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Abstract

This paper presents a theoretical background and an example
of extending the Euler-Bernoulli equation from several aspects.
Euler-Bernoulli equation (based on the known laws of dynamics)
should be supplemented with all the forces that are participating
in the formation of the bending moment of the considered mode.
The stiffness matrix is a full matrix. Damping is an omnipresent
elasticity characteristic of real systems, so that it is naturally in-
cluded in the Euler-Bernoulli equation. It is shown that Daniel
Bernoulli’s particular integral is just one component of the total
elastic deformation of the tip of any mode to which we have to
add a component of the elastic deformation of a stationary regime
in accordance with the complexity requirements of motion of an
elastic robot system. The elastic line equation mode of link of
a complex elastic robot system is defined based on the so-called
“Euler-Bernoulli Approach” (EBA). It is shown that the equation
of equilibrium of all forces present at mode tip point (“Lumped-
mass approach” (LMA)) follows directly from the elastic line equa-
tion for specified boundary conditions. This, in turn, proves the
essential relationship between LMA and EBA approaches. In the
defined mathematical model of a robotic system with multiple
DOF (degree of freedom) in the presence of the second mode, the
phenomenon of elasticity of both links and joints are considered
simultaneously with the presence of the environment dynamics –
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all based on the previously presented theoretical premises. Simu-
lation results are presented.

Keywords: robot, modeling, elastic deformation, gear, link, cou-
pling, dynamics, kinematics, trajectory planning.

1 Introduction

Modeling and control of elastic robot systems has been a challenge to
researchers over the past two decades.

In paper [1], the control of robots with elastic joints in contact with dy-
namic environment is considered. In [2], the feedback control was formed
for the robot with elastic links (two-beam, two-joint systems) with dis-
tributed flexibility, robots with elastic links being also dealt with in [3].
In paper [8] a nonlinear control strategy for tip position trajectory track-
ing of a class of structurally flexible multi-link manipulators is developed.
Authors of papers [10] and [11] derived dynamic equations of the joint
angle, the vibration of the flexible arm, and the contact force. The paper
[12] presents an approach to end point control of elastic manipulators
based on the nonlinear predictive control theory. [14-15] presents method
for the generation of efficient kinematics and dynamic models of flexible
robots. In [17] author discusses the force control problem for flexible joint
manipulators. In paper [18] the authors extend the integral manifold ap-
proach for the control of flexible joint robot manipulators from the known
parameter case to the adaptive case. The author of paper [19] designed
a control law for local regulation of contact force and position vectors to
desired constant vectors. In paper [20] different from conventional ap-
proaches, authors focus on the design of rigid part motion control and
the selection of bandwidth of rigid subsystem.

Work [21] presents the derivation of the equations of motion for ap-
plication mechanical manipulators with elastic links. In [22] the equa-
tions are derived using Hamilton’s principle, and are nonlinear integro-
differential equations.

The formulation is based on expressing the kinetic and potential en-
ergies of the manipulator system in terms of generalized coordinates.
Method of separation of variables and the Galarkin’s approach are sug-
gested in paper [23] for the boundary-value problem with time-dependent
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boundary condition.

Our paper presents in detail the procedure of the theoretical imple-
mentation of stiffness characteristic to the mathematical model of an elas-
tic robot system. This realistic characteristic of the material of any mode
is included through the example of multiple DOF robot mechanism mod-
eling. We also deal with many other phenomena that are part of the
nature of elastic robot systems.

We mention details of research done so far (over the preceding 20
years).

The mathematical model of one DOF mechanism with an elastic joint
was defined by Spong in 1987 [16]. The same principles are applied in
this paper to introduce joint elasticity in the mathematical model.

As far as the introduction of link elasticity in the mathematical model
of a robot system is concerned, it is necessary to point out some problems
of a physical nature in this field.

In the previous literature [24], [25], [26], [27], [28], [31] the general
solution of the motion of an elastic robotic system has been obtained by
considering elastic deformations as transversal oscillations that can be
determined by the method of particular integrals of D. Bernoulli.

As known, an elastic deformation of a body under consideration may
be caused by:

1. disturbance forces, which cause the oscillatory nature of motion

2. stationary forces, which cause the stationary nature of motion.

Thus, any elastic deformation can be presented by superimposing par-
ticular solutions of the oscillatory character of D. Bernoulli and stationary
solution of the forced character (See Section III and IV of this paper).

• No relationship between LMA and EBA has been established in the
literature. Moreover, an attitude has been formed that these two
approaches should be treated in different ways. LMA is taken to
be standard and obsolete. Work relying on this approach is seen as
having no importance, because in this area everything “has already
been done”. On the other hand, EBA is viewed as an approach that
should be in the focus of authors’ interest.
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• In this paper we have shown that facts differ essentially from what
has been accepted: EBA (used in [24] . . . ) treats an elastic beam as
a system with an infinitely large number of the degrees of freedom,
whereas the choice of a ordered shape of an elastic line is equiva-
lent to the introduction of subsequent connections that reduce the
number of the degrees of freedom. It permits analyzing the shape of
an elastic line of every mode during task performance. When LMA
(used in [5], [6] . . . ) is applied, the addition of modes increases the
number of the degrees of freedom. It permits analyzing the motion
of the tip of every mode only. LMA appears to follow directly from
EBA, i.e., it is, essentially, just a special case of EBA. Lacking the
information on which of these two approaches was developed first,
we think that neither of these two methods is superior or inferior
– they are “equal” methods treating the same problem from vari-
ous standpoints. A mathematical method obtained by any method
should satisfy the elementary structure of elastic mechanism models
known from the literature [32].

Of course, we agree in some points with the approach taken so far
in the analysis of elastic robot systems. We agree in reference trajectory
definition.

- First detailed presentation of the procedure for creating reference tra-
jectory was given in [7]. This especially important result has widely
opened up the possibility to the application of different control laws,
as well as to the possibility of controlling the position and orienta-
tion of elastic robot tip in space. In [26], this has been realized for
robotic system with one elastic joint and rigid link, and separately
for the system with one rigid joint and one elastic link.

- In our paper the reference trajectory has been synthesized for example
which includes elastic joints and links and the presence of environ-
ment force. The reference trajectory is calculated from the total
dynamic model, when robot tip tracks a desired trajectory in a ref-
erence regime in the absence of disturbance. Elastic deformations
(of elastic link and elastic joint) exist on a reference level as well
in the case when a robot moves along a reference trajectory in a
reference regime. With a reference trajectory defined in this way
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it is possible to apply a very simple control law through PD local
feedback and this, in turn, ensures tracking the robot tip in the
Cartesian coordinate space.

As far as a robot working regime is concerned, we think that all of the
present forces should participate in the formation of elastic deformations
and that it is a rough approximation to assume that elastic effects are
generated by gravitation forces only, or by environment dynamics force
only [9, 10] or to neglect completely Coriolis’ and centrifugal forces and
thus make the elastic deviations so small that they do not affect the
inertia matrix [13].

Let us emphasize once again that in this paper:

1. we propose a mathematical model solution that includes in its root
the possibility for analyzing simultaneously both present phenom-
ena – the elasticity of joints and the elasticity of links, the idea
originated from [4] but not on the same principles,

2. we show how the continuously present environment dynamics force
affects the behavior of an elastic robot system.

See papers [33]-[37].
The analysis of the Euler-Bernoulli equation is given in section 2 while

section 3 presents, in general, the ideas for extending the Euler-Bernoulli
equation by a damping component as well as an expansion of its solution
by the component of a stationary solution of a forced nature. These new
ideas are explained in more detail in section 4. In section 5 we analyze
a multiple DOF robot mechanism with elastic joints and elastic links in
the presence of environment force dynamics. Concluding remarks are
presented in section 6.

2 Analysis of the Euler-Bernoulli equation

in source shape

A disturbance of the equilibrium state of an elastic body will result in
motion, i.e. vibration of particles. This motion is transmitted through
the body causing a wave process whose characteristic is that the same
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disturbance state prevails in each place of the elastic medium, but with
a delayed phase. The equation of the elastic line of a beam bending has
the following form:

M̂1,1 + β1,1 · ∂2ŷ1,1

∂x̂2
1,1

= 0, or M̂1,1 + ε̂1,1 = 0. (1)

ε̂1,1 = β1,1 · ∂2ŷ1,1

∂x̂2
1,1

. (2)

Where: M̂1,1 [Nm] - load moment, ε̂1,1 - bending moment, β1,1 =
El · Imom1,1 [Nm2] - flexural stiffness, where El [N/m2] is the elasticity
module and Imom1,1[m

4] the inertia moment of the cross section of the
beam under consideration.

The basic dynamic equation of an elastic body has been obtained
by applying D’Alembert’s principle and adding the inertia force to the
Euler-Bernoulli equation. This is how the well known wave equation of
transversal oscillations of a flexible beam is obtained:

∂2ŷ1,1

∂t2
+ c2

1,1 ·
∂4ŷ1,1

∂x̂4
1,1

= 0. (3)

c1,1 is the wave propagation velocity. Equation (3) follows from equation
(1), after performing differentiation and assuming that the flexion force
is opposed by the inertia force.

The general solution of motion (see Fig. 1), i.e., the form of transversal
oscillation of elastic beams may be found using the Daniel Bernoulli’s of
particular integrals method in the form:

ŷto1,1(x̂1,1, t) = X̂1,1(x̂1,1) · T̂to1,1(t). (4)

X̂1,1(x̂1,1) = C1,(1,1) cos k1,1x̂1,1 + C2,(1,1) sin k1,1x̂1,1+

+C3,(1,1)Ch k1,1x̂1,1 + C4,(1,1)Sh k1,1x̂1,1. (5)

T̂to1,1(t) = A1,1 cos p1,1t + B1,1 sin p1,1t. (6)

p1,1 is the circular frequency. k4
1,1 =

p2
1,1

c21,1
.

C1,(1,1), C2,(1,1), C3,(1,1) and C4,(1,1), are constants determined from the
boundary conditions of mode, and constants A1,1 and B1,1 are determined
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from the initial conditions of motion. By superposing particular solutions
(4), any transversal oscillation may be presented in the following form:

ŷto1(x̂1,j, t) =
∞∑

j=1

X̂1,j(x̂1,j) · T̂to1,j(t). (7)

Source equations (1-7) are of special importance for the analysis of
elastic bodies.

Remark I: Equations (1-7) should be expanded by a brief explanation,
which we take for granted but is not included in source literature [32]. The
authors have written equation (7) in a visionary way, without defining
the mathematical model of a link with an infinite number of modes whose
solution is equation (7). It seems they have left this task to their followers.
The transversal oscillations given by equation (7) describe the motion of
an elastic beam to which we have assigned an infinite number of degrees
of freedom (modes) and which we may describe by a mathematical model
defined with an infinite number of equations of the form:

M̂1,j + ε̂1,j = 0, j = 1, 2, ..., j, ...∞. (8)

The dynamics of each mode is described by one equation. Contrary
to today’s interpretations by the authors of numerous papers, equations
given in model (8) are not equal in structure. In our opinion, differences
between the equations of model (8) arise because of the coupling between
the present modes. This explanation is of crucial importance and must be
kept in mind in understanding the further presentation in our paper.

Remark II: The symbol ” ˆ ” generally characterizes the quantities
relating to any point on the elastic line of a mode, e.g. ŷ1,1, x̂1,1 , ε̂1,1 .
The same quantities without the symbol ”ˆ” have been defined for the tip
of a mode, e.g. y1,1, x1,1, ε1,1.

Remark III: Under a mode we understand the presence of coupling
between all the modes present in the system. We analyze the system
in which the action of coupling forces (inertial, Coriolis’, and elasticity
forces) exists between the present modes. To differentiate it from “mode
shape” or “assumed mode”, we could call it a coupled mode or, shorter,
in the text to follow, a mode. This yields the difference in the structure of
Euler-Bernoulli equations for each mode.
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3 Extension of the Euler-Bernoulli equa-

tion

A. Damping component

Any elastic body, when exposed to external forces, is deformed – it elon-
gates, shortens, bends, twists, depending on the position and direction of
forces acting on it. Only transversal deformations of the prismatic beam
will be analyzed in detail in this paper. The point of application of forces
displace in time, so these forces perform certain work on this path. Work
is opposed by:

• the potential energy of the elastic body, which depends on the stiff-
ness characteristic and flexure, and

• the dissipation energy, which depends on the damping characteristic
and flexure change velocity.

The presence of dissipation energy is especially expressed in an oscil-
latory regime, while its presence is minimal in a stationary regime, when
displacement velocity of the material particles of an elastic body with
respect to an equilibrium position is minimal. To include the damping
effect into analysis, source equation (1) should be extended as follows:

M̂1,1 + β1,1 · ∂2(ŷ1,1 + η1,1 · ˙̂y1,1)

∂ x̂2
1,1

= 0. (9)

η1,1 is a factor characterizing the share of damping in the total elasticity
characteristic.

B. Whole solution of elastic line

We will consider one more aspect of the expansion of the previously de-
fined source equations (1-7).

Bernoulli’s equation (4-6) describes the nature of the motion of real
elastic beam only partially. More precisely, it is only one component of
motion.
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As has already been stated, equations (1-7) have been defined assum-
ing that the elasticity force is opposed by the inertia force only. In addi-
tion, it is assumed, by definition, that motion in equation (1) is caused by
a suddenly added, and then removed, external force. Daniel Bernoulli’s
solution (4-6) satisfies these assumed conditions.

To be applicable to a wider analysis of elastic bodies, equations (1-7)
should be supplemented by expressions that follow directly from motion
dynamics of elastic systems.

As known, an elastic deformation of a body under consideration may
be caused by:

• disturbance forces, which cause the oscillatory nature of motion

• stationary forces, which cause the stationary nature of motion.

By superposing the particular solution of oscillatory nature, and the
stationary solution of forced nature, any elastic deformation of a consid-
ered mode may be presented in the following general form:

ŷ1,1(x̂1,1, t) = X̂1,1(x̂1,1) · (T̂st1,1(t) + T̂to1,1(t)). (10)

T̂st1,1(t) is the stationary part of elastic deformation caused by stationary
forces that vary continuously over time.

Remark IV: The extension of the Euler-Bernoulli equation by a
damping component as a realistically present property of elasticity has no
direct, causal relationship with the extension of the equation of Daniel
Bernoulli’s particular integral. These two new phenomena are compatible
in the analysis of elastic robot systems, but are not conditioned by each
other.

4 New form of elastic line model and new

form of elastic line solution

An elastic beam is made of a certain material characterized by stiffness
and damping. The points of working of forces, acting on an elastic beam,
displace in time, so these forces perform certain work on this path. A
partion of this work transforms into the potential energy Epels1,1 and
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another into the dissipation energy Φpels1,1 of elastic body. The energy
balance is:

Ad1,1 = Epels1,1 + Φpels1,1. (11)

To emphasize the elasticity effects, in this analysis the kinetic energy
of elastic body motion is included in expression Ad1,1.

Upon a slow change in the load of an elastic body by forces, for ex-
ample in a stationary state, when the velocity of a change in the position
of elastic body material particles, with respect to the equilibrium state
of the same body, is slight, dissipation energy Φpels1,1 can be neglected.
There is no such a case in robotics. Because of the possible disturbances
during robot task performance, the velocity of a change in the position
of elastic body material particles with respect to the equilibrium position
can be considerable; therefore Φpels1,1 can have a considerable share in
the total energy balance given by equation (11). What follows from this
is that the work of external forces upon a dynamic load of an elastic body
is equal to the action of change in the potential and dissipation energy of
deformation. This means that the potential and dissipation energy may
be expressed and calculated using the work of external forces. A body
that has accumulated potential or dissipation energy is in a tension state,
so the internal forces tend to return the body to an equilibrium state.
The potential and dissipation energy of deformation may also be referred
to as deformation work. The deformation work caused by the action of
all present forces is denoted in this paper by Ad1,1.

Load force F1,1 is consumed on the opposition to stiffness force F p
1,1

or on the opposition to damping force F φ
1,1 of elastic mode.

F1,1 = F p
1,1 + F φ

1,1. (12)

F p
1,1 = Cs1,1 · r1,1, F φ

1,1 = Bs1,1 · ṙ1,1. (13)

Cs1,1 is the stiffness characteristic and Bs1,1 is the damping characteristic.
The elementary potential energy resulting from the present stiffness of
elastic body is:

dEpels1,1 = Cs1,1 · r1,1 · dr1,1. (14)

Integration yields:

Epels1,1 =
1

2
Cs1,1 · r2

1,1. (15)
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The elementary dissipation energy due to the present damping of elas-
tic body is:

dΦpels1,1 = Bs1,1 · ṙ1,1 · dṙ1,1. (16)

Integration yields:

Φpels1,1 =
1

2
Bs1,1 · ṙ2

1,1. (17)

From this analysis we may conclude that elastic line equation (1) may
be expanded by the damping characteristic of elastic body, as defined by
equation (9).

The general solution of the motion of elastic body, described by equa-
tion (9), is defined by equation (10). Let us consider this in more detail.

In addition to the Bernoulli’s solution defined by equation (5), the
geometry of a bent link may also be defined by the following procedure.

A. Simple example with a detailed explanation

It should be noted that the shape of elastic line depends on constant and
time-varying factors:

- constant: the geometrical characteristics of the link and the character-
istics of the material the link is made of

- time-varying : the type and level of load during robot task performance.

The load moment for the any point of first mode may also be expressed
in the form of equation:

M̂1,1 = F1,1 · (l1,1 − x̂1,1). (18)

From equation (9) it follows that:

ε̂1,1 = β1,1 · (ŷ1,1 + η1,1 · ˙̂y1,1)
′′. (19)

If the coordinate system is set as shown in Fig. 2, the differential
equation of elastic line is defined by:

β1,1 · (ŷ1,1 + η1,1 · ˙̂y1,1)
′′ = F1,1 · (l1,1 − x̂1,1). (20)
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Doubly integration gives:

β1,1 · (ŷ1,1 + η1,1 · ˙̂y1,1)
′ = −F1,1 · (l1,1 − x̂1,1)

2

2
+ C1. (21)

β1,1 · (ŷ1,1 + η1,1 · ˙̂y1,1) =
F1,1 · (l1,1 − x̂1,1)

3

6
+ C1 · x̂1,1 + C2. (22)

Constants C1 and C2 are determined from the boundary conditions
defined for console.

For x̂1,1 = 0 and ŷ1,1 = 0, ˙̂y1,1 = 0 it follows that C2 = −F1,1 · l31,1

6
.

For x̂1,1 = 0 and (ŷ1,1 + η1,1 · ˙̂y1,1)
′ = 0 it follows that C1 =

F1,1 · l21,1

2
.

By introducing C1 and C2 into equations (21) and (22), we obtain:

(ŷ1,1 + η1,1 · ˙̂y1,1) =
F1,1 · l31,1

6 · β1,1

·
(

x̂1,1

l1,1

)2

·
(

3− x̂1,1

l1,1

)
. (23)

(ŷ1,1 + η1,1 · ˙̂y1,1)
′ =

F1,1 · l21,1

2 · β1,1

· x̂1,1

l1,1

·
(

2− x̂1,1

l1,1

)
. (24)

Equations (23) and (24) determine the position and orientation of the
elastic line of the mode considered in each its point.

For x1,1 = l1,1, when y1,1 = ymax 1,1, hence ẏ1,1 = 0 it follows that from
equations (23) and (24):

y1,1 = r1,1 =
F1,1 · l31,1

3 · β1,1

, (25)

y1,1
′ = α1,1 = −F1,1 · l21,1

2 · β1,1

. (26)

tgϑ1,1 =
y1,1

l1,1

. If we accept ϑ1,1 ≈ tgϑ1,1 for small angles of bending, then

it follows that ϑ1,1 =
F1,1 · l21,1

3 · β1,1

. The rotation angle of the mode considered

ω1,1 can also be defined [29]. This angle plays an important role in the
dynamics of elastic robot systems.

ω1,1 = α1,1 − ϑ1,1 =
F1,1 · l21,1

6 · β1,1

=
ϑ1,1

2
. (27)
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The stiffness characteristic for the tip of first mode is designated from

equation (27) as Cs1,1 =
3 · β1,1

l31,1

[
N/m

]
, maximal deflection is r1,1.

At the moment when the elastic body tip passes through the equilib-
rium position, y1,1 = 0 holds (the potential energy of elastic body equals
zero), and the tip displacement velocity is ẏ1,1 (the dissipation energy of
elastic body is finite) then:

η1,1 · ẏ1,1 = η1,1 · ṙ1,1 =
F1,1 · l31,1

3 · β1,1

. (28)

From this condition we may calculate the damping characteristic

Bs1,1 =
3 · β1,1 · η1,1

l31,1

[
Ns/m

]
.

The elasticity moment, which is defined by ε1,1 and which opposes the
load moment M1,1, is

ε1,1 = (Cs1,1 · r1,1 + Bs1,1 · ṙ1,1) · l1,1. (29)

Generally speaking, we also know that the tip of the mode of an elastic
robot link is affected by:

• disturbance forces, which cause the oscillatory nature of motion,
and

• stationary forces, which cause finite, stationary deformations.

The total force causing elasticity may be expressed, in terms of its
components, by:

F1,1 = Fst1,1 + ∆F1,1. (30)

The stationary part of elasticity force component is Fst1,1 which varies
continuously over time and, depending on its intensity and direction,
causes the stationary component of flexure rst1,1.

Tst1,1(t) = rst1,1 =
Fst1,1 · l31,1

3 · β1,1

. (31)
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Fst1,1 according to Rayleigh [29], contains two components:

Fst1,1 = Wu (1,1) + Ww (1,1) . (32)

Wu (1,1) is the force of the load concentrated on beam tip, and

Ww (1,1) =
33 · w̄1,1 · g · l

140
. (33)

is the force caused by beam eigenweight, where w̄1,1 · g is beam weight
per unit length.

The assumption that the stationary state of beam is its horizontal
position that coincides with axis x1,1 is unrealistic. This axis may coincide
with a horizontal straight line around which the elastic beam oscillates
only if gravitation load is neglected, and this represents a completely
idealized case.

∆F1,1 is a disturbance force, whose action may be momentary or per-
manent. It causes the oscillatory component of elastic mode motion,
which is described by equation (6).

We know that at a moment tp the action of disturbance force causes
an additional flexure rto1,1(tp), see Fig. 2.

Tto1,1(tp) = rto1,1(tp) =
∆F1,1 · l31,1

3 · β1,1

. (34)

Force ∆F1,1 has been removed and the body continues oscillating.
Equation (6) describes the oscillatory nature of motion.

If oscillations are caused by an external force ∆F1,1 that has been
added and immediately removed, elastic mode oscillations then take place
around the position of the stationary state. See Fig. 3.a. Position “B” is
defined by a stationary load force Fst1,1. When beam is at rest, Fst1,1 is
raised only by gravitation force. Position A,B is the stationary position
of the elastic line of the first mode. In this case, oscillations take place
around position A,B in the range from A,B ↑ A, +B′ toA,B ↓ A,−B′.
Position B′ is defined by the load force F1,1 which represents the sum of
stationary load force and disturbance force F1,1 = Fst1,1 + ∆F1,1 at the
moment of disturbance.

However, if the disturbance force acts on a robot system in a longer
period, oscillations then take place around a new stationary position A,C
in the range from A,C ↑ A, +C ′ to A,C ↓ A,−C ′. See Fig. 3b.
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Position C is defined by the total load force F1,1.
By analyzing equation (23) we will notice that it contains two com-

ponents, so its solution may be written as follows:

ŷ1,1 = X̂1,1(x̂1,1) · (T̂st1,1(t) + T̂to1,1(t)) = X̂1,1(x̂1,1) · T̂1,1(t). (35)

Component X̂1,1(x̂1,1) describes a possible geometrical relation be-

tween ŷ1,1 and x̂1,1. Component T̂1,1(t) describes the dependence of flex-
ure ŷ1,1 on elasticity force F1,1, which is the only time-varying quantity
in expression (35).

By combining the particular solution of the oscillatory nature of mo-
tion, the stationary solution of the forced nature of motion and the ge-
ometry of elastic line of the mode considered, we may obtain the general
solution of the motion of the first mode.

By superposing solutions (10), any elastic deformations of an elastic
link with an infinite number of degrees of freedom may be presented in
the following form:

ŷ1(x̂1,j, t) =
∞∑

j=1

X̂1,j(x̂1,j) · (T̂st1,j(t) + T̂to1,j(t)). (36)

5 Simulation example and results

Robot starts from point ”A” (Fig. 4) and moves toward point ”B” in the
predicted time T = 2 [s].

Dynamics of the environment force is included into the dynamics of
system’s motion [30]. The adopted velocity profile is trapezoidal, with
the period of acceleration/deceleration of 0.2 · T .

The same example analyzed as in paper [34] only with some what
different parameters environment.

Parameters of the environment are: F o
c = 30[N ], me = 1[kg], be =

10[N/(m/s)], ka1 = 104[N/m]. µ = 0.2.
The characteristics of stiffness and damping of the gear in the real

and reference regimes are not the same and neither are the stiffness and
damping characteristics of the link.

Cξ = 0.99 · Co
ξ , Bξ = 0.99 ·Bo

ξ , Cs1,1 = 0.99 · Co
s1,1,
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Bs1,1 = 0.99 ·Bo
s1,1, Cs1,2 = 0.99 · Co

s1,2, Bs1,2 = 0.99 ·Bo
s1,2.

As can be seen from Fig. 5 in its motion from point “A” to point “B”
the robot tip tracks well the reference trajectory in the space of Cartesian
coordinates.

As a position control law for controlling local feedback was applied,
the tracking of the reference force was directly dependent on the deviation
of position from the reference level (see Fig. 6).

The gear deflection angle ξ is given in Fig. 7.

The elastic deformations that are taking place in the vertical plane
angle of bending of the lower part of the link (first mode) ϑm, as well
as the angle of bending of the upper part of the link (second mode) ϑe

are presented in Fig. 8a., whereas elastic deformations taking place in
the horizontal plane: angle of bending of the lower part of the link (first
mode) ϑq as well as the angle of bending of the upper part of the link
(second mode) ϑδ are given in Fig. 8b.

As the rigidity of the second mode is about ten times lower compared
with that of the first mode, it is then logical that the bending angle for
the second mode is about ten times larger compared to that of the first
mode.

6 Conclusions

In order to analyze the behavior of an elastic robotic system it is necessary
to significantly expand the original form of:

• Euler-Bernoulli ’s equation, as a direct consequence of the forces
involved, and

• the particular integral of Daniel Bernoulli.

Based on the known laws of dynamics, the Euler-Bernoulli equation
should be supplemented by all forces participating in the formation of
bending moment of the considered mode. It is assumed that coupling
forces of the present modes (inertial, Coriolis and elasticity forces) are
also involved. This yields structural differences between Euler-Bernoulli’s
equations for each mode. The stiffness matrix is a full matrix. Only a
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stiffness characteristic has been attributed to an elastic beam in the liter-
ature so far. Realistically, both stiffness and damping characteristics are
present in the elastic beam. Apart from stiffness characteristic, damping
characteristic has been included in the Euler-Bernoulli equation for the
first time. Its presence in the mathematical model of an elastic line of a
mode considered is argumented theoretically. The shape of elastic line fol-
lows directly from motion dynamics of the complete system. Apart from
the damping of an elastic link, a variety of other phenomena involved in
the motion dynamics of these systems are also analyzed in the paper.

A general form of a transversal elastic deformation is analyzed and
defined, which has been obtained by superposing the solution of oscilla-
tory nature (Daniel Bernoulli’s solution) and the stationary solution of
forced nature. The example of a multiple DOF mechanism is used for
defining the elastic line equation of first link based on the so-called EBA.
It is shown that the equilibrium equation of all the forces present at mode
tip point follows directly from the Euler-Bernoulli equation. This means
that LMA is just a special case of EBA.

A dynamic model of an elastic robot system has been defined. A
mechanism has been modeled and simulated in the presence of the sec-
ond mode. Environment force dynamics has been implemented in the
dynamics of the behavior of an elastic robot system with elastic link and
elastic joint simultaneously. Even when a very simple control law is ap-
plied, proper tracking of reference trajectory is achieved.
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Novi oblik Euler-Bernoulli jednačine grede
primenjen na robotske sisteme

U ovom radu su date teorijske postavke i primer za proširenje Euler-
Bernoulli jednačine sa nekoliko stanovǐsta. Euler-Bernoulli jednačini,
(zasnovano na poznatim zakonima dinamike) treba dodati sve sile koje
učestvuju u formiranju momenta savijanja posmatranog moda. Matrica
krutosti je puna matrica. Prigušenje je u realnim sistemima uvek prisutna
karakteristika elastičnosti tako da je prirodno uključena u Euler-Bernoulli
jednačinu. Pokazano je da je partikularni integral Danijela Bernulija
samo jedna komponenta ukupne elastine deformacije svakog moda, ko-
joj je neophodno dodati komponentu elastine deformacije stacionarnog
režima prema zahtevima složenosti kretanja elastičnog robotskog sistema.
Definisana je jednačina elastične linije moda segmenta složenog elastičnog
robotskog sistema zasnovano na takozvanom “Euler-Bernoulli Approach”
(EBA).

Pokazano je da jednačina ravnoteže svih prisutnih sila u tački vrha
moda, (“Lumped-mass approach”(LMA)), direktno sledi iz jednačine ela-
stične linije za definisane granične uslove. Time je pokazana suštinska
veza izmedju LMA i EBA pristupa.

Definisan je matematički model vǐsestepenog robotskog sistema sa
dva moda gde je fenomen elastičnosti i segmenata i zglobova razmatran
simultano uz prisustvo dinamike sile okoline a sve na prethodno izloženim
teorijskim postavkama. Pokazani su rezultati simulacija.
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