
block of weight 0 and therefore defect 0. The block ONS(U)(D) is in turn
derived equivalent to the principal block of O(Sp oSw), by a result of Andrei
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Marcus [8, Example 5.7] based on the existence of derived equivalences for
blocks with cyclic defect groups, which was proved by Rickard in [11]. Hence
the Brauer correspondent of any p-block of weight w of a symmetric group
is derived equivalent to the principal block of O(Sp oSw). We now state our
result, which was originally conjectured by Rouquier.

Theorem 2. Given any w < p there exist blocks of weight w of symmetric
groups which are Morita equivalent to the principal block of O(Sp o Sw). In
particular there exist blocks of weight w for which Broué’s Abelian Defect
Group Conjecture holds.

Jeremy Rickard, in an important unpublished theorem (announced in
[12]), which built on the work of Scopes in [15], constructed derived equiv-
alences of blocks; he proved in particular that for w ≤ 5 (no restriction on
p), all p-blocks of symmetric groups of weight w are derived equivalent. In
light of this result and the comments above, our theorem has the following
corollary.

Corollary 3. Broué’s Abelian Defect Group Conjecture (Conjecture 1) is
true for all blocks of symmetric groups of weight less than or equal to 5.

Remark 3.1. The proof given here is an improvement over that in [3], in
which the case w = 2 was handled using a more convoluted argument.

4. Proof of the theorem

Let ρ be a p-core which satifies the following property: ρ has an abacus
representation in which each runner other than the leftmost one (the 0-th
runner) has at least w−1 more beads than the runner to its immediate left.
Having chosen such a ρ, we may assume that there are at least w beads on
each runner; let m be the number of beads in such an abacus representation
of ρ. We will be considering partitions with p-core ρ and p-weight v ≤ w.
Any such partition can be represented on an abacus with m beads and we
do so. We remark that one candidate for ρ is the p-core which has an abacus
display with w+ i(w− 1) beads on the i-th runner, for i = 0, . . . , p− 1; this
is the smallest ρ possible.

In the second part of the following lemma we give the key property of ρ.
If µ and λ are partitions then by µ ⊆ λ we mean that µ1 ≤ λ1, µ2 ≤ λ2,
and so on.

Lemma 4. (1) Let λ be a partition with p-core ρ and weight v ≤ w.
Suppose that in the (m-bead) abacus representation of λ there is a
bead on the s-th runner in the t-th row. Then on any runner to the
right of the s-th runner there are beads in all rows above the t-th
row. If v < w, then on any runner to the right of the s-th runner
there are beads in all rows on or above the t-th row.

(2) Let λ be a partition with p-core ρ and weight v ≤ w, and let µ
be a partition with p-core ρ and weight v − 1. If µ ⊆ λ then there
exists s with 0 ≤ s ≤ p − 1 such that µ(i) = λ(i) for i 6= s and
µ(s) ⊆ λ(s) with

∣∣µ(s)
∣∣ =

∣∣λ(s)
∣∣− 1. Moreover the complement of the

Young diagram of µ in that of λ is the Young diagram of the hook
partition (s+ 1, 1p−s−1).
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Proof. (1) Let 0 ≤ s < s′ ≤ p − 1. Let ms and ms′ be the number of
beads on the s-th and s′-th runners in the abacus representation of
λ. All the beads on the s-th runner lie in the first ms +

∣∣λ(s)
∣∣ rows,

while on the s′-th runner there is a bead in each the first ms′−
∣∣∣λ(s′)

∣∣∣
rows. We have(
ms +

∣∣∣λ(s)
∣∣∣)− (ms′ −

∣∣∣λ(s′)
∣∣∣) = ms −ms′ +

∣∣∣λ(s)
∣∣∣+
∣∣∣λ(s′)

∣∣∣
≤ −(w − 1) + v,

which implies the desired result.
(2) For i = 1, . . . ,m set αi = λi + m − i and βi = µi + m − i. Choose

n such that βn < αn and βi = αi for i > n. Write βn = s + pt
where 0 ≤ s ≤ p − 1. Then in the abacus representation of µ there
is a bead on the s-th runner in row t, while there is no bead in
the corresponding spot in the abacus representation of λ. Because
the abacus representations of λ and µ have the same number of
beads in each runner (as they have the same p-core), there must be
a bead on the s-th runner of the abacus representation of λ below
the t-th row. By the first part of the lemma, we see that in the
abacus representations of µ and λ, there is a bead in the t-th row on
each runner to the right of the s-th runner, and that in the abacus
representation of λ, there is no bead in the (t + 1)-st row on each
runner to the left of the s-th runner. Hence we have
βn = s+ pt, αn = (s+ 1) + pt;
βn−1 = (s+ 1) + pt, αn−1 = (s+ 2) + pt;
...

...
βn−(p−s−2) = (p− 2) + pt, αn−(p−s−2) = (p− 1) + pt;
βn−(p−s−1) = (p− 1) + pt, αn−(p−s−1) ≥ s+ p(t+ 1).

Therefore

µn = λn − 1;
µn−1 = λn−1 − 1;

...
µn−(p−s−2) = λn−(p−s−2) − 1;

µn−(p−s−1) ≤ λn−(p−s−1) − (s+ 1).

As µ ⊆ λ and |µ| = |λ| − p, the inequality must be equality, and
we also must have µi = λi and βi = αi for i < n− (p− s− 1). Thus
the abacus representation of λ is obtained from that of µ by moving
a bead on the s-th runner from the t-th row to the (t + 1)-th row,
and all the statements in the lemma hold.

�

Let V be a set of cardinality pw+ r, let U1, . . . , Uw be disjoint subsets of
V of cardinality p, and let U be the union of these subsets. In what follows,
all groups we consider will be viewed as subgroups of S(V ) in an obvious
way. For i = 1, . . . , w, let Di be a Sylow p-subgroup of S(Ui), and let ai be
the principal block idempotent of OS(Ui). For i = 0, . . . , w let ew−i be the
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block idempotent of OS(Ui+1 ∪ . . . ∪ Uw ∪ (V − U)) corresponding to the
p-core ρ, let

Gi = S(U1)× · · · × S(Ui)× S(Ui+1 ∪ . . . ∪ Uw ∪ (V − U))

and let
bi = a1 ⊗ · · · ⊗ ai ⊗ ew−i,

a block idempotent of OGi. We have

Gi ∼= Sp × · · · × Sp︸ ︷︷ ︸
i

×S(w−i)p+r.

We set G = G0, b = b0, L = Gw, and f = bw. Letting D = D1 × · · · ×Dw,
we have

CG(D) = D × S(V − U) = D1 × · · · ×Dw × S(V − U).

Let Ñ be the subgroup of S(U) consisting of permutations sending each Ui
into some Uj ; we note that Ñ is isomorphic to the wreath product Sp o Sw.
Set N = Ñ × S(V − U), a subgroup of G containing NG(D) and L and
normalizing L.

Lemma 5. (1) For 0 ≤ i ≤ p − 1, we have that D is a defect group of
OGibi;

(2) For 0 ≤ i ≤ p− 1, we have BrGD(bi) = 1kD ⊗ e0;
(3) We have that N stabilizes f , and ONf is a block which is Morita

equivalent to the principal block of O (Sp o Sw) ;
(4) As an O(N × L)-module, ONf is indecomposable with vertex ∆D,

and rankO(ONf) = w! · rankO(OLf).

Proof. (1) We have that Di+1×· · ·×Dw is a defect group of OS(Ui+1∪
. . . ∪ Uw ∪ V )ew−i, as this block has weight w − i < p, while for
0 ≤ j ≤ i, we have that Dj is a defect group of OS(Uj)aj . Hence D
is a defect group of OGibi.

(2) First we note that Gi ≥ CG(D), so that BrGD(bi) = BrGiD (bi). Next,
for 0 ≤ j ≤ i, we have BrS(Ui)

Dj
(aj) = 1kDj , and by Puig’s result (1),

we have

BrS(Ui+1∪...∪Uw∪(V−U))
Di+1×···×Dw (ew−i) = 1k(Di+1×···×Dw) ⊗ e0.

Hence

BrGD(bi) = BrGiD (bi)

= BrS(U1)
D1

(a1)⊗ · · · ⊗ BrS(Ui)
Di

(ai)⊗ BrS(Ui+1∪...∪Uw∪(V−U))
Di+1×···×Dw (ew−i)

= 1OD ⊗ e0.

(3) It is clear that N stabilizes f , and because a1⊗· · ·⊗ai is the principal
block idempotent of OÑ and e0 is a block idempotent of OS(V −U)
corresponding to a block of defect 0, the second statement holds.

(4) By part 1 of the Lemma, OLf has vertex ∆D. An easy argument
using the fact that CG(D) ⊆ L shows that a conjugate of ∆D by an
element of N × L not in L × L is not conjugate to ∆D in L × L.
Consequently, the stabilizer of OLf in N × L is just L × L, so
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ONf = IndN×LL×L (OLf) is indecomposable and has vertex ∆D. As
[N : L] = w!, the statement relating ranks is clear.

�

The lemma shows that the blocks OGb and ONf both have defect group
D and are Brauer correspondents. Thus the O(G×G)-module OGb and the
O(N × N) -module ONf both have vertex ∆D and are Green correspon-
dents. Let X be the Green correspondent of OGb in G × N , so that X is
an indecomposable O(G×N)-module with vertex ∆D, and X is isomorphic
to a direct summand of ResG×GG×N (OGb). Because ONf is isomorphic to a
direct summand of ResG×NN×N (X), we have Xf 6= 0, so Xf = X and X is a
(OGb,ONf)-bimodule.

Our goal is to show that X induces a Morita equivalence of OGb and
ONf . As OGb is a block of a symmetric group of weight w, and ONf is
Morita equivalent to the principal block of O (Sp o Sw) by the lemma, this
will imply that Theorem 2 is true.

As an OGb-module X is a progenerator; indeed, OGb is isomorphic to
a direct summand of IndG×GG×N (X), and applying Mackey’s formula we get
that OGb is isomorphic to a direct summand of a direct sum of copies of
ResG×NG×1 (X). Hence by Morita theory, to prove that X induces an Morita
equivalence, it suffices to show that the homomorphism

ONf → EndG(X)

induced by the action of ONf on X is an isomorphism. Note that it is
at least a split monomorphism of (ONf,ONf)-bimodules, because ONf is
isomorphic to a direct summand of ResG×NN×N (X). Thus we need only to show
that

rankO(EndG(X)) ≤ rankO(ONf)

or equivalently, by part 4 of Lemma 5,

(2) rankO(EndG(X)) ≤ w! · rankO(OLf).

Now ResG×NG×L (X) is a direct sum of indecomposable modules whose ver-
tices are conjugates of ∆D; indeed, ∆D is a vertex of X and G×L is a nor-
mal subgroup of G×N containing ∆D. On the other hand, ResG×NG×L (X) ∼=
X⊗N ON ∼= X⊗N ONf is a summand of IndG×LN×L(ONf), and by the Green
correspondence the latter is a direct sum of an indecomposable module with
vertex ∆D and indecomposable modules with strictly smaller vertices, as
ONf has vertex ∆D and NG×L(∆D) ⊆ N × L. Therefore ResG×NG×L (X) is
an indecomposable module with vertex ∆D.

Each of the bi is an idempotent contained in (OG)L; as these idempotents
commute with each other, their product is also an idempotent contained in
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(OG)L. Hence Y = OGb0 · · · bw is a summand of OGb0 as an O(G × L)-
module, and we have

Y (∆D) = OGb0 · · · bw(∆D)
∼= kCG(D) BrGD(b0 · · · bw)

= kCG(D) BrGD(b0) · · ·BrGD(bw)

= kCG(D) BrGD(b)
∼= OGb(∆D),

where the last equality is a consequence of part 2 of Lemma 5. We have
OGb ∼= Y ⊕E, for some O(G× L)-module E. Now OGb(∆D) ∼= Y (∆D)⊕
E(∆D), and it follows that E(∆D) = 0. As E is a direct summand of the
permutation module OG, this implies that E does not have an indecompos-
able summand with vertex ∆D. Hence any indecomposable direct summand
of OGb as an O(G×L)-module which has vertex ∆D must be isomorphic to
a direct summand of Y. Thus ResG×NG×L (X) is isomorphic to a direct summand
of Y ; consequently there exists an injective ring homomorphism

EndG(X) ↪→ EndG(Y ).

Hence in order to show that the inequality (2) holds it suffices to demonstrate
that

(3) rankO(EndG(Y )) ≤ w! · rankO(OLf).

This will be accomplished by making a calculations with characters.
The endomorphism ring EndG(Y ) may be identified with bw · · · b0OG0b0 · · · bw.

The K-algebra KG0b0 is semisimple, so by general theory K⊗OEndG(Y ) =
bw · · · b0KG0b0 · · · bw is semisimple, and the restriction of any irreducible
character of KG0b0 to bw · · · b0KG0b0 · · · bw is either an irreducible character
or the zero character. Moreover each irreducible character of bw · · · b0KG0b0 · · · bw
arises exactly once in this way. Thus

(4) rankO(EndG(Y )) =
∑

χ∈Irr(KG0b0)

χ(bw · · · b0)2.

We note that

(5) χ(bw · · · b0) = bw ResGw−1

Gw
(· · · b2 ResG1

G2
(b1 ResG0

G1
(χ)) · · · )(1).

The principal p-block of KSp is the block labelled by the empty p-core.
So for i = 1, . . . , w, we have Irr(KS(Ui)ai) = {ν0, · · · , νp−1}, where for
j = 0, . . . , p− 1, we write

νj = χ(j+1,1p−j−1)

for the sake of convenience. Then for i = 0, . . . , w, we have

Irr(KGibi) =
{
νj1 × · · · × νji × χλ

}
,

where the jγ ’s run from 0 to p− 1 and λ runs over the set of partitions with
p-core ρ and p-weight w − i.

Let C be the set of p-tuples c = (c0, . . . , cp−1) of nonnegative integers
satisfying c0 + · · · + cp−1 = w. For i = 0, . . . , w and c ∈ C, we define
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Irr(KGibi, c) to be the set of characters νj1 × · · · × νji × χλ ∈ Irr(KGibi)
such that for j = 0, . . . , p− 1, we have

|λ(j)|+ # {γ | jγ = j} = cj .

For i = 0, . . . , w we have a disjoint union

Irr(KGibi) =
∐
c∈C

Irr(KGibi, c).

Note that for a fixed c ∈ C, there are w!
c0!···cp−1! characters in Irr(KGwbw, c),

and all have the same degree.
Suppose that 0 ≤ i ≤ w − 1 and χ = νj1 × · · · × νji × χλ ∈ Irr(KGibi).

Then using the Littlewood-Richardson rule (see, e.g., [6, page 93, Theorem
2.8.13]) and part 2 of Lemma 4 we get

(6) ei+1 ResGiGi+1
(χ) =

p−1∑
s=0

∑
µ

νj1 × · · · × νji × νs × χµ,

where the second sum runs over all partitions µ with p-core ρ and p-weight
w−(i+1) such that µ(j) = λ(j) for j 6= s and µ(s) ⊆ λ(s) with

∣∣µ(s)
∣∣ =

∣∣λ(s)
∣∣−

1 . Note that if χ ∈ Irr(KGibi, c) then every constituent of ei+1 ResGiGi+1
(χ)

is in Irr(KGi+1bi+1, c).
Now fix χλ ∈ Irr(KG0b0, c). For each ϕ ∈ Irr(KGwbw, c), we may apply

(6) repeatedly to deduce that the multiplicity of ϕ as a constituent of

bw ResGw−1

Gw
(· · · b2 ResG1

G2
(b1 ResG0

G1
(χ)) · · · )

is

f(λ(0)) · . . . · f(λ(p−1)),

where for any partition σ of n we denote by f(σ) the number of nested
sequences τ1 ⊆ · · · ⊆ τn of partitions such that |τi| = i for i = 1, . . . , n, and
τn = σ. It follows from the branching rule (see, e.g., [6, page 59, Theorem
2.4.3]) that f(σ) is the dimension of the irreducible character χσ of Sn. It
is now immediate that ∑

σ`n
f(σ)2 = n!,

and we will use this fact below. Now using equation (5) we have

(7) χλ(bw · · · b0) = f(λ(0)) · . . . · f(λ(p−1)) ·
∑

ϕ∈Irr(KGwbw,c)

ϕ(1).
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Squaring both sides of this equation and summing over all characters in
Irr(KG0b0, c) we get∑

χλ∈Irr(KG0b0,c)

χλ(bw · · · b0)2

=
∑

χλ∈Irr(KG0b0,c)

f(λ(0))2 · . . . · f(λ(p−1))2 ·

 ∑
ϕ∈Irr(KGwbw,c)

ϕ(1)

2

=

∑
µ0`c0

f(µ0)2

 · . . . ·
 ∑
µp−1`cp−1

f(µp−1)2

 ·
· w!
c0! · · · cp−1!

·

 ∑
ϕ∈Irr(KGwbw,c)

ϕ(1)2


= w! ·

∑
ϕ∈Irr(KGwbw,c)

ϕ(1)2,

and in turn summing this over all c ∈ C and using equation (4) we get

rankO(EndG(Y )) = w! ·
∑

ϕ∈Irr(KGwbw)

ϕ(1)2.

Remembering that L = Gw and f = bw we see that the right hand side of
this equation is equal to w! · rankO(OLf) and that therefore the inequality
(3) holds. This completes the proof of Theorem 2.

5. Splendid Rickard Equivalences

For blocks of group algebras there is an important strengthening of the
notion of derived equivalence which is called splendid Rickard equivalence.
This notion was introduced by Rickard [13] for principal blocks and later
extended to the case of arbitrary blocks by Harris [5] and also by Linck-
elmann [7]. In the situation of Conjecture 1 it is hoped that there exists
this strengthened form of a derived equivalence. In this section we give
some pertinent definitions and explain briefly why we have not only derived
equivalences but splendid Rickard equivlances in Theorem 2.

Let G and H be a finite groups and let b and c be block idempotents of
OG and OH. The corresponding blocks OGb and OHc are called Rickard
equivalent if there exists a bounded complex C of (OGb,OHc)-bimodules,
each projective as left OGb-module and as right OHc-module, such that
EndOGb(C) andOHc are homotopy equivalent as complexes of (OHc,OHc)-
bimodules, and EndOHc(C) and OGb are homotopy equivalent as complexes
of (OGb,OGb)-bimodules. In this situation C is called a Rickard complex
and the functors C⊗OHc? and HomOGb(C, ?) induce inverse equivalences of
the derived bounded categories Db(OGb) and Db(OHc). Of course, if C has
only one nonzero term then OGb and OHc are Morita equivalent.

Suppose that OGb and OHc have a common defect group D and that
each term of C, considered as an O(G × H)-module, is a direct summand
of a permutation module and is relatively ∆D-projective, where ∆D is the
diagonal subgroup {(x, x) | x ∈ D} ≤ G×H. Then we say that C is splendid
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and that OGb and OHc are splendidly Rickard equivalent. If C has only one
nonzero term we say that OGb and OHc are splendidly Morita equivalent.
Note that in this case, we get that a source algebra of OGb is isomorphic as
interior D-algebra to a source algebra of OHc (see, e.g., [10, Remark 7.5]).

Here is a simple situation in which we have a splendid Morita equivalence:

Lemma 6. Let G1 and G2 be finite groups, and let b1 and b2 be block
idempotents of OG1 and OG2. Then if OG2b2 has defect group 1, then
OG1b1 and OG1b1 ⊗ OG2b2 (a block of G1 × G2) are splendidly Morita
equivalent.

Proof. Let i be a primitive idempotent in OG2b2. Then the O((G1 ×G2)×
G1)-module OG1b1⊗OG2i is a summand of a permutation module and has
vertex ∆D, where D is a defect group of OG1b1. Furthermore OG1b1⊗OG2i
induces a Morita equivalence between OG1b1 and OG1b1 ⊗OG2b2. �

In order to describe a situation in which a composition of two splen-
did Rickard equivalences produces again a splendid Rickard equivalence, we
consider the control of fusion of p-subgroups. For D any p-subgroup of G,
define F(G,D) to be the set of homomorphisms ψ : P → D, where P is any
subgroup of D for which there exists g ∈ G such that ψ(x) = gxg−1 for all
x ∈ P .

Lemma 7. Let G, H, and L be finite groups with a common p-subgroup D,
and let b, c, and f be block idempotents of OG, OH, and OL with defect
group D. Suppose that OGb and OHc are splendidly Rickard equivalent and
that OHc and OLf are splendidly Rickard equivalent. If either F(H,D) ⊆
F(G,D) or F(H,D) ⊆ F(L,D), then OGb and OLf are splendidly Rickard
equivalent.

Proof. See, e.g., [3, Lemma 8.3]. �

We now return to the notation used in section 4 and assume that w ≤ 5.
Consider an arbitrary p-block of the symmetric groups which has weight w.
We may take this block to be OS(V ′)e, where V ′ is a finite set containing U
and e is a block idempotent of OS(V ′) corresponding to a p-core κ. Then
D is a defect group of OS(V ′)e. We have that

NS(V ′)(D) = NS(U)(D)× S(V ′ − U),

and the Brauer correspondent of OS(V ′)e in NS(V ′)(D) is

ONS(U)(D)⊗OS(V ′ − U)e′0,

where e′0 is the block idempotent of OS(V ′−U) corresponding to the p-core
κ. We consider the following pairs of blocks:

(1) OS(V ′)e and OGb;
(2) OGb and ONf ;
(3) ONf and the principal block of OÑ ;
(4) the principal block of OÑ and ONS(U)(D);
(5) ONS(U)(D) and ONS(U)(D)⊗OS(V ′ − U)e′0.

In his unpublished work ([12]) Rickard proved that the blocks in the
first pair are splendidly Rickard equivalent. Andrei Marcus [8] showed that
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the blocks in the fourth pair are splendidly Rickard equivalent based on
the existence of splendid Rickard equivalences for blocks with cyclic defect
groups, proved by Rouquier in [14]. The blocks in the third pair, and those
in the 5th pair are splendidly Morita equivalent by Lemma 6. Finally the
blocks in the second pair are splendidly Morita equivalent; indeed, in section
4 we showed that an equivalence is induced by a bimodule X which has
vertex ∆D and is a summand of a permutation module, namely OG.

We can use Lemma 7 to combine these splendid equivalences, as long as
we can show that F(G1, D) ⊆ F(G2, D) for any groups G1 and G2 appearing
in the list above. We may assume that G1 and G2 are subgroups of S(W )
which contain NS(U)(D), where W is a finite set containing U . Suppose P
is a p-subgroup of D and g1 an element of G1 such that g1Pg

−1
1 ⊆ D. Let

T be the subset of U consisting of elements not fixed by P . Then because
g1Pg

−1
1 ⊆ D we have that g1(T ) ⊆ U . Thus there exists ω ∈ S(U) such that

ω(t) = g1(t) for all t ∈ T . Then we have ωxω−1 = g1xg
−1
1 for all x ∈ P . Now

as D is a Sylow p-subgroup of S(U) and is abelian, a theorem of Burnside
(see, e.g., [4, page 240, Theorem 1.1]) tells us that there exists τ ∈ NS(U)(D)
such that τxτ−1 = ωxω−1 for all x ∈ P . Thus we have τxτ−1 = g1xg

−1
1 for

all x ∈ P , where τ ∈ G2. So indeed F(G1, D) ⊆ F(G2, D).
We have shown then thatOS(V ′)e and its Brauer correspondent are splen-

didly Rickard equivalent. So we indeed get a splendid Rickard equivalence
in Theorem 1.
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