
Henrikki Hoikka

EVALUATION OF ARROWHEAD
FRAMEWORK IN CONDITION MONITORING

APPLICATION

Faculty of Engineering and Natural Sciences
Master of Science Thesis

December 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/270319442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

Henrikki Hoikka: Evaluation of Arrowhead Framework in Condition Monitoring Application
Master of Science Thesis
Tampere University
Automation Engineering
December 2019

The technological advancement in the field of electronics and information technology is chang-
ing how industrial automation systems are built. This phenomenon is commonly referred to as the
fourth industrial revolution. However, before this prophecy on the change can manifest, new ar-
chitectural solutions are needed to fully leverage the abilities brought by cheaper sensors, more
advanced communication technology and more powerful processing units.

The Arrowhead Framework tries to tackle this problem by providing means for Service-oriented
architecture via System-of-Systems approach, where so-called application systems consume ser-
vices provided by so-called core systems, which provide means for service discovery, service
registration and service authorization.

The goal of the thesis was to evaluate The Arrowhead Framework by developing a demo
application on the edge-cloud setup used in the condition monitoring system of vibrating screens
manufactured by Metso. The demo applications objective was to ease the configuration and
installation of industrial Linux PC’s at the edge of the network.

The methodological model for the evaluation was based on the design science research pro-
cess (DSRP), which provides a model for research of IT artefacts. As a result, the Arrowhead
Framework’s core features were found helpful in the problem domain, and suitable for small-scale
test setup. However, the implementation of the framework was found to be low quality and lacking
features from a production-ready software artefact. The found shortcomings were reported as
feedback for the ongoing development process of the framework.

Keywords: Arrowhead Framework, condition monitoring, Service-oriented architecture, REST,
Industrial Internet of Things, IIoT, edge computing, containerization

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Henrikki Hoikka: Arrowhead sovelluskehyksen arviointi kunnonvalvontasovelluksessa
Diplomityö
Tampereen yliopisto
Automaatiotekniikka
Joulukuu 2019

Elektroniikan ja tietotekniikan kehitys on muuttamassa tapaa, jolla teollisuusautomaatiojär-
jestelmiä toteutetaan. Tätä ilmiötä kutsutaan yleisesti neljänneksi teolliseksi vallankumoukseksi.
Muutoksen mahdollistamiseksi tarvitaan kuitenkin uusia arkkitehtonisia ratkaisuja, jotka kykene-
vät hyödyntämään halvempia antureita, kehittyneempiä kommunikaatio- ja tietoliikenneratkaisuja
ja kasvanutta laskentatehoa.

Arrowhead -sovelluskehys pyrkii ratkaisemaan tämän ongelman palvelukeskeisyyteen ja si-
säkkäisiin järjestelmiin (eng. System-of-Systems) perustuvalla lähestymistavalla. Arrowhead -
sovelluskehyksessä niin kutsutut sovellusjärjestelmät (eng. application systems) kuluttavat niin
kutsuttujen ydinjärjestelmien (eng. core systems) tarjoamia hallintasovelluspalveluita, jotka kyke-
nevät, sovelluspalveluiden rekisteröimiseen, etsintään ja käyttöoikeuksien hallintaan.

Tämän diplomityön tavoitteena oli arvioida Arrowhead -sovelluskehyksen soveltuvuutta Met-
son reuna-pilvi-mallia hyödyntävässä seulojen kunnonvalvontajärjestelmässä, kehittämällä demo-
sovellus. Sovelluksen tavoitteena oli helpottaa hajautetusti verkon reunalla sijaitsevien, pilveen
dataa lähettävien, Linux -teollisuustietokoneiden konfiguraatiota ja käyttöönottoa.

Työn metodologisena pohjana käytettiin suunnittelutieteeseen kehitettyä mallia IT-artefaktien
tutkimiseen. Tuloksena, Arrowhead-sovelluskehyksen tarjoamat toiminnallisuudet todettiin käyttö-
kelpoisiksi pienen mittakaavan testiympäristössä, mutta sovelluskehyksen toteutus todettiin kui-
tenkin heikkolaatuiseksi ja sen toiminnoissa havaittiin puutteita, jotka tekevät toteutuksesta käyttö-
kelvottoman tuotantoympäristössä. Löydetyt puuteet kirjattiin ja annettiin sovelluskehyksen edel-
leen jatkuvan kehitystyön käyttöön.

Avainsanat: Arrowhead-sovelluskehys, kunnonvalvonta, Palvelukeskeinen arkkitehtuuri, REST, teol-
linen IoT, Säiliöinti

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

I want to thank Assistant Professor (tenure track) David Hästbacka for the help he gave
while I was seeking a topic for the thesis, and for the advice, he gave in the roles of
the supervisor and the examiner during the writing process. Thanks also to the second
examiner, Professor Matti Vilkko, who gave valuable advice in the initial meeting held at
the university.

From Metso’s side, thanks to M.Sc Tech. Antti Jaatinen, who in the role of a supervisor
helped along the process. Thanks also to M.Sc Tech. Janne Kytökari and PhD. Cristiano
di Flora whom both found time for answering my questions.

Finally, thanks to my family for the support they gave during my studies.

In Tampere, 1st December 2019

Henrikki Hoikka

iv

CONTENTS

1 Introduction . 1

1.1 Introduction to Case Metso . 2

1.2 Problem Definition . 2

1.3 Research Questions . 3

1.4 Structure of the Thesis . 3

2 Background . 4

2.1 Maintenance Strategies . 4
2.1.1 PM Based on Scientific Method . 5

2.2 Condition Based Maintenance . 6
2.2.1 Phases of CBM . 6

2.3 IoT . 8
2.3.1 Wireless Sensor Networks . 9
2.3.2 Cloud Computing . 9
2.3.3 Industrial IoT . 10
2.3.4 Architecture of IoT . 10

2.4 IoT in the Domain of the Thesis . 11
2.4.1 Service-oriented Architecture . 12
2.4.2 Edge and Cloud . 15
2.4.3 Containerization . 16

3 Tools . 18

3.1 Arrowhead Framework . 18
3.1.1 Philosophy of Arrowhead Framework 18
3.1.2 Application Systems . 21
3.1.3 Supporting Core Systems . 21

3.2 Supporting Tools . 23
3.2.1 Persistent Storage . 24
3.2.2 JavaScript and Node.js . 26
3.2.3 Docker . 27

4 Methodologies . 29

4.1 Approach for Solving the Research Questions 29
4.1.1 Ideal System and Expectations Placed to AHF 31

4.2 The Setup Used for Evaluation . 32

5 Implementation . 34

5.1 The Software Stack of the Demo application 34
5.1.1 Mocking of the Edge . 35

5.2 Application System Development . 36

v

5.2.1 Modules . 37

5.3 The System of Systems . 40
5.3.1 Modules used in Application Systems 41

5.4 An Alternative Control Approach . 45
5.4.1 Modules used In the Alternative Control Approach 45

6 Evaluation . 47

6.1 The Ideal System . 47
6.1.1 Upsides of the Arrowhead Framework 47
6.1.2 Shortcomings of the Arrowhead Framework 48

6.2 Summary of Evaluation . 53

7 Conclusion . 55

References . 57

1

1 INTRODUCTION

In a world where computing power is cheaper every year, the urge to connect devices in
more smart ways is growing. In everyday life, involving home electronics, cars and what-
not, this phenomenon is usually referred with the term Internet of Things (IoT). However,
this phenomenon is not limited to smart refrigerators and cool gadgets like the Amazon
Alexa. The way how industrial systems and societally critical infrastructure such as the
electric grid are implemented is also under change.

For the last 20 to 30 years, the architecture of software systems in the field of automation
have been based on the hierarchical model. In this model, automation systems are con-
structed in a pyramid-like structure, where sensors, actuators and controllers live on the
ground level, and more abstract functionalities, such as business planning and logistics
live at the highest peak of the pyramid. While this hierarchical approach gives a solid base
for software development, it also introduces caveats by tightly coupling different parts of
the system to their respective place in the hierarchical model. [13]

On the field-level in industrial systems, the change caused by technological advancement
propagates as more sensors and therefore way more data-points. Measurement as such
is not the point though. The data produced by different kinds of sensors need to be
processed, moved and acted upon accordingly. The increase in computing power and
the advance in communication technologies means that there are more and more choices
where to act, process, and where to move the data. For example, some data-processing
task that previously would have been done in some computer more central to the system
as a whole might be done on the sensor producing the data, which after the processing,
sends more refined and abstract data forward.

The change puts the model in which we build industrial systems, under a severe need
of rethinking. In a computer system where bits and pieces are tightly coupled to a hier-
archical model, it is hard to utilize new communication and data processing opportuni-
ties. More dynamic and loosely coupled ways to build more scalable industrial systems
and ways to add, move and replace computing units both vertically and horizontally are
needed. I.e if it otherwise makes sense1 to do a computational task closer to a sensor,
in a cloud somewhere else, or a parallel unit on the same level, the architectural model
should not prevent this from happening.

1Sense in a context of the system and good engineering practices in general, such as taking into account
things like security, safety, reliability and usability.

2

In the field of automation, these new requirements haven’t been unnoticed. There are
multiple different organizations and working groups and projects with participants from
the public sector, private sector and the academia, trying to tackle this very problem
described above. One major project is the Industry4.0 working group initiated by the
German government [62].

1.1 Introduction to Case Metso

This thesis is part of EU funded Productive4.0 project, of which Metso Oyj, the com-
missioner of the thesis, is a participant of. Like many other projects, Productive4.0 has
partners and stakeholders from universities, companies and state-owned research facili-
ties from all over Europe.

Productive4.0 is a continuation for a previous project called Arrowhead, in which stake-
holders from all over Europe were collaborating to define a framework that eases the
utilization of service-oriented architecture in the field of automation and embedded com-
puting systems in general.

The end product of the project, the Arrowhead Framework, is tackling the problems
caused by the changing field, with System of Systems approach, in which so called Ar-
rowhead core systems provide the means for service discovery, service registration and
service authorization, for so called Arrowhead application systems, which together form
the aforementioned System of Systems. Communication between the systems is handled
via REST-based[22] web services.

In Productive4.0, the participants examine ways to do Service-oriented architecture (SOA)
in a spirit of Industrial internet of things (IIoT). On Metso’s side, the project chosen to
participate in Productive4.0 is condition monitoring system used in equipment manufac-
tured by Metso. The "test-bench product-line" for the project is vibrating screens, used
in mines, but the possible reusable results in the context of other product-lines by Metso
found during the project, are welcome, and to a some extent even expected.

1.2 Problem Definition

The condition monitoring system which is the objective in one of the tasks of the Produc-
tive4.0 project is already functioning, and it utilizes modern techniques such as Bluetooth
LE, energy harvesting and distributed analysis of the measurement data collected from
accelerometers. However, the caveats caused by hierarchical architecture mentioned in
the first part of this chapter are at least partly present in the system.

Configuring the systems data flow is found cumbersome, and control over what part of the
analysis is done at what level of the process, is found to be tricky to configure. Ideally, the
mutability of what is computed where, and how the data flows, would be far higher than it
is in the current system, which would enable ways to change how the system is function-
ing dynamically, ability to expand it, and therefore increase Metso’s ability to use data to

3

achieve more responsive maintenance, and give feedback to product development.

Another major drawback in the current system is the installation of new edge devices
— which are industrial computers on the premises, running Linux. When a new edge
computer is installed, or a broken one is replaced, the installation and initial configuration
of the condition monitoring system is found to be tricky. Since condition monitoring is an
extra service on top of the actual purpose of the machine, the extra work needed to keep
the system functional in all situations should be minimal. In an ideal world, the addition
or replacement of an edge computer should happen in plug and play nature.

1.3 Research Questions

This Thesis has two research questions which are both derived from the problem defini-
tion stated in the previous section:

• How can Arrowhead Framework help in configuration of the data flow from edge to
cloud?

• How can Arrowhead Framework ease the installation of new edge devices?

To answer these research questions, the Arrowhead Framework is used to develop a
demo application that tries to tackle the problems. After the implementation, Metso’s
research facilities located at Tampere are used to examine the demo application with a
vibrating screen exciter and edge computing devices.

1.4 Structure of the Thesis

In chapter 2 related research and theory in the domain of the thesis is summarized in the
form of a literature review. In chapter 3 tools used for the demo application are presented.
In chapter 4, the methodology and facilities used for solving the research questions are
introduced in more detail. Chapter 5 is about implementation of the demo application. In
chapter 6 implementation is evaluated, and as a result, research questions are answered.
Chapter 7 concludes the thesis.

4

2 BACKGROUND

In this chapter, a literature review on the domain of the thesis is concluded. In the two first
sections, some theory behind maintenance approaches and condition monitoring is pre-
sented. However, while understanding some basic concepts of maintenance approaches
and condition monitoring is crucial for understanding the domain of the thesis, they are
not the main point of interest. There are multiple good sources for information on deeper
level [2][15][56].

The second section is about the Internet of Things(IoT), and some background on IoT,
industrial IoT, IoT architecture and concepts relevant to the thesis is introduced. The
third section continues where the second one ended and goes into more depth on the
domain of the thesis. Theoretical justification on the partly pre-chosen approaches used
are presented in the form of improvements to the approaches presented in the second
section.

2.1 Maintenance Strategies

The main goal of maintenance is to restore the equipment to a state, in which it can
fulfil its designated task. Maintenance is an essential part of the modern production line,
and proper maintenance strategy can potentially reduce failures, increase runtime and
therefore decrease costs [2, 56].

Maintenance approaches can be loosely categorized in two different classes, Corrective
Maintenance(CM) and Predictive Maintenance(PM) [15, 56]. In CM, the goal is to repair
the equipment after a failure has already happened. Whereas In Predictive Maintenance,
the goal is to estimate or monitor the condition of the equipment and repair it before it
breaks [3, 56].

CM can lead to production loss due to unexpected downtime caused by a failure[56]. For
minimizing the number of unplanned stoppages, different strategies to predict when the
maintenance is needed have been developed. The greatest challenge in these PM based
strategies comes from the difficulty of predicting the optimal time for maintenance. To do
so, lots of data, and knowledge "mined" form the data is needed [2].

The prediction process can be based on experience gained while using the equipment
or scientific method which can be based on on-site-analysis or recommendations given
by the original manufacturer of the equipment. In PM with the experience-based method,

5

things are not necessarily done in a systematic nor standardized way. The staff and its
experience gained while using and repairing the equipment over time is an important role.
However, since no human being can work around the clock, and staff changes over time,
this can lead to situations where one or multiple members of staff become crucial to the
process. While the most experienced members of staff are not available, proper actions
can not be taken [2].

2.1.1 PM Based on Scientific Method

The methods based on a scientific approach can be further divided into two separate
categories, time-based maintenance (TBM) and Condition Based Maintenance (CBM).
In TBM the failure data of the equipment is analysed, and based on characteristic found
in the data, recommendations on future maintenance schedule are given. In CBM, the
data representing the state of the equipment is collected and analysed on-fly, and main-
tenance recommendations are given based on the monitored state of the equipment. The
gathering of the data and on-fly analysis can be performed by staff with special tools en-
gineered for the job or by equipment that is by design, or by addition, an integral part of
the system [2].

In the TBM method, the main flaw is in its incapability to be general enough solution in all
cases. For example, in the case where the original manufacturer gives the recommen-
dations, the difference in the environment where the equipment is used can lead to high
variance between the time when maintenance is genuinely needed [2].

In the worst-case scenario, the difference between maintenance actions taken is too
short, and the equipment will break before the maintenance is scheduled. On the other
hand, the schedule might also be too conservative, which leads to too early maintenance,
in situations where the state of the equipment was still acceptable for a longer run. [2]

The primary source of problems in TBM is the assumption that the failure of a system can
be represented with age-based models like the bathtub model presented in figure 2.1 [2].
Bathtub model assumes that trends in failure rate can be divided into three periods:

• Burn-in or infant mortality period

• Useful life period

• Wear-out period

Several independent studies show that age-based maintenance strategies are suitable
for only 15 to 20 per cent of cases [3]. In other words, the majority of the failure-rate pro-
files are not as age-dependent as the bathtub model assumes. Therefore, [3] concludes
that CBM based methods should be used instead, in cases where the bathtub does not
describe the failure rate of the equipment.

6

Figure 2.1. In TBM it is assumed that bathtub curve represents a failure rate of ageing
equipment

2.2 Condition Based Maintenance

Since 99 per cent of mechanical failures can be predicted from indicators before the
failure happens [7], it is justifiable to monitor these indicators and make the maintenance
decisions based on the state of the equipment. If the monitoring and decision-making
are done successfully, physical abnormalities can be detected, and maintenance actions
could be taken only when they are needed [29].

Vibration monitoring is the most commonly used monitoring technique in industry, espe-
cially for rotating machinery. In vibration monitoring, the vibration data is collected from
the equipment either with a handheld device designed for the task or by instrumenting
the equipment with sensors that can collect the data automatically. Vibration monitoring
is based on the assumption that wear of the equipment can be detected from changes in
frequency spectrum [2].

Other commonly used techniques are lubricant monitoring and acoustic monitoring, where
the former tries to detect possible wear from contamination of the lubricant and the later
tries to find marks of incoming failure from acoustic noise[2].

2.2.1 Phases of CBM

The CBM workflow can be divided into three steps; data-acquisition, data-processing and
decision-making [29]:

Data Acquisition

In the data acquisition phase, the data is collected from the monitored equipment. The
data can be separated into two categories, event data and condition monitoring data [29].

The event data usually requires manual entry and represents the events that have hap-

7

pened to the equipment, for example, maintenance actions that were performed [29].

Jardine et al. argue [29], that while the event data is mistakenly considered as less
important compared to condition monitoring data, both are essential. Event data can be
seen as feedback for the effectiveness of the current condition indicators and decision-
making. If the condition monitoring system is able to monitor effectively, the events should
be in line with the monitored condition, and the number of surprises in event data should
be minimal. However, since manual data entry is needed, the erroneous event data is
still unavoidable due to human error, and this should also be taken into account.

Data Processing

The data processing phase begins with data clean up. The clean up can be a tedious
task and generic enough algorithms to automate the process are hard to develop, and
data clean-up may need manual intervention[29].

After data is cleaned, the next step in the data processing phase is to perform analysis on
the data. The point of analysis-phase is to extract interesting features from the data. The
way the analysis is performed depends on what kind of data was collected in the data
acquisition phase on the use case at hand [29].

In case of vibration analysis, the analysis methods are usually separated into three do-
mains; time, frequency and combined time-frequency domain [29]

In the time domain the waveform itself is analysed and descriptive statistics, like peak-to-
peak values are extracted from it. One popular way is time-synchronous average; it tries
to reduce noise by producing an average of the signal on the span of multiple sample
intervals [29].

In frequency domain analysis, the signal is transformed from the time domain to the fre-
quency domain most commonly with Fast-Fourier Transform (FFT). After this, the signal
can be analysed on the level of different frequency components. One typical example is
the envelope analysis, which can be used to extract periodic impacts caused, for example
by deformation on the race of a bearing [9, 29].

In time-frequency analysis, both domains are used. It allows non-stationary phenomena,
common in failing equipment, to be detected with more ease, compared to sole frequency
analysis. One way to do this is to perform wavelet transform and analyse the signal with
various methods developed for wavelets [29].

Decision making

Decision making in condition monitoring can be divided into diagnosis and prognosis. In
diagnosis, the goal is to find early signs of wear from the equipment, whereas prognosis
aims to estimate when the equipment will fail [2, 29].

Diagnosis is pattern recognition, where the goal is to map features extracted in the data

8

processing phase to fault types. It can be done both manually or with tools that automate
the process. However, since manual pattern recognition requires lots of work and skill,
automating the process is preferable [29].

Some commonly used methods for diagnosis include statistical approaches like cluster
analysis, approaches based on artificial intelligence like neural networks and approaches
based on mathematical modelling [29].

In prognosis, the most common approach is the prediction of the time when failure will
occur, based on the current state and operation profile of the past. This is also known as
the remaining useful life (RUL) [27, 29].

2.3 IoT

The Internet of Things refers to a vision, in which interconnected physical everyday ob-
jects, "the things," can sense their state and their environment. The primary enabler for
the vision is the advancement in information and communication technology (ICT), which
has made the price of computing lower, year by year [36].

Internet of Things has similarities with the concept of ubiquitous computing (UC), intro-
duced by Mark Weiser in the early ’90s at Xerox PARC Labs. In UC, objects in the real
world have embedded computational elements and capability to communicate over net-
work [58].

Today, almost 30 years from the introduction of Weiser’s vision, the ongoing progress has
made the vision achievable, and while the realization of IoT concepts like smart cities and
other similar large scale ideas are still in the future, the first steps in the form of various
"smart" gadgets have already been taken [36].

The vision of IoT is broad, and the description of what it contains and what could be possi-
ble due to it varies. The earliest descriptions see IoT mainly as the usage of technologies
like Radio Frequency Identification RFID [36], which enables identification of objects in
distance of few meters. The more recent definitions have a broader context and include
more technologies, for example, Wireless Sensor Networks (WSN) and cloud computing
which are briefly covered later [36]. However, it is widely accepted that the realization of
the vision will have a significant impact on our lives [36][31][62][61].

Since IoT is growing fast, the standardization of the technologies involved is hard. Specif-
ically, issues in radio access, security, interoperability and privacy are areas where stan-
dardization is needed. Successfully tackling the issue of standardization would enable
products from different vendors to be used together with more ease, and therefore, fur-
ther accelerate the realization of the vision [61].

9

2.3.1 Wireless Sensor Networks

The concept of WSN refers to things, with embedded sensing ability, connected through
various network technologies. Individual things in the network are commonly referred to
as nodes, which have the capability to process data on their own, enabling the distribution
of computation [25].

Since communication stacks between different WSN subnets vary, gateways, which en-
able integration between subnets are used [25]. Use cases for WSN’s include, for exam-
ple, industrial, traffic and environmental monitoring [61].

2.3.2 Cloud Computing

According to American standardization authority, National Institute of Standards and
Technology(NIST), cloud computing is defined as follows [37]:

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction."

For a while, enterprises have been moving away from IT-solutions based on traditional
ways of renting virtual servers. Pay-as-you-go model, in which the billing is based on
usage of resources, offered by cloud vendors, has allowed users to elastically change the
amount of computing and storage resources without extra costs for maintenance [23].

Cloud solutions are sold as resource-based services, with service models that differ on
level how close to a ready application the service is. The three service models are [23]:

• Infrastructure-as-a-Service (IaaS) — virtual machines, network gear, such as virtual
routers, and other infrastructure level resources.

• Platform-as-a-Service (PaaS) — ready to use, automatically scaling platforms on
which user can deploy their applications, without the need to take care of the infras-
tructure level resources.

• Software-as-a-Service (SaaS) — ready to use applications.

On top of these basic models, the users can also offer their own products as a service. For
example, In an IoT use case, Sensing-as-a-Service could be offered by integrating WSN
with the cloud and offer its data through API and user-interfaces. In condition monitoring
use case Monitoring-as-a-Service could be offered. In this service, the manufacturer
of the monitored equipment could offer prognosis, diagnosis and easy access to other
refined analytical data related to the condition of the equipment [23].

10

2.3.3 Industrial IoT

In manufacturing and field of automation emerging of IoT and the similar concept of
Cyber-Physical Systems (CPS) is going to lead in massive change [59]. The change is
referred to as the 4th industrial revolution. The three previous revolutions are commonly
presented as follows[62]:

• 1st, mechanical systems, powered by steam and water, the early 1800s

• 2nd, mass production, powered by electricity, the late 1800s

• 3rd, automation, enabled by electronics and Information technology, the mid 1900s

Many countries have established initiatives to prepare for the incoming change. Most
commonly known, is the German Industry4.0 Initiative, established in 2011. The Indus-
try4.0 aims to achieve smart manufacturing, and it is expected to transform industrial
ecosystems in a wide range of applications [63].

One use case that the change is enabling is more accurate condition based maintenance,
which was briefly introduced in section 2.2. Some examples of research on IIoT and
condition-based maintenance include; a fog computing-based monitoring framework by
Wu et al.[60], a monitoring solution for predictive maintenance by Civerchia et al. [10] and
a paper by Halme et al. in which the Arrowhead Framework, the framework evaluated in
this thesis, was used as a part in a conceptual model for condition monitoring [26].

The Enterprise Resource Planning (ERP) and Manufacturing Execution Systems (MES)
are also moving away from the traditional pyramid-model of the automation. Local man-
ufacturing clouds, which mostly are on-premise data-centres, are used more often today.
Value chain may also include private inter-enterprise cloud solutions, which allow the di-
rection of data-flows to various stake holders 1 and their private enterprise clouds. Com-
pared to the previous solutions, this, for example, enables more visibility to the customer
on the movement of products while they go through the factory floor [59].

While there is a change in the state-of-the-art, in Industrial automation, change is slow.
This is mainly due to the price of the systems, preference on reliability and the mentality
of "not fixing it if it is not broken". The life cycle of automation systems might be as long
as 40 years, and systems added later, need to co-exist with the older systems, which are
using technologies like various field-buses and Industrial Ethernet implementations for
communication. The slow phase makes the issue harder on Industrial domain compared
to more general "every day" IoT. Also, other requirements mainly on safety, security and
reliability are much higher [59].

2.3.4 Architecture of IoT

Usually, the architecture of IoT is presented or visualized with a layered model. Most
common is the three-layered model presented in figure 2.2 [31, 61] and the different

1for example customers and equipment providers

11

architecture layers are described below:

• Perception layer — is responsible for interaction on the physical level. It is the layer
closest to Sensors, actuators and RFID-tags. Due to increased processing power,
different nodes on the perception layer commonly possess the ability to process the
data they are collecting or acting upon in case of sensors and actuators respectfully
[31].

• Network layer — is responsible for transmitting the information, including Integration
of various communication technologies and hardware, like gateways, which enable
the communication between, multiple types of networks and form one "web", in
which things and applications using different technologies can find each other [31].

• Application layer — is responsible for the "business logic" and interfacing with the
user. One example of application is a logger, which logs the data collected from
sensors, stores it to database, and provides access to historical data for the user. If
needed, more features could be added, for example, a user interface for visualiza-
tion [31].

Figure 2.2. Layered architecture of IoT [31]

2.4 IoT in the Domain of the Thesis

The three-layer architecture presented in figure 2.2 does not come without problems. The
roles of different layers are quite broad and vague, especially in the case of application
and network layers. Also, the integration to the cloud, which has services as its primary
way to abstract resources, might be cumbersome [31].

While cloud computing has its upsides, for example, the way of handling services as
everyday commodity objects, or the seemingly infinite and elastically auto-scaling com-

12

putational resources, in industrial use-case, some things just do not fit in the model of
handling everything elsewhere, possibly thousands of kilometres away [52].

In cases where lots of data is transferred. The remoteness of the cloud will cause a
bottleneck, and limit the functionality of the system as a whole. The problem gets even
worse, in cases where the connection to the cloud is bad. Authorization and security can
also become issues.

This means that in some cases local computational resources are still needed, which
on the other hand brings new problems on how the services running in cloud and on-
premises should be deployed, integrated and composed [31]? The problem is the same
as with the architecture of IoT: How to integrate various distributed computing resources
and the cloud — which undoubtedly has its upsides?

To mitigate the problems described above the following solutions are suggested:

• Additional service layer to architecture presented in figure 2.2 to enable Service-
oriented Architecture, which simplifies the roles of other layers.

• Edge computing as an extension for a cloud to allow computation and data storage
on-premises, which allows more control on data refinement, data caching, and data
access.

• Containerization for the deployment of services, to both edge and cloud, to allow
more clear and finely grained control-interface on what services are deployed and
where.

Solutions enlisted above are introduced briefly in the following sections.

2.4.1 Service-oriented Architecture

Service-oriented architecture refers to an approach to design computing systems with
services as its main abstraction. Services are interoperable, reusable and loosely cou-
pled artefacts, that can be used to compose larger systems [19, Chapter 4].

A wider umbrella term, service-oriented computing, defines a set of goals, of which most
relevant in the context of engineering are; increased Interoperability, increased federation
and increased possibilities to choose the vendor. To achieve these goals service orienta-
tion is applied to a problem. In service orientation, eight design principles are defined 2

[19, Chapter 4]:

• Standardized Service Contract — "Services within the same service inventory are
in compliance with the same contract design standards."

• Service Loose Coupling — "Service contracts impose low consumer coupling re-
quirements and are themselves decoupled from their surrounding environment."

2All are direct quotations from [19, Chapter 4].

13

• Service Abstraction — "Service contracts only contain essential information and
information about services is limited to what is published in service contracts."

• Service Reusability — "Services contain and express agnostic logic and can be
positioned as reusable enterprise resources."

• Service Autonomy — "Services exercise a high level of control over their underlying
runtime execution environment."

• Service Statelessness — "Services minimize resource consumption by deferring
the management of state information when necessary."

• Service Discoverability — "Services are supplemented with communicative meta
data by which they can be effectively discovered and interpreted."

• Service Composability — "Services are effective composition participants, regard-
less of the size and complexity of the composition."

As an output of applying the design principles enlisted above, one gets "service-oriented"
services, which can be further used to form an SOA. It is also important to note that ser-
vices created by using service orientation are not limited to any specific technology, even
on one system. For example, the services offered in different service models of cloud
computing, introduced in IoT section 2.3, can be a result of the same service orientation
process [19, Chapter 4].

Service Oriented IoT

Figure 2.3. Updated Service-oriented architecture for IoT [31].

After applying service orientation to the IoT architecture presented in figure 2.2, the new
architectural stack looks as is presented in figure 2.3. The new service layer is respon-
sible for service discovery, service composition, service management and interfacing

14

between services. On this layer, matchmaking between service providers and service
consumers is taken care of, while making sure, that requirements on quality and security
are met [31].

The layer allows a more finely grained approach on integrating the physical world with
the cloud. Application-level and network-level are also relieved from the various service
like features. For example, in the case of the application layer, in the previous model, the
layer needed to handle all the integration between the devices living on the perception
layer, including the users and devices needing the data. In the new model, the application
layer can be used to interface with users and data sources, while the service layer takes
care of the "how" [31].

It is also important to note, that the number of layers and their exact roles vary. In some
papers it has been presented that the amount of layers should be as high as 7, where
some layers are more granular versions of the model presented above and some take
new roles similarly like the service layer takes compared to the older three layered model.
Burhan et al. analysed various layered models of the IoT [8].

REST

Roy Fielding defined representational state transfer (REST) in his doctoral dissertation
[22]. It is an architectural style, in which representation of the state, commonly referred
to as a resource, is the main abstraction. Although REST and SOA are both architectural
styles, they are not in clash with each other on the level of principle. Therefore, SOA can
be implemented with REST as its medium [19, Chapter 7].

Fielding defines five constraints and one optional constraint on REST [22]:

• Client-Server — Clients are separated from servers, which responds to requests
made by clients.

• Stateless — Request must contain all the information needed to full fill it. The server
does not store client state.

• Cache — Caching of responses, must be definable either implicitly or explicitly in
requests, in case of equivalent requests in the future.

• Uniform Interface — REST sets four constraints on interfacing: identification of re-
sources, manipulation of resources through representations, self-descriptive mes-
sages and hypertext as the engine of application state (HATEOAS).

• Layered System — Hierarchical layers, which are visible only to the next layer.

• Code-On-Demand(optional) — Scripts can be sent in responses, for clients usage.
Mainly for web-browsers.

From these constraints, the Uniform Interface is the vaguest and needs more specifying.
The "identification of resources" refers to the mapping of resources to Universal Resource
Identifiers (URI). The "manipulation of resources through presentations" refers to meta-

15

data which can be used to manipulate the resource, for example, metadata that specifies
is the resource preferably in JSON or XML form. "Self-descriptive messages" is related to
the stateless constraint. The "hypermedia as the engine of application state" refers to a
paradigm where hypermedia links are sent within the representation of resources, which
allows the client to use them in state-machine-like fashion. The most common example
of this is the HTML browser, which is used by following the links, embedded in HTML
document sent by the server as a response [22].

The most common way of implementing REST is via mapping resources to a Universal
Resource Identifier (URI) which is manipulated via standard HTTP methods (for exam-
ple GET, POST, PUT and DELETE) and headers. Another protocol that is compatible
with REST is Constrained Application Protocol (CoAP) [51], it is mainly designed small
scale devices in mind, while still making it integrable with the HTTP, which is the main
"language" of the web [31].

Web-services implemented with REST are sometimes called RESTful-services. It is also
worthwhile to note that the terms REST or RESTful are not always in practice used when
referring to services that satisfy all the constraints listed above.

REST is not the only way of implementing web-services. Another commonly used ap-
proach is the Simple Object Access Protocol (SOAP). The way how a certain SOAP
service is used is commonly described with documents in Web Services Description
Language(WSDL) [24]. Similar schemes have also been developed to describe REST-
based services; one example of this is the OpenAPI [43]. However, in the REST world,
the declarative description of the services is not as a fundamental part of the "service
scheme" like it is often with the SOAP-based ones [24].

2.4.2 Edge and Cloud

Edge computing refers to an approach, where computational tasks and data storage is
moved to the edge of the network, towards the producer of the data. The main motivator
behind this is the reduction of the amount of data, that needs to be transported over the
internet, which mitigates the bottleneck that is caused by latency and low throughput of
the internet [52].

The location of the edge is presented in figure 2.4. In the picture, data producers, for
example, sensor nodes of WSN, are connected to a gateway, which has a passage to
other gateways and the cloud. The various devices, with computational capabilities in
the edge, are sometimes called edge devices or edge computers, which could include
anything that has processing power and ability to connect to other devices.

Other similar concepts to edge computing include fog-computing, mist-computing, core-
computing, local-clouds and cloudlets. However, while having subtle differences, mainly
in how far from the edge the computing is performed, all share the same goal of moving
computation away from the cloud [31, 52].

16

The benefits of edge computing are not limited to data transfer. Since the computation is
performed closer to the edge, the saved bandwidth could be used to connect systems of
stakeholders straight to the edge and provide data views, according to roles and needs of
the particular stakeholder. The views could be used to form a collaborative edge, where
various stake holders offer views to their part of the edge, and therefore enable smoother
collaboration between domains [52].

Figure 2.4. Location of the edge.

2.4.3 Containerization

Containerization is a virtualization technique which allows light weighted and easily mov-
able environments that capture their dependencies and configuration. Containerization
allows easier project management, and deployment via separation and tooling build for
management of the containers [17]. When operating system concepts are mentioned in
this review, Linux is assumed.

The most common virtualization techniques are presented in figure 2.5. The traditional
way of virtualization requires so-called hypervisor, which is responsible for creating a
virtual environment, on which the virtual guest systems can run on. Hypervisors are
separated into two types; "type 1" and "type 2". In type 1, the hypervisor runs directly
on the hardware, while in type 2, the virtualization is done on top of the host operating
system, where the hypervisor is run like any other program. Modern CPUs have instruc-
tions for virtualized environments to gain full access to kernel-mode instructions from the
user-mode, which are leveraged by the hypervisor running on top of the host operating
system, to achieve better performance by avoiding the need to trap to the host kernel
[17].

The third way in figure 2.5 is the container-based virtualization. Unlike the hypervisor, the

17

Figure 2.5. Different virtualization solutions

containers run directly on top of the host operating system and achieve the isolation by
leveraging kernel features, mainly namespaces and control groups. To ease the access
to features, which enable containers, various tools like Docker [14] and Linux Containers
have been developed [17].

Namespaces provides means for separating the resources of a process from global re-
sources. Linux has namespaces for mount-points, process IDs, control groups, network
utilities, shared memory regions, usernames and hostnames. In practice, this means,
that the kernel provides the capability of having multiple separated namespaces for each
of the resources, which makes the resource seemingly unique to the process that is
mapped to them [34].

Control groups offer means for restricting resource usage of processes. The user can,
for example, restrict the usage of CPU, memory, disk or network I/O. Control groups are
compatible with namespaces [34], and therefore, resource usage per namespace can be
restricted. Apart from restricting the usage of resources, control groups are also capable
of monitoring the usage of resources, and "snapshotting" the state of a process to freeze
and restart them promptly [11].

Apart from providing tooling that offers control over the containerization functionality itself,
also more abstract ways of using the containerization ability of the kernel exists. For
example, so-called execution engines that enable serverless paradigm, where the main
unit of abstraction is a function, are commonly built by using containerization behind the
scenes [45][1].

18

3 TOOLS

In this chapter, tools and software used in the demo application are introduced. In the
first section, the primary tool — the Arrowhead Framework — and philosophy behind
it, is presented. While evaluation of the Arrowhead Framework in condition monitoring
application is the primary goal of this thesis, the framework alone is not providing a full
set of tools needed for the demo application. Because of this, a set of tools that enable
the evaluation are presented at the end of the chapter.

3.1 Arrowhead Framework

The Arrowhead Framework aims to provide means for integrating, developing and deploy-
ing interconnected systems in the field of automation and embedded systems in general.
It was originally developed in the Arrowhead Project, which was a large collaborative
project funded by the European Union. The project had 80 partners and a budget of 68
million Euros [57][5].

The development of the framework continues in Productive4.0, which, like its predeces-
sor, is also EU funded. The Productive4.0 is a large project with 109 partners from 19
different countries with a total budget of 106 million Euros.[48]

In Productive4.0 the work is distributed in ten working packages. The Arrowhead Frame-
works development and research work is done at the working package 1 of the Productive
4.0 project [48]. Since Arrowhead Framework is still a work in process, the target in this
brief review is the version 4.2.1, which was the most recent one while this thesis was
started[4].

3.1.1 Philosophy of Arrowhead Framework

Arrowhead Frameworks design is based on a service-oriented system of systems philos-
ophy. To put it more clearly, while Arrowhead Framework is utilized the business logic
of software is implemented as systems, which provide and consume services from each
other. The systems consuming each other’s services form a system of systems by utiliz-
ing the services provided by the so-called core systems, which provide means for service
registration, service discovery and authorization.

Currently, REST is the default style for services in Arrowhead Framework, and both se-

19

cure HTTPS and insecure HTTP are supported. However, there is an urge also to support
other protocols and styles of services, mainly via wrappers. To name few; XMPP, COAP
and OPC-UA. One additional goal is to encourage the wrapping of legacy systems [57].

The systems implementing the services are often separate executables or in case of a
platform without operating system, the firmware. The system of systems can be seen
as distributed computing where the group of individual systems can run on the same
or different physical or virtual computing platform, ranging from small scale embedded
devices to high-end servers [57].

The concept of local cloud is presented in figure 3.1. In the Arrowhead Frameworks
context, the term local cloud is used to refer to the bundle of application systems under
the control of the same core systems, which are introduced later [57]. The concept has
overlapping with the concept of edge computing, in cases where the Arrowhead local
clouds are at the edge of the network, which can be seen as its primary domain. However,
despite their name, the local cloud instances can also be run in the more traditional cloud,
which enables the introduction of edge cloud architecture [57].

Figure 3.1. Local Cloud concept of Arrowhead Framework [5].

The core systems are mandatory for a local cloud and can be seen as the manifestation
of the framework. The core systems try to answer the following questions [5]:

• How a service provider can announce its existence for potential consumers?

• How a service consumer can discover available services?

• How the service provider and service consumer decide which is a suitable provider
or consumer for them?

• Who is authorized to consume services offered by whom?

Service Registry

The service registry is responsible for keeping track of what service is provided by which
application system. When a service provider starts its execution, it should register its

20

services to the service registry. Vice versa, once the service provider stops its execution
or service otherwise comes unavailable, the system should deregister its services [5].

While issuing the registration, the registering system can define certain restrictive param-
eters on its entry document. These include things like document types that are supported,
arbitrary metadata key-value pairs and timestamp on which the registration should be
considered as expired [4].

In the paper by Varga et al. [57], where the core systems’ architectural design was
introduced, the goal was to implement service registry by utilizing DNS-SD, but in the
latest version of the framework, the implementation of the service registry is done by
storing the service entries in a MySQL database [4].

Orchestrator

The orchestrator core system is the most central system in the Arrowhead Framework.
Through the orchestrator, application systems discover each other’s services. During
service discovery, the orchestrator system consults the service registry on behalf of the
consumer and after a provider is found, before responding the result to the consumer, it
makes sure that the consumer system is allowed to consume the service by consulting
the authorization system, introduced in the next section [4].

Similarly to the service registry, the orchestrator system can reduce the set of potential
providers via restrictive parameters set by a consumer in its service discovery request.
These include things like, supported document types, metadata key-value pairs and name
of the preferred provider [4].

In case gateway and gatekeeper systems, which are introduced later, are in use. The
orchestrator can leverage these systems and issue service requests to the neighbouring
local clouds and allow so-called "intercloud service discovery". Consumers can also
prevent this behaviour by explicitly forbidding it on their service request, in so-called
"orchestration-flags" which offer some control on the orchestration process [4].

Authorization

The authorization process is presented in figure 3.2. The authorization control step
makes sure that the consuming application system is authorized, by checking whether
an entry for that particular consumer-provider-pair on the requested service exists in the
MySQL database. The user has to explicitly add a row in the database for each applica-
tion system pair that should be authorized [4].

In the secure HTTPS mode, after a successful authorization control step, the token
needed for communication between the provider and the consumer is generated. In
the insecure HTTP mode, the communication does not require tokens, so the generation
step is skipped [4].

21

Besides being responsible for authorization between systems on the same local cloud,
the authorization system also controls the authorization of service discovery requests
coming from foreign local clouds, through the gatekeeper system, which is introduced
later. In this case, the authorization control step makes sure that the local cloud where
the request is coming from is authorized, by checking whether an entry for that particular
local cloud-provider-pair on the requested service exists in the MySQL database. If this
entry exists, every willing consumer in the foreign cloud is authorized to consume [4].

Figure 3.2. The authorization process performed during the service discovery [4].

3.1.2 Application Systems

In the terminology of the Arrowhead Framework, application systems correspond to sys-
tems developed by the user. These systems implement the business logic of the Arrow-
head system of systems which is formed with the help of the core systems [5].

Figure 3.3. Service discovery in Arrowhead Framework [5].

In figure 3.3, the co-operation between the core and the application systems is presented.
The Provider system registers its service to the service registry, from which the consum-
ing system can discover it via consulting the orchestrator. Before the orchestrator re-
sponds to the requesting consumer, it makes sure that the consumer is allowed to use
the service, by consulting the authorization system.

3.1.3 Supporting Core Systems

The supporting core systems are extensions to the core systems, which provide either
an infrastructurally significant functionality or so commonly needed set of services, that if

22

not provided officially, application system developers would separately end up developing
their own versions of. Unlike the core services, the supporting core services are not
mandatory.

On this section, only the supporting systems available in the current version of the frame-
work are introduced. However, the GitHub repository of the framework has multiple
feature-branches for upcoming supporting core systems [4].

Event Handler

The event handler provides means for event passing between systems. It acts as a dis-
patcher between event publishers and event subscribers. Systems can introduce them-
selves as subscribers of a particular event, and once another system fires the event, it is
passed to the subscriber by the event handler [57].

The event handler can filter events based on rules set during a subscriber registration.
The rules can be arbitrary key-value pairs, and they are stored in the MySQL database
as are the subscriptions.

Gatekeeper and Gateway

Figure 3.4. Phases of global service discovery [4].

In figure 3.4, the phases of global service discovery and establishing a tunnel between
two local clouds is presented. This mechanism allows interaction between systems in
multiple different local clouds [4].

The gatekeeper system is used in service discovery, between application systems under
different local clouds. If the service request received by the local orchestrator is config-
ured in a way which allows the global discovery, and authorization system is aware of
neighbouring clouds, the request is relayed to the other core systems’ orchestrators via
the gatekeeper system. If the discovery is successful, an intercloud connection is formed

23

between the systems in different local clouds[4].

The gateway system is responsible for the tunnelling between systems under different
local clouds. After a successful global service discovery, the gateway acts as a proxy,
and on both ends of the tunnel, the systems involved do not know who they, in reality,
are interacting. Instead, the address of the local gateway system, and a port reserved
for this particular session is received from the orchestrator by the consumer. From the
provider’s perspective, the requests at runtime are seemingly coming from their local
gateway system [4].

While the communication between the core systems and application systems is happen-
ing with REST, the tunnel established between the gateways uses broker as means for
communication. One example of a supported broker is an AMQP broker known as the
RabbitMQ [50]. In other words, in the case that AMQP broker is used, the gateway sys-
tem is an AMQP client that offers a REST interface to the outside world for application
systems in the local cloud it resides in [4].

3.2 Supporting Tools

To be able to evaluate the Arrowhead Framework, a set of external tooling for support-
ing the Arrowhead local clouds is needed. Since the Arrowhead Framework itself does
not provide means for persistent storage, deploying the containers and a programming
environment, tooling in these areas are needed.

Aside of the needs set by the framework, other reasoning behind the selection of the
supporting tools includes:

• The tool should be open-source.

• The tool should be in common use.

Based on both, the needs set by the framework, the goals introduced above and the con-
clusions made in the literature review in chapter 2, the presistent storage was decided to
be built around PostgreSQL[46], the deployment around Docker [14] and the application
system development around Node.js [42].

All the techniques have alternatives that could meet the criteria. In case of Node.js and
Docker the main argument against competing technologies was the wide use of chosen
techniques. Although, especially in Node.js’s case, environments like Python [49] and
various JVM [30] based languages, would have done the job as well. The main argument
in the case of persistent storage was the fact that PostgreSQL based solutions are in wide
use at Metso. Alternatives for persistent storage would have existed as well. Especially
NoSQL based database solutions like MongoDB [38] and CouchDB [12] would have been
able to do the job. In the following sections the supporting tools are introduced in more
detail.

24

3.2.1 Persistent Storage

The states of various resources offered through services of Arrowhead application sys-
tems need to be stored. However, since the framework is not offering any supporting
core systems to help in achieving this, other solutions are needed. On this section, one
possible set of tools for data management are introduced. All the tools are widely used
in industry and available through open-source licences.

PostgreSQL

PostgreSQL is an open-source object-relational database engine. The project is based
on the POSTGRES project initiated in 1986 at the University of California at Berkeley.
With millions of users, it is currently one of the most commonly used database systems
in the world [46].

A PostgreSQL specific dialect of SQL-language is used while interacting with the database
management system (DBMS). Like in many other relational database systems user-
defined data-types, views and functions are supported [46].

On top of support for primitive data-types like integers, doubles, string and booleans,
PostgreSQL also natively supports document data-types in JSON/JSONB, XML and key-
value form. Also, unlike most SQL databases, Postgre also has native support for array
data type [46].

PostgreSQL Extensions

PostgreSQL provides a wide variety of means for extending its functionality. On top of
function declaration in SQL, which is commonly available in any modern SQL database
system, PostgreSQL enables dynamically loadable functions and types written in C [46].

For extension development in C, set of headers are provided. These define the stan-
dard interface for user written code, and a set of PostgreSQL specific types, macros
and functions. For example, memory management is done via palloc(), and pfree()

functions, instead of standard malloc() and free() [46].

The modules written in C, are compiled as shared objects and can be loaded on runtime,
by introducing an SQL function similarly like one would introduce a function implemented
in SQL. The only difference is that on the place of SQL clauses implementing the func-
tions "body", the location and name of the compiled module are specified [46].

User is also able to install so-called "procedural languages". These packages are ef-
fectively interpreters as extensions, and allow functions to be written in some commonly
known scripting languages, like Python or Perl. If need be, the user is also able to develop
a procedural language package for domain-specific ad hoc programming language and
extend the database system with it [46].

25

Timescale Database

Figure 3.5. The chunking is done with the create_hypertable() function [55].

Timescale database (TSDB) is an extension for PostgreSQL which allows its usage as a
time-series database. The reformation is achieved via an extra layer of abstraction known
as the hypertable, which in turn is based on a concept called "chunking" [55].

Since TSDB is built on top of PostgreSQL, the user is able to perform queries and in-
sertions with standard SQL and create views1 and indexes on its hypertables. The most
apparent difference compared to the traditional use of PostgreSQL is the way how tables
are created. To create a TSDB hypertable, one has to create a regular table with a times-
tamp field. After the table is created, a function for reformatting it to hypertable is used
[55].

The problem that chunking tries to solve is the overhead caused by the way how Post-
greSQL and many other relational database systems store data Internally. PostgreSQL
indexes stored data by using b-trees, with tree per table principle. The point behind this
is to make access to data fast [55].

However, if the size of the table grows too big, the tree will not fit in RAM, which will trigger
the swapping mechanism, and some memory pages containing the trees data are moved
to disk. Since disk reads are much slower than reads from RAM, — or on par with turtles
if compared to reads from CPU caches — this will reduce the performance of operations
run on the table. This is bad, especially in case of time series data, where most recent
data is needed most commonly, and random searches on the whole table are infrequent
[55].

Figure 3.5 presents the way how create_hypertable() chunks the regular table into a
hypertable.

1function for creating a continuous aggregate view is also provided

26

The default way is to chunk based on time intervals, but the time field can be of any
incrementable type. Under the hood, chunks are also tables, which means that each
chunk will have its own b-tree for indexing. This allows the b-trees of latest chunks2 to
be kept entirely on the RAM — and partly even on CPU caches — which in turn makes
access to most recent data constant time and independent on the size of the whole
hypertable [55].

The extension is also capable of chunking the table with an extra field. In IoT use case,
for example, one might chunk not only by the standard timestamp but also by the name
of the sensor. This way, the TSDB tries to keep data from different sensors in different
chunks. Which in some use cases, should improve the performance [55].

PostgREST

PostgREST is an open-source project, which provides means for accessing PostgreSQL
database via a REST interface, which is generated by the PostgREST automatically,
based on the schema of the database [47].

PostgREST exposes the database as a set of resources which are mapped to tables and
views with URIs. On top of basic CRUD-operations on these URIs, the user can also
perform complex queries with postgREST specific syntax, where the query is passed as
parameters. Body of the message is passed in JSON form, in which each row queried,
updated, inserted or deleted, is represented with an object [47].

3.2.2 JavaScript and Node.js

JavaScript was originally designed — and is still mainly used — as a scripting language
for the browser. The language is defined in ECMAscript-standard [16], which has multiple
implementations, mainly by major browser vendors. Most of the modern implementations
of the standard use so-called Just-In-Time-Compilation, where opposed to traditional in-
terpreters, the code is not mapped to machine instructions via interpreting, but compiling
the code "Just in time", before the execution, which enables various optimization schemes
since the compiler can modify the output according to the state of the program runtime
[42].

Node.js is the most known JavaScript environment outside the browsers. It is an asyn-
chronous runtime based on Googles V8 engine, initially developed for Chrome Browser.
Node.js was designed for development of I/O bound applications, for example, HTTP-
servers. Nodes execution model is based on single-threaded event-loop, which heavily
utilizes the operating systems non-blocking I/O-event mechanisms, to gain the ability to
run tasks concurrently [42]. Node.js has implementations for all major operating system
platforms. On Linux, its asynchronous execution is based on a bundle of system-calls

2TSDB has a mechanism for keeping the chunks evenly sized, this is not covered in this brief review,
more information on this can be found on their web page [55]

27

know as epoll [18].

Used Libraries

Node.js comes with a package manager know as NPM [35]. With NPM, users can ex-
tend their application, with modules written by other users organizations and companies.
Sharing open-source modules in NPM is common among the community.

Most relevant modules used in the demo application include:

• Express — an HTTP server library. Express itself offers relatively little functionality.
Instead, it offers a clear interface for creating HTTP-servers, by extending its main
object commonly known as the "app", with functions known as the "middleware"
[20].

• Axios — an HTTP client library, which has a simple interface based on promises. It
also offers other functionality like automatic parsing of responses to JSON format
[6].

• Node-OPCUA — a library for creating OPC-UA servers and clients [41].

3.2.3 Docker

Docker is a platform which provides a set of tools for container management. Docker of-
fers an abstraction called image, that can be used to initiate containers which in Docker’s
context are runtime instances of an image. Images can be stored in the so-called registry,
of which the most commonly known is the public docker hub [14].

Images have a layered structure, and each command in a so-called docker-file, which is
a YAML-file that defines the build process of a particular image, adds a new layer. For
example, the first row in the docker-file usually provides so-called base image, on top of
which user can add new layers like folders containing the application code, by issuing
a copy command, or shell commands that should be run on the ready image when it is
spawned as a container, by issuing a run command. This structure allows only the layers
that change to be built in case of a rebuild [14].

The layered structure also makes extending of any given image possible. The base image
refers to an image which has not yet been extended and only includes the layer it itself
represents. However, the images that are extended from the base image and contain
multiple layers can be further extended in separate build process defined in docker-file,
which defines the multi-layered image as its "base image" [14].

The building, deploying, undeploying, and docker registry pushes and pulls are done
via so-called docker client, which offers a command-line interface for management. The
commands issued from the client are handled by so-called docker daemon also com-
monly known as the docker engine, which is the central piece of Docker and responsible
on handling the needed chores under the hood [14].

28

Docker-compose

Docker-compose provides means for starting and stopping containers as a bundle. The
configuration of the bundle is specified in so-called compose-file. Docker-compose allows
multi-container setups that are easy to move to other environments while keeping the
setup the same [14].

Docker-compose is mainly used in development environments, due to the easy interface,
which allows interacting with the whole system with one command. Bundling eases the
development process, since starting of applications is simplified drastically, compared
to the more traditional way of starting all dependencies individually or via ad-hoc scripts.
The interface of Docker-compose is similar to "plain" Docker, and it contains, for example,
commands for starting, stopping and logging the standard streams of containers. Docker-
compose also eases the creation of DNS enabled virtual networks [14].

29

4 METHODOLOGIES

In this section the methodology used to in solving the research questions is presented.
The primary method is to develop a demo application which aims to achieve the features
of an ideal system, which are introduced.

Secondly, the test setup at research facilities at Metso’s Tampere factory is introduced.
The evaluation of the software is done with a setup including a vibrating screen exciter,
wireless vibration sensor boxes and an industrial-scale computer that serves as the edge
device, which is communicating with a private cloud.

4.1 Approach for Solving the Research Questions

The research questions are tackled from perspective of design science (DS). DS is a
scientific problem solving process that concentrates on the study of the artificial, instead
of more traditional study of the natural. The goal of DS is to produce artefacts and it is
used especially in the field of information system(IS) research [28].

Hevner et al. summarizes the role of the design science research in form of two funda-
mental questions that need to be addressed [28]:

• "What utility does the created artefact provide?"

• "What demonstrates that utility?"

The artefacts can be instantiations, constructs, models or methods, and they must either
solve a relevant problem in a novel way, improve an existing solution or provide a more
effective alternative for the state-of-the-art solutions. The objectives of the artefact must
be set, and based on the objectives, the artefact must be created and its effectiveness
must be proven, while the whole process is documented. Depending on context of the
project, the effectiveness can mean things like: functionality, completeness, consistency,
accuracy or reliability [28].

The model chosen as the methodological framework for this thesis is design science
research process (DSRP) by Peffers et al. [44]. It aims to offer a structured model for DS
based research in the field of information systems by providing a process for practising it,
a mental model on what the output of DS research should look like, while being consistent
with processes in other fields of study [44]. The six activities of the research process are
presented in figure 4.1, and explained in more detail below.

30

• 1. Problem identification and motivation — research problem is defined and the
value of a solution to the problem is justified [44].

• 2. Objectives of a solution — The objectives for the solution are derived from the
research problem and introduced in a detailed fashion. Objectives can be quantita-
tive or qualitative, and they may be presented through needed improvements to an
existing artefact or a set of goals to a problem that has not yet been solved [44].

• 3. Design and development — The artefact is first designed and then, based on
desired functionality, created. The artefact can be a method, model or a construct,
each of the terms enlisted are used in broad sense [44].

• 4. Demonstration — The artefact’s capability to solve the research problem is
demonstrated. This can happen in form of an experimentation, a case study or
other scientifically sound method [44].

• 5. Evaluation — The results of the demonstration are observed and evaluated in
terms of objectives set in activity 2. After the evaluation, feedback to activities 2
and 3 is given, and possible reiterations are taken to improve the artefact and/or
objectives [44].

• 6. Communication — The process is documented, possible future work in form
of reiterations is suggested and then communicated through appropriate channels
such as professional and/or research publications [44].

Figure 4.1. Design science research process (DSRP) defines a structured model for
design science [44].

Since it is possible that either the problem definition, objectives, design or even the arte-
fact itself exists when the research process is started, the authors of DSRP enable four
possible entry points for the research [44]. Since the Arrowhead Framework is a "ready"
solution, the research process used in thesis starts from the "entry point for observing a
solution".

In the demonstration phase of the DSRP a set of functionalities, which would be available

31

in an ideal system, are presented. The goal of the development of the demo application
is to achieve the functionality of an ideal system, which is defined below. The primary
way how research questions represented in section 4.1.1 are answered comes from the
evaluation on how well did the Arrowhead Framework introduced in section 3.1 achieve
the requirements set.

During the development process the quality, design and usability of the Arrowhead Frame-
work are taken into account, and reported in the evaluation section 6. The main point of
view in this report is on the effects that the functional caveats, bugs or implementation
details have on getting to the ideal system. Some possible solutions to problems found
are presented as a feedback for next development and design iterations of the framework.

4.1.1 Ideal System and Expectations Placed to AHF

The ideal system is defined in the context of the research questions:

• How can Arrowhead Framework help in configuration of the data flow from edge to
cloud?

• How can Arrowhead Framework ease the installation of new edge devices?

In other words, what is meant by: "configuration of the data flow from edge to cloud" and
"ease of installation of new edge devices", is defined in this section. Since the Arrowhead
Framework, like any other tool, does not solve all the problems below the sun, the defi-
nition of the ideal system tries only to take into account things that Arrowhead should be
able to handle based on the review presented in section 3.1.

However, while the fact that the artefact, the Arrowhead Framework, is not put in to place
where it is not designed to be used at, it is also important to keep the real-world problem,
presented in introduction chapter 1.2, at mind. In practice; the usability, reliability and
completeness of the Arrowhead Framework are taken into consideration. In other words,
if the ideal system is achieved, but the framework does not, in reality, make things easier,
but instead only moves hard things into an Arrowhead specific "abstract bubble", it is not,
in reality, solving the problem.

Configuration of the Data Flow From Edge to Cloud

• 1. The configuration of what data is pushed from the edge to the cloud should be
definable.

• 2. The interval of pushes should be definable.

• 3. The services implementing the functionality should be easily changeable, both in
the edge and in the cloud.

• 4. The services at the edge or at the cloud should be discoverable by systems that
are authorized to consume them.

32

In practice the item 4 summarizes the expectations set on the Arrowhead Framework,
the service discovery functionality of the Arrowhead Framework is at its core and it is
expected to be able to help in getting to the ideal systems items 1,2 and 3. For example,
in case of items 1 and 2 the service that offers the interface for configuration should be
discoverable. In case of item 3 the service discoverability and especially the late binding
that it allows should help.

Ease of Installation of new Edge Devices

• 5. Installation of new edge computer should happen with minimal need for manual
configuration. To achieve this, the following must be true :

5.1. The configuration of the edge computer must be pullable over the internet.

5.2. The stock OS-image of the computer must be able to pull the configuration.

5.3. Fall-back plan in case of simultaneous network and device malfunction.

In practice, the subitems of item 5 should benefit from the functionality offered by the
Arrowhead Framework. Similarly to items from 1 to 4, service discovery plays a big role.
Additionally, in case of the subitem 5.3, the concept of interconnected local clouds should
help, in theory, if the service discovery is functioning as it should, backup Arrowhead local
clouds that exist in the edge could be used in case of network malfunction between the
edge and the cloud.

It is also important to note that the creation of an OS-image that is capable of starting
the Arrowhead core systems and the systems responsible on fetching the configuration
is left out of the scope of this thesis. This is mainly due to the fact that commonly known
mainstream projects like systemd [54] exist and if the Arrowhead system of systems can
be started while the operating system is already running, they can also be configured to
start while the computer is booting up. Therefore, it is safe to assume, that providing a
solution that solves the items listed above and in section 4.1.1 proves the fact that such
OS-image could be created.

4.2 The Setup Used for Evaluation

One example of a vibrating screen manufactured by Metso is given in figure 4.2. The
vibrating screen is used to separate materials, with different granularities form each other.
Vibrating screens are most commonly used in mining and aggregate industries.

The vibrating screen used in the evaluation is an older model, and its primary use case
is to offer a platform on which the research team at Metso Minerals Tampere factory can
examine how materials sent by customers act with different setups. As a secondary, the
screen is used as a test platform for a vibration-based condition monitoring system, and
it is instrumented with sensor boxes that collect the vibration data from the screen.

The sensor boxes are equipped with Bluetooth Low Energy radio and pendulum based

33

Figure 4.2. One example of a vibrating screen manufactured by Metso.

energy harvesting mechanism, that collects the energy needed by the electronics from
the movement of the screen. Therefore, the sensor boxes are fully wireless.

Figure 4.3. Overview of the setup used for evaluation.

A general view of the setup is presented in figure 4.3. The edge computer lies in an
electrical cabinet within proximity of the screen, and it is equipped with Bluetooth Low
Energy receivers, which listen for the radios of the sensor boxes and collect the raw
vibration data. The edge computer is an Industrial scale x86 computer, and it has a
server flavour of Fedora Linux running on top of it. The data collected at the edge is sent
to a virtual machine in the Microsoft Azure cloud.

34

5 IMPLEMENTATION

At first the software stack of the implementation and the roles of the tools introduced
in section 3 are presented. Secondly, the method used for application system develop-
ment is introduced. The application systems are all containerized JavaScript applications,
which are built with two-staged build process automated with Python script.

After the software stack and the development method is introduced, the application sys-
tems that implement the business logic of the Arrowhead system of systems are docu-
mented. First, the implementation is presented, and finally, alternatives are speculated.

5.1 The Software Stack of the Demo application

Figure 5.1. The software stack of the edge computer.

In figure 5.1 the software stack relevant to the demo application, running on the edge
computer is shown. The existing stack partition in the picture refers to parts that are
already present in the current system.

The analysis and data-processing "black-box" is responsible for the actual condition mon-
itoring chores presented in section 2.2.1 performed at the edge. The "black-box" takes
care of converting the raw vibration data collected from the monitored equipment and
makes a new batch of data related to the condition of the machine available at predefined

35

intervals, currently 60 seconds. The batch can be fetched from the OPC-UA server, which
also serves the "upstream" of the current system, not visible in the figure.

The evaluation stack partition includes software installed for the demo application. The
Data available in the OPC-UA server is pulled to a PostgreSQL database with an OPC-
UA client implemented in JavaScript. The client listens to the server for events and pulls
the data once a new batch becomes available.

The tables and the views in the PostgreSQL database are made available as REST ser-
vices by the PostgREST. The goal while implementing the schema of the database is to
make every commonly needed database operation available as a view or stored proce-
dure. This approach allows simple REST-based queries and insertions for Arrowhead
Application systems.

The software stack installed on the Azure virtual machine is presented in figure 5.2. The
stack is similar to the one on the edge. The PostgreSQL database on the cloud side acts
as the final destination of the data from the demo applications perspective. However,
unlike the vanilla installation of PostgreSQL on the edge, the cloud installation is extended
with Timescale-DB, which allows higher throughput of condition monitoring data.

Both the edge computer and the cloud have one Arrowhead local cloud instance with
application systems that can communicate with systems in another local cloud, through
the Arrowhead gateway and gatekeeper systems. The AMQP broker needed by the
gateway systems is hosted on the Azure VM.

All the components are run as Docker containers, including the core systems and appli-
cation systems in the Arrowhead local cloud. The Docker images are stored in an image
repository, where they are pushed from the laptop used in the development.

Figure 5.2. The software stack of the Azure virtual machine.

5.1.1 Mocking of the Edge

Since vibrating screens are loud and violent machines, and the instrumentation mounted
to the vibrating screen does not produce any condition monitoring data when the screen
is not running, alternative to running the software on the physical edge computer must be
used while developing the demo application.

The OPC-UA server used as the data source of the demo application is therefore mocked

36

on a virtual machine running on the laptop used for development. The mock-server is
implemented with JavaScript, and it produces random data which is available through a
similar interface compared to an actual physical edge computer.

5.2 Application System Development

Figure 5.3. Insides of a Docker image of an application system.

The basic structure of an application system is presented in figure 5.3. All application
systems in the demo application are Docker images, which are built with a two-staged
build process. In the first stage, a Docker image for the base layers is built. The base lay-
ers are capable of loading modules, registering and deregistering services implemented
in the modules and issuing service requests for the orchestration system based on needs
of the modules.

On top of the Docker image containing the base layers, an implementational layer is built
in the second stage of the build process, presented in figure 5.4. The build process
is automated with a python script that takes an input with folder structure with all the
available config files, each representing one application system, a collection of reusable
modules and a Docker file that specifies the build process of the final Docker image.

The following steps are included in the process:

• Step 1. A temporary folder structure is created in /tmp.

• Step 2. A config file is loaded from the input folder structure and copied to /tmp.

• Step 3. All the modules specified in the config file are copied to the folder structure
in /tmp.

• Step 4. The build process of the image is started based on the Docker file. This
includes a step where the modules and the config file previously copied in the /tmp

37

are copied inside the Docker image.

• Step 5. The Docker image is tagged with the name specified in the config file and
pushed to the Docker repository.

• Step 6. If more config files exist, the process continues from step 2, if the current
one was the last one, the temporary folder structure is deleted, and the process
ends.

Figure 5.4. The build process of the application system Docker images.

5.2.1 Modules

As stated above, in the brief introduction to the build process, the image containing the
base layers can load the modules at runtime. The configuration-file loaded inside the im-
age, plays a huge role in this process. The structure of the configuration-file is presented
in figure 5.5.

The modules implementing the functionality of the application system are separated into
two categories; ones that implement operations, and ones that use operations imple-
mented by the former. The modules that implement operations are referred to as operat-
ing modules, and the modules that use operations are referred to as binding modules. At
start-up, the loader loads all modules that are inside a folder, inside the container, specific
to the module type.

The loading process of operating modules includes a validation phase where the loader
makes sure that modules implement operations that the configuration-file says they are
implementing. After the validation phase, operations marked as used, in the sections
describing binding modules, are passed to the correct module within a single object, from

38

Figure 5.5. One configuration-file represents one application system, and it is used both
during the build process, and during the runtime.

which the binding module can use them during the runtime, without the need to know
what operating module is implementing the operation. This allows re-usability of both
types since modules, using and offering operations, can be changed independently of
each other.

From Arrowheads perspective, the operating modules consume Arrowhead services, and
the binding modules provide Arrowhead services. However, neither providing or consum-
ing is mandatory. In case of operating modules, for example, one is free to implement
operations that do not consume any service that needs Arrowhead specific orchestration,
for example in cases where the location of the service is already known, and it is not
going to change in the future, there is no point in re-discovering.

One module of either type is restricted to consume or provide a maximum of one Ar-
rowhead service, although multiple instances of the same service can be consumed. If
one application system is consuming or providing multiple services, multiple modules are
needed. The number of modules in one application system is not limited to any number.
However, a large number of modules is probably a sign of a need of refactoring to multiple
application systems by creating a new configuration-files, that are reusing the modules
that were used in the large one.

39

The Module Interfaces

Both types of modules have to require an interface specific to their type. This way, the
loader system can load them properly. The JavaScript files for the interfaces are included
in the base-layers.

const moduleInterface = require(’../../lib/common/bindingModule’) (5.1)

The interface object of the binding module is included as presented in (5.1).

const moduleInterface = require("../../lib/common/operatingModule"); (5.2)

The interface object of the operating module is included as presented in (5.2).

const moduleObject = moduleInterface.init(module); (5.3)

After the modules interface-object is included, the init member-function presented in (5.3)
needs to be called with the node.js specific module-object presenting the file as its sole
parameter. The module-object is used to identify the module during the loading process.

In case of operating modules, the init-function returns an object with two functions, one
for getting the address of the consumed services and one for flushing the address cache
of the orchestrator module. The caching mechanism prevents the un-needed calls to the
orchestrator core system. Neither of the functions needs any parameters. The orches-
trator library already knows what service the operating module is consuming; since the
loader passes the information needed from the configuration file.

All the operations that are marked as "offered" in the configuration file need to be present
in the module.exports-object of the operating module. This way, the loader can find them
and pass them to the correct binding module.

In the case of binding modules, the init-function returns all the operations used by the
module within a single object. If the module is providing a service, the URI, that the
module should listen, is also within the returned object.

If the binding module provides services, the express-app-object needs to be exported in
a standard JavaScript way. The exported app object is merged to the application systems
main express app object, by leveraging the middleware functionality offered by Express.

A Side Note on the Module System

Besides the building of Docker containers and easing reuse, initially one additional goal
of the module system was to ease the integration of servers and client SDK’s generated

40

from OpenAPI documents [43]. To some extent, this was successful, and one test imple-
mentation even had all the express servers in it generated from OpenAPI 3 with swagger-
node-codegen [53]. The servers in the test implementation were altered by hand to be fit
binding modules and successfully built to use handwritten operating modules.

However, it soon became apparent that in the case of the demo application, that is in-
troduced in the next section, just writing the module code was a better choice. After all,
writing server code with libraries like Express is already a quite optimized procedure in
terms of keeping the boilerplate at minimum. The extra work that was needed by the
generation approach was mostly due to the manual alteration needed for the output and
other additional tasks, like writing and keeping the OpenAPI document up to date with
the manually altered code.

While it did not make sense to use a generator in the demo application, some more
demanding setup in the future might benefit from generation possibilities that OpenAPI
offers. With slight alterations to some existing open-source generators, like swagger-
node-codegen [53] or express-openapi [21] all the binding modules that provide services
could technically be generated directly from OpenAPI documents.

Also, the OpenAPI generated Client SDK’s could ease the writing of operating modules
that consume services. Especially the cases where the services have a large number of
sub-resources, a lot of boilerplate and error-prone document validation code is typically
needed before they can be used.

5.3 The System of Systems

The structure of the system of systems is presented In figure 5.6. The application systems
are separated into two groups; systems responsible for the data-path, through which the
condition monitoring data is transferred, and systems responsible for the control-path,
which are used in configuring the local clouds at the edge, including the way how the
data-path is used.

The data-path has two Arrowhead application systems, one at both local clouds. The
DataSystem on the edge-computer is pushing data to the cloud, through the batch-
service provided by the DataSystem.

The control-path also consists of two application systems, one on each local cloud. The
remoteControl system at the local cloud in the Azure VM provides three services, of which
the pollControll system consumes two at the edge computer. The third one is used for
controlling the data-flow from the cloud.

All the services where the consumer is at different local cloud are discovered through
Arrowheads gatekeeper systems introduced in section 3.1. However, since the Arrow-
head gatekeepers services used for inter-cloud service-discovery needs to be visible to
the consuming side, and on the local cloud, at the edge, this is not possible, only the
services at the Azure VM can be discovered from the edge but not the other way around.

41

DataSystemCloud

DataSystemEdge

RemoteControl

PollControl

Batch

Batch

CtrlPoll CtrlUpdate

CtrlUpdate

CMD

CtrlPoll

AH-Core

AH-Core

AH-
GK

AH-
GW

AH-
GK

AH-
GW

Service registrationService discovery

Service discovery Service registration
Service discovery Service discovery

Service registrationService registration

Arrowhead Local Cloud on the Edge-computer

Arrowhead Local Cloud on the Azure-VM

Data-path
Control-path

Figure 5.6. Responsibilities of the application systems are separated into data-path and
control-path. The service discovery and the service consumption between application
systems on different local clouds is happening through the gatekeeper and gateway sys-
tems.

5.3.1 Modules used in Application Systems

In this section the various modules used in implementing the application systems in data-
path and control-path are introduced.

DataSystemCloud

«Operating module»
Data

«Binding module»
Batch

Service registrationbatch

DataSystemCloud

pushToDb()

Figure 5.7. Modules used in DataSystemCloud application system.

The DataSystemCloud application system in figure 5.7 has two modules, one of each
type. The binding module "Batch" provides similarly named service and uses one op-
eration offered by the operating module "Data". As the name "pushToDb" suggests, the
operation is used to push the incoming batch to the database.

Even though the demo application consists of only one edge-computer, the DataSystem-
Cloud application system is compatible with multiple data sources. This enables schemes

42

where data from multiple monitored devices are sent to one virtual machine in the cloud.

Also, since the structure of the database in the Azure VM is not functionally dependent on
the identity of the data sources. The Virtual Machine on the cloud, with all of its internals,
could be duplicated. A good reason for duplication might, for example, be a heavy load, or
latency issues caused by the distance between some portion of the edge and the cloud.

DataSystemEdge

«Operating module»
BatchRetriever

«Binding module»
BatchPush

Service discoverybatch

DataSystemEdge

start()

Figure 5.8. Modules used in DataSystemEdge application system.

The modules used in DataSystemEdge application system are presented in figure 5.8.
Similarly to its counterpart presented above, DataSystemEdge also has one module of
both types. The binding modules only purpose is to call start-operation offered by the
BatchRetriever operating module.

The start operation starts the internals of the operating module, which is capable of send-
ing a predefined batch with predefined interval to all providers offering the batch service,
which are returned by the orchestrator core-system. The interval and a filter describing
the batch, which is a subset of available data points stored at the edges database, has to
be defined. If the orchestrator returns an address of a service provider, which does not
have a proper configuration in the database, nothing gets sent to that particular provider.

Both the interval and the subset of data points can be altered during the runtime. This
enables the reconfiguration of providers, including the providers that did not have any
configuration when the orchestrator found them the first time.

By default, the name of the providers local cloud is used as the identifier, when the con-
figurations are matched. However, more sophisticated schemes based for example on
groups, which could represent multiple providers who need the same data, could be eas-
ily used as well, since the implementation of the application system already supports
multiple providers per configuration.

It is also worthwhile to note that since the system can send data to multiple providers, the
providers could as well be second or even third party stakeholders who have Arrowhead
local clouds either at the edge or in their own cloud instance. This allows more sophis-
ticated schemes where the batches sent to different parties could be filtered based on

43

interest, or permissions.

RemoteControl

«Operating module»
RemotePollCmd

«Binding module»
RemoteCmd

Service registrationCMD

RemoteControl

«Binding module»
CmdUpdate

«Binding module»
CmdPoll

update()

setCmd()

getCmd()

poll()

Service registration

ctrlpoll

Service registration

ctrlupdate

Figure 5.9. Modules used in RemoteControl application system.

The RemoteControl application system presented in figure 5.9 is implemented with four
modules. Three of the modules are binding modules, and all of them provide a service.
The only operating module within the application system — the RemotePollcmd module
— is internally doing book-keeping, for commands sent through RemoteCmd modules
cmd service. These commands are fetched via the CmdPoll modules poll service.

The commands can alter the batch and interval settings of any provider of "batch" service,
and also a generic configuration object can be sent through the poller mechanism. Each
edge-computer has its structure for incoming commands in the RemotePollCmd module.
Only the latest command issued is stored, and successful fetch through the poll service
erases the command structure of the poller, to avoid the fetching of already fetched com-
mand. However, since it is nice to know what was the last command issued, it can be
fetched through the cmd service. This is achieved by using a boolean parameter at the
URI when issuing a GET.

The ctrlupdate service provided by the CmdUpdate module is used by the edge-computers
for notifying on changes in their configuration. The state of each edge-computer is stored
inside the remotePollCmd module and can be fetched through RemoteCmd’s cmd ser-
vice.

The notifications that update the state can include data involving the configuration of in-
tervals, batches and the generic configuration object that can be used for further configu-
ration purposes at the edge. The updater can also send an array of available parameters
through the ctrlupdate service.

Given that the edge-computers are consuming all the services provided by the Remote-
Control application system in a sane manner, in which they poll the ctrlpoll in case of need
for reconfiguration, send all the changes in configuration when they happen and now and

44

then update the available set, the cmd interface can be used to create user interfaces,
or possibly even application systems that try to automatically "drive" the configuration of
certain edge-computers to a particular predefined state.

PollControl

«Operating module»
Parser

«Binding module»
PollCmd

PollControl

updateOrder()

parseSet()

Service discoveryService discovery

«Operating module»
Poll

«Operating module»
Update

parseGet()

pollOp()

ctrlupdate ctrlpoll

Figure 5.10. Modules used in PollControl application system.

The PollControl application systems presented in figure 5.10, is the counterpart of the
RemoteControl application system presented above. The application system supports
multiple points of control and can, therefore, be controlled by all the providers of the
ctrlpoll service that the orchestrator core system is returning within its orchestration re-
sponse.

PollControl has three operating modules. One of the modules consumes the ctrlpoll ser-
vice, one consumes the ctrlupdate service, and one is responsible for parsing the com-
mands received through the poll mechanism.

The binding module PollCmd bounds all the operations offered by the operating modules
together in a way, where all the providers of ctrlpoll service get polled once in every 5 sec-
onds. After a new command gets fetched, it is validated, and the state of the configuration
is updated to the database by using the Parser-modules parseSet operation. In case of
successful altering of the configuration, the new state is fetched from the database by us-
ing the Parser-modules parseGet operation. Afterwards, the state gets sent to all known
providers of the ctrlupdate service.

The generic configuration object that is sent through the poller mechanism is used for con-
figuring the analysis and data processing "black-box" at the edge-computer presented in
figure 5.1. This allows schemes where the Arrowhead system of systems is the first thing
that gets booted during an initial bootup process of the edge-computer. After the poll-
Control application system is up and it can fetch configuration of the "black box" from the
Arrowhead local cloud at the Azure VM, and bootstrap the condition monitoring system
that is feeding the data to the PostgreSQL database, which again gets sent as batches
as is determined in the configuration.

45

5.4 An Alternative Control Approach

RemoteControl

Control

CMD(v1)CMD(v2)

Service discovery

Service registration

Control-path

Arrowhead Local Cloud on the Azure-VM

Arrowhead Local Cloud on the Edge-computer

Service registration

CMD(v1)CMD(v2)

Service discovery

Figure 5.11. An alternative implementation of the control-path.

The reason behind the messy polling based control method lies in the fact that in the
environment where the demo application is run on, the gatekeeper system in the edge is
not visible to the gatekeeper in the local cloud at the Azure VM. However, if this kind of
requirement was not placed or if the gatekeepers could see each other, the control-path
could be simplified drastically, as is presented in figure 5.11.

In the alternative approach, the Remotecontrol application system directly consumes the
cmd service offered at the local cloud of the edge computer. This way, the RemoteControl
system becomes a mere proxy through which the resources holding the state of the
configuration can be directly fetched and altered.

5.4.1 Modules used In the Alternative Control Approach

«Operating module»
RemoteOps

«Binding module»
RemoteCmd

Service discovery Service registrationCMD (v2) CMD (v1)

setCmd()

RemoteControl

getCmd()

Figure 5.12. Modules used in alternative RemoteControl application system.

Since the module system allows reuse of the modules, the alternative RemoteControl
systems presented in figure 5.12 is reusing the RemoteCmd module of the previous im-

46

plementation presented in figure 5.9.

The operating module of the new RemoteControl application system is simple. It offers
the operations still relevant, from the previous implementations Pollcmd module, but in-
stead of storing the commands issued, for edge computers to fetch via polling, it relays
them directly to the cmd service provided by the control application system at the Arrow-
head local cloud in the edge-computer.

Since the cmd services, consumed by the RemoteOps operating module are discovered
through the orchestrator core system, only the providers that are found can be controlled
through the RemoteControl application system.

On the Edges side, the new Control application system presented in figure 5.13 also
leverages the parser module, which was originally developed for the use of the PollControl
application system of the previous implementation of the control path introduced in figure
5.10. The parser module is slightly altered, and it uses the cmd service at the cloud. The
reason behind this is that, since the polling mechanism is removed, cases where the edge
computer wakes up after reinstallation or a boot-up, either unconfigured or misconfigured,
the edge computer needs the means for fetching them, since polling from the cloud to the
edge would be similarly messy.

«Operating module»
Parser

«Binding module»
CmdService

Service discovery Service registrationCMD (v1) CMD (v2)

parseSet()

Control

parseGet()

Figure 5.13. Modules used in Control application system.

47

6 EVALUATION

In this chapter, the validity of the Arrowhead Framework as the enabler of edge cloud
architecture is evaluated. At first, the implementation is evaluated in the context of the
ideal system defined in 4. Then upsides and caveats found during the development
process are enumerated. Finally, the evaluation is summarized.

6.1 The Ideal System

As was expected in section 4, the service discovery mechanism of the Arrowhead Frame-
work was successfully used to discover services implementing the needed features. The
implementation introduced in section 5 worked as was planned, and all the items listed in
section 4.1.1 were achieved, in relatively small experimentation with one edge computer
and one virtual machine at the Microsoft Azure.

The configuration of the data pushes, and the edge computer was successfully fetched
via service, that was discovered through the gatekeeper system. Both data and configu-
ration were successfully moved through the tunnel established by the gateway systems.
From this point of view, it can be stated that the system of systems implemented, achieved
the features of the ideal system.

Additionally, the existence of multiple data sources and sinks were simulated with the
existing local cloud instances by deploying multiple instances of existing application sys-
tems by using Docker’s capability to deploy containers with ease. The simulation was
successful, but it is important to note, that further experiments with a larger test setup
would be needed for more definite answers. However, since a local cloud is a local cloud,
the results should be similarly successful with a more extensive test setup with multiple
local cloud instances on different machines both at the edge and the cloud.

6.1.1 Upsides of the Arrowhead Framework

Undisputedly there is potential in the systems of system approach taken by the Arrow-
head Framework. This, combined with service-orientation, gives a clear mental model on
how one would build things with the framework. The service discovery and authorization
functionality offered by the core systems support each other well on a conceptual level.

The concept of the local cloud, the ability to discover services across local cloud bound-

48

aries via the gatekeeper system and the ability to consume the discovered services via
the gateway system are all features that support each other well. Theoretically, a vast
system of systems could be build, while the control of an individual system is still kept at
the local cloud level.

Also, the way how gateway systems allow the application systems to use HTTP while
in background broker technologies like AMQP, with denser data presentations handle
the communication over the most significant bottleneck, the internet, is a feature worthy
of mentioning. The way how the broker technology is used also brings consistency to
application system development since the application systems only need the ability to
understand HTTP.

6.1.2 Shortcomings of the Arrowhead Framework

While the version number 4.1.2 1 of the evaluated framework suggests, that it is the
fourth generation of a ready product, the maturity is far from the level of a ready product.
Currently, the framework is only suitable for small scale test setups, like the one that it
was used for in this thesis. This section goes into more depth on this front, and it can be
considered as the feedback of the evaluation activity of this instance of DSRP.

Orchestrator

While basic service discovery through the orchestrator core system is available, it still
lacks lots of features that would be necessary for it to be usable in the industry. One
example of this is the infancy of the metadata-based service discovery. While registering
services in the service registry, the application system can specify a set of arbitrary key-
value based metadata-fields. However, the orchestrator system is not capable of fully
leveraging this.

As an example, If the service has three metadata-fields which all describe the physical
location of the system providing the service with different accuracy, one for the country,
one for the city and one for the neighbourhood. The orchestration based on only one
of these metadata fields is not possible in cases, where the consumer system wants
to consume all services where the metadata-field is, for example, in a scope of a city.
Instead, all the flags need to be matched. This means that, in this case, from the point of
view of the orchestrator, the ability to add multiple metadata-fields is unnecessary, since
only one metadata-field describing the neighbourhood would have a similarly bad result.

This is also the case if the services are registered with one metadata-flag per service,
describing the country where the provider system is located. Now, If the application
system wanted to issue an orchestration request with a list of acceptable countries for the
provider system, this is not possible, which means that the application system is forced
to make multiple service requests for the same service, each with one metadata-flag.

1standard MAJOR.MINOR.PATCH convention widely used in open-source projects is assumed

49

The lack of features in the orchestrator core system is a deal-breaker since it adds lots of
pressure on the application system development. The application systems need to take
care of the responsibilities of the orchestrator in all cases where the needs are not trivial.
This results in convoluted code, where the service discovery calls, and the logic needed
for parsing the responses, takes a larger role than the code needed for the business logic
of that application system.

Authorization

Another problem in core systems involves with the authorization system, on which it is
required to specify with one per system basis what system is able to consume which
service. In figure 6.1, screenshots of the tables involved in this process are presented.
The System table is used for storing information about core and application systems
in Arrowhead local cloud, the global and local authorization tables are used to specify
authorization rules in global discovery happening through gatekeeper system and local
discovery happening through cores own orchestrator system.

As can be seen in the local authorization table, the column’s "consumer_system_id" and
"provider_system_id" refer to rows in the system table. Therefore, it is expected that the
same amount of information is known from systems on both sides. On the system table,
the only mandatory column is the port that the system listens to, which is irrelevant in
the case of the consumer and HTTP clients in general. However, the name field of the
system table is the one that is used when systems identity is determined.

The inconsistency on how the rows in the system table are set in the database is a small
problem compared to the main problem that the current approach introduces. That is, of
course, the fact that, before a consumer can discover anything, the authorization system
needs to know precisely who that individual consumer is.

This strict policy means that the consumer and provider instances are tightly coupled to
each other by the way how the authorization system is implemented. The strictness and
tight coupling combined with the fact that the user has to figure out the deployment on
their own, in the sense of actually starting the application systems, raises questions.

One of them is, that if the user has to couple the services in the database, by hand, and
afterwards start them, why wouldn’t the user skip the whole hassle of Arrowhead and
couple the services on start-up, by providing the provider addresses and other stuff, like
access-tokens in a configuration file or start-up parameters?

Another question raised by the tight coupling and the lack of dynamism caused by it is
that is the Arrowhead Framework even providing a proper service discovery functionality
or just a mere configuration hub of a sort? If so, how is the Arrowhead Framework going
to compete against, for example, various tooling built around container technology, which
already does not only offer means for configuring the "connections" and support for DNS
but also provides means for deploying and starting the services [14]?

50

Local Authorization Table:

System Table:

Global Authorization Table:

Figure 6.1. Authorization core system needs too detailed information about the consumer
systems in the case of local service requests. On the other hand, in a global case, too
much trust is given for the neighbouring local cloud.

As can be seen in figure 6.1, global authorization takes a more relaxed point of view in
terms of strictness of the authorization rules. On the global level, the authorization is done
in groups formed by foreign local clouds themselves. This means that any application
system from the specified foreign local cloud can consume the service specified on the
row.

Most likely, the main reason for this more relaxed approach towards foreign consumers
comes from the assumption that the local cloud that was authorized to consume has
already taken care of the application system-level authorization. However, the evaluated
implementation of the framework does not do that. Instead, the orchestrator at the foreign
local cloud straight up goes and fires the intercloud service request without any further
authorization processes.

Unarguably, an application system-level authorization of some sort is needed. In the case
of local authorization, the current implementation is way too strict and demanding, and on
the other hand, the global authorization does not exist at the system-level. This means
that some further work on this front is needed. Some scheme that brought indirection
by storing "authorization-tokens" instead of the detailed information about the authorized
application systems themselves could offer a solution.

51

In this scheme, the authorization tokens could be added to the authorization systems
database tables by the providing systems themselves, or by the user. Afterwards, the ap-
plication system willing to discover a particular service would need to include a token that
was associated with a provider or a group of providers inside its orchestration request.
The orchestrator could then relay the token to the authorization system, which could verify
the consumer’s privileges. Ideally, the number of the tokens passed with an orchestration
request could be larger than one, which would allow multiple providers associated with a
different token to be passed in the response.

This scheme would allow the same kind of, although more flexible, group authorization
as the current implementation of the global authorization has, since all the consuming
application systems that have the token could discover the service, without a need for the
authorization to know their identity on the level of addresses and system names. Also,
the global authorization could use the same token-based scheme as the local one, since
a token is a token independent of the place of its use.

Of course, this scheme comes with unanswered questions as well. How would the appli-
cation systems get the tokens? How would the tokens get generated safely? Additional
external tooling would probably be needed to solve the problems implied by the questions
above.

Service Registry

Some problems exist on the level of interfacing between the core systems and the ap-
plication systems. The most obvious example is found in the service registry, where the
registration and the deregistration are not done in a REST fashion at all. I.e. the interface
does not abstract the registry entries as resources. Instead, ad-hoc remote-procedure-
call scheme on HTTP is used. For example, the deletion is done via an HTTP PUT on a
"resource" with URI: "serviceregistry/delete".

Another problem in the service registry is the lack of support for a sub-resource manage-
ment scheme. If a system provides a service, which has related sub-resources like its
often the case when REST is used, the resource and its sub-resources can not be reg-
istered with one registration call. This means that as a solution either the sub-resources
are registered individually, the systems consuming the resources "just have to know"
what sub-resources exists, or the provider system itself offers a service for discovering
the sub-resources, which can be used after the base resource is discovered successfully
via core services.

At least in some cases, the individual registration of the sub-resources is probably a bad
idea since URIs might be "deep", and they might have (multiple) variables in them. For
example, what would be registered if the URI was "/machine/sensors/<sensorID>", where
"sensorID" is a variable that is used to identify a particular sensor, and numerous sensors
existed? Surely every possible id should not be registered in the registry as an individual
service entry, especially if the authorization system controlling the access to the resource

52

is implemented as it currently is?

Outside small scale test setups, the assumption that the consumer "just knows" what sub-
resources exists, is not ideal either since, in non-trivial cases, the amount of knowledge
might become unbearable. Although, external tooling build around OpenAPI and their
capability to generate SDK’s might help to some extent[43].

The case where it is assumed that the application systems themselves take care of the
discovery of sub-resources by using HATEOAS, for example, could work on some cases.
However, since a centralized structure for handling the services exists, it would be ideal
that it could handle things like this. After all, that could be thought of as its primary job.

On the last two cases, "just knows" and "externalize it", the application system based
authorization and the authorization of sub-resources versus what resource should be
available through what Arrowhead application system, will cause one extra level of pain
in cases where the sub-resources have different sets of authorized consumers. For ex-
ample, some sensor reading might not be for all eyes, yet it might otherwise make sense
to group it as a sub-resource with some other sub-resource, which is again for a different
set of eyes.

Gatekeeper and Gateway

While it must be stated that the gatekeeper and the gateway systems gave the least
amount of surprises compared to other systems they also had some problems, one from
the more serious side is the incapability to establish a permanent session between the
gateway systems at different local clouds, which forces an orchestration request, that
goes through the whole process of inter-cloud orchestration, before each call. Ideally, the
session would depend on the application systems lifetime.

It is also entirely possible that the incapability to achieve a permanent session is not
due to the Arrowhead but rather due to the broker that was used between the gateway
systems. Testing of this particular feature was left at the level of trying to get the gateways
to understand "keep-alive" headers, without any success. Further configuration of the
broker was not tried. However, if "non-stock" configuration of the broker is needed, it
would be nice if it was documented somewhere.

One point worthy of mentioning on the gatekeeper system is its usage of HTTP for com-
munication, which in practice means that the gatekeeper from the providing side must be
visible to the gatekeeper at the consuming side. Although, since the gateway systems
are using the broker, the only thing that needs to be visible in their communication is the
broker. Could the gatekeeping also be moved to the broker 2? This would enable more
powerful tunnelling, which would have benefited the demo application by removing the
need to poll.

2It turns out, that yes, indeed it can be moved. In version 4.1.3 that got finalised right before this thesis
was finished the gatekeeping was moved to the broker [4].

53

If something like this was implemented, the way how other clouds are discovered would
be needed to change. The current way, where the addresses, ports and gatekeeper URIs
of local clouds at the neighbourhood are defined in the MySQL database would not be
enough, instead if RabbitMQ [50] was used, the ids of the queues used by the broker
would have to be stored instead, or otherwise discovered at both ends of the broker.

Application System Development

From the application system developments perspective, the most major shortcoming is
the lack of libraries for interaction with the core systems. There are reference implemen-
tations of application systems, written both in Java and in C++, which can be used as a
template for new systems, but this is far from ideal. Currently, the best — and if Java or
C++ are not used, the only — option for registration and orchestration of services pro-
vided or consumed by application system is to write the HTTP requests directly "by hand"
with the help of some generic HTTP-library.

This unavoidably leads to a situation where everyone developing application systems for
Arrowhead Framework, is effectively writing their own "micro library", which most likely
is not fully leveraging the functionalities that, the framework could offer, especially in the
future when the framework hopefully provides more functionality. If "official" libraries for
the most common languages were available, people could collaborate on those instead
of wasting their time on writing parallel implementations, or, use the saved time on the
development of their application systems.

It is also mention-worthy to state that all core systems provide an OpenAPI document,
which can be fetched through an HTTP request. OpenAPI documents can be used for
SDK generation, and generator implementations that target most commonly used lan-
guages exist [43]. However, the OpenAPI documents offered by the core systems also
contain information about services that are not meant to be used by application systems
but rather by other core systems or tooling build for management. This means that SDK
generated solely for application systems’ purposes will have extra code that it does not
need and should not even be authorized to use.

6.2 Summary of Evaluation

Since the demo application achieved the features of the ideal system presented in section
4.1.1, a short answer to both research questions is that features offered by the Arrowhead
Framework can indeed help on both the configuration of the data flow and the installation
of new edge devices. Like it was assumed, especially the service discovery, which allows
late binding and the tunnelling features offered by gatekeepers and gateways were both
found useful, at least on the conceptual level.

However, the Arrowhead Framework can not be considered as a solution to the problems
that the questions were derived from in section 1.2. This is mainly due to the infancy of

54

the platform, and there still is quite a lot of work to be done, if the Arrowhead Framework
wants to be a contender in the field of automation and IoT.

Furthermore, container-based technologies can give the Arrowhead Framework pres-
sure, since there is an urge to bring the container technologies used at the cloud also
to the edge of the network. One example of a potential project is KubeEdge[32], which
aims to extend the Kubernetes [33] platform to the edge of the network. These kinds of
solutions, that do not only enable the service discovery via DNS but also provide means
for their deployment in a sense of actually getting them up and running, which the current
implementation of the Arrowhead Framework is not capable of doing, might be too big of
a beast for the Arrowhead Framework to compete against.

The sections 6.1.2 above enlisted issues that were found during the development of the
demo application, the point of view was especially on findings that would have an impact if
the Arrowhead Framework was used in a production setup. However, many minor but still
essential things like, the heavy memory usage, the bad quality of the code and general
lack of robustness which, for example, manifests as a need to start the core systems in
a "correct order" with external timeout scripts, to get the thing working in the first place,
were not mentioned.

However, the framework’s development process continues, and since it already has proven
to have some upside and lot of the issues are fixable, an eye should be kept on the future
versions of the framework. Since the development process already has continued for
years, an ultra optimistic attitude towards the framework’s future evolution might be too
much to ask for, but in today’s world, you never know.

55

7 CONCLUSION

In this master’s thesis, an IoT framework known as the Arrowhead Framework was eval-
uated in a condition monitoring setup, by developing a demo application. The goal was
to find whether the framework could help in 1) configuring the data flow from the edge to
the cloud, and 2) the installation of new devices at the edge.

The demo setup consisted of a vibrating screen exciter and a set of vibration sensor boxes
equipped with Bluetooth LE radios and accelerometers. The application was tested with
an X86 industrial computer that served as the edge computer, and a virtual machine in-
stance in Microsoft Azure cloud. Both, the edge computer and the VM had an Arrowhead
local-cloud instance, with the mandatory Arrowhead core systems, the supporting core
systems available with version 4.1.2 of the framework and a set of application systems
that were implemented as Node.js applications.

A set of supporting tooling was needed. Including; PostgreSQL database, TimescaleDB
extension for the database, PostgREST which was used for revealing the schema of
databases as a REST service and Docker, which was used to ease the deployment of
both the supporting tooling and the various systems related to the Arrowhead Framework,
including the application systems.

To ease the application system development process, both, those in the demo application
and those possibly developed in the future, a module-based scheme for building docker
images was introduced. The scheme is based on a two-staged build process, which
enables the reuse of modules that can utilize the Arrowhead core services by registering
the services provided and discovering the services consumed, automatically in the case
of the registration and through a simple interface in case of the discovery.

The methodological model used in the evaluation was the design science research pro-
cess [44], which offers a framework for design science [28]. The evaluation consisted of
the implementation of a demo application, which tried to achieve functionalities of an ideal
system, which were derived from the research questions4.1.1. Afterwards, the demo ap-
plications success was evaluated, found shortcomings of the Arrowhead Framework were
reported, and some suggestions for improvements were given as feedback for future de-
velopment iterations.

The demo application achieved the functionality of the ideal system. However, the Ar-
rowhead Framework was not found to be a production-ready platform. Shortcomings
were found in all core systems of the framework. Therefore, it can be concluded that

56

version 4.1.2 of the Arrowhead Framework did not offer enough functionality for tackling
the problems of data flow and installation of new edge devices satisfactorily.

In the summary section of the evaluation chapter6, it was suggested that the future devel-
opments of the framework should be followed since it was found to have some potential.
However, it might be that the framework never gets to a level where it could be seriously
considered as a production-ready solution. However, since, The Productive4.0 project
continues, and the Arrowhead Framework is the primary tool, as future work, it is sug-
gested that the framework’s usage as a component of the test-bench-platform for further
development of the condition monitoring system at Metso could be continued. For that
purpose, the framework has more or less proven its suitability, especially if the crudest
shortcomings are fixed.

Some interesting cases could include research at the edge of the network, where a col-
laborative edge, in which multiple edge computers with various "customer" roles could be
used to investigate the further possibilities that SOA centred edge computing could offer.
Another case could be Arrowhead compliant sensors. Since, REST is the lingua franca
of the framework, investigation on REST compatible protocols for more constrained use
cases like CoAP [51]with IPv6 over Low-Power Wireless Personal Area Networks (6LoW-
PAN) based solutions[39], where one possibility could be 6LoWPAN over Bluetooth LE
[40], for which most of the equipment needed for basic level test-setups already exists.

Aside from the Arrowhead Framework, various solutions built around the container tech-
nology might have potential in an edge-cloud setup. Docker itself has cluster manage-
ment features in the form of Docker swarm [14]. On top of this, the Kubernetes project
also might offer new possibilities [33]. While this thesis was written, the Kubernetes
project released an interesting, fully open-source solution called KubeEdge [32], which
has the edge cloud as its primary target. A further study on the potential of the container-
based cluster technologies expanded to the edge of the network could bring up interesting
possibilities in the condition monitoring systems of Metso’s equipment.

57

REFERENCES

[1] P. Aditya, I. E. Akkus, A. Beck, R. Chen, V. Hilt, I. Rimac, K. Satzke and M. Stein.
Will Serverless Computing Revolutionize NFV? English. Proceedings of the IEEE
107.4 (2019), 667–678.

[2] R. Ahmad and S. Kamaruddin. An overview of time-based and condition-based
maintenance in industrial application. Computers and Industrial Engineering 63.1
(2012), 135–149.

[3] S. V. Amari, L. McLaughlin and H. Pham. Cost-effective condition-based main-
tenance using markov decision processes. English. IEEE, 2006, 464–469. ISBN:
0149-144X.

[4] Arrowhead. Projects github-repository. URL: https://github.com/arrowhead-f
(visited on 07/13/2019).

[5] Arrowhead. Projects web-page. URL: https://arrowhead.eu/ (visited on 07/12/2019).
[6] Axios. Projects npm-page. URL: https://www.npmjs.com/package/axios (visited

on 08/01/2019).
[7] H. P. Bloch and F. K. Geitner. Machinery failure analysis and troubleshooting. En-

glish. Repr. Vol. 2.;2; Houston, TX: Gulf, 1986. ISBN: 0872018725;9780872018723;
[8] M. Burhan, R. A. Rehman, B.-S. Kim and B. Khan. IoT Elements, Layered Archi-

tectures and Security Issues: A Comprehensive Survey. Sensors 18 (Aug. 2018).
[9] M. Cerrada, R.-V. Sánchez, C. Li, F. Pacheco, D. Cabrera, J. Valente de Oliveira

and R. E. Vásquez. A review on data-driven fault severity assessment in rolling
bearings. English. Mechanical Systems and Signal Processing 99 (2018), 169–
196.

[10] F. Civerchia, S. Bocchino, C. Salvadori, E. Rossi, L. Maggiani and M. Petracca. In-
dustrial Internet of Things monitoring solution for advanced predictive maintenance
applications. Journal of Industrial Information Integration 7 (2017). Enterprise mod-
elling and system integration for smart manufacturing, 4–12. ISSN: 2452-414X.

[11] Control-Groups. Manual-page(7). URL: http://man7.org/linux/man-pages/man7/
namespaces.7.html (visited on 08/01/2019).

[12] CouchDB. Projects web-page. URL: http://couchdb.apache.org/ (visited on
09/20/2019).

[13] J. Delsing. IoT automation : arrowhead framework. Boca Raton: CRC Press, Taylor
& Francis Group, 2017. ISBN: 978-1-4987-5675-4.

[14] Docker. Projects web-page. URL: https://www.docker.com/ (visited on 08/01/2019).
[15] S. O. Duffuaa, M. Ben-Daya, K. S. Al-Sultan and A. A. Andijani. A generic con-

ceptual simulation model for maintenance systems. English. Journal of Quality in
Maintenance Engineering 7.3 (2001), 207–219.

https://github.com/arrowhead-f
https://arrowhead.eu/
https://www.npmjs.com/package/axios
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://couchdb.apache.org/
https://www.docker.com/

58

[16] ECMAScript. Standards web-page. URL: https://www.ecma-international.org/
publications/standards/Ecma-262.htm (visited on 08/01/2019).

[17] M. W. Eder. Hypervisor-vs . Container-based Virtualization. 2016.
[18] Epoll. Manual-page(7). URL: https://www.unix.com/man-page/linux/7/epoll/

(visited on 07/22/2019).
[19] T. Erl, B. Carlyle, C. Pautasso and R. Balasubramanian. SOA with REST: Princi-

ples, Patterns & Constraints for Building Enterprise Solutions with REST. English.
1st ed. Prentice Hall, 2012. ISBN: 0137012519;9780137012510;

[20] Express. Projects web-page. URL: https://expressjs.com/ (visited on 08/01/2019).
[21] Express-openapi. Projects NPM-page. URL: https://www.npmjs.com/package/

express-openapi (visited on 09/22/2019).
[22] R. T. Fielding. REST: Architectural Styles and the Design of Network-based Soft-

ware Architectures. Doctoral dissertation. University of California, Irvine, 2000. URL:
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[23] R. Gao, L. Wang, R. Teti, D. Dornfeld, S. Kumara, M. Mori and M. Helu. Cloud-
enabled prognosis for manufacturing. English. CIRP Annals - Manufacturing Tech-
nology 64.2 (2015), 749–772.

[24] C. M. GARCIA and R. ABÍLIO. Systems Integration Using Web Services, REST
and SOAP: A Practical Report. English. Sistemas de Informação 1.19 (2017), 34–
41.

[25] J. Gubbi, R. Buyya, S. Marusic and M. Palaniswami. Internet of Things (IoT): A
vision, architectural elements, and future directions. English. Future Generation
Computer Systems 29.7 (2013), 1645–1660.

[26] J. Halme, E. Jantunen, D. Hastbacka, C. Hegedus, P. Varga, M. Bjorkbom, H.
Mesia, R. More, A. Jaatinen, L. Barna, P. Tuominen, H. Pettinen, M. Elo and M.
Larranaga. Monitoring of Production Processes and the Condition of the Produc-
tion Equipment through the Internet. English. IEEE, 2019, 1295–1300.

[27] A. Heng, S. Zhang, A. C. C. Tan and J. Mathew. Rotating machinery prognostics:
State of the art, challenges and opportunities. English. Mechanical Systems and
Signal Processing 23.3 (2009), 724–739.

[28] A. R. Hevner, S. T. March, J. Park and S. Ram. Design Science in Information
Systems Research. English. MIS Quarterly 28.1 (2004), 75–105.

[29] A. K. S. Jardine, D. Lin and D. Banjevic. A review on machinery diagnostics and
prognostics implementing condition-based maintenance. English. Mechanical Sys-
tems and Signal Processing 20.7 (2006), 1483–1510.

[30] Java. Projects web-page. URL: https://www.java.com/en/ (visited on 09/20/2019).
[31] Jie, W. Yu, N. Zhang, X. Yang, H. Zhang and W. Zhao. A Survey on Internet of

Things: Architecture, Enabling Technologies, Security and Privacy, and Applica-
tions. English. IEEE Internet of Things Journal 4.5 (2017), 1125–1142.

[32] KubeEdge. Projects web-page. URL: https://kubeedge.io/en/ (visited on 09/28/2019).
[33] Kubernetes. Projects web-page. URL: https://kubernetes.io/ (visited on 09/28/2019).

https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.unix.com/man-page/linux/7/epoll/
https://expressjs.com/
https://www.npmjs.com/package/express-openapi
https://www.npmjs.com/package/express-openapi
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.java.com/en/
https://kubeedge.io/en/
https://kubernetes.io/

59

[34] Linux-Namespaces. Manual-page(7). URL: http://man7.org/linux/man-pages/
man7/namespaces.7.html (visited on 08/01/2019).

[35] N. P. Manager. Projects web-page. URL: https://www.npmjs.com/ (visited on
08/01/2019).

[36] F. Mattern and C. Floerkemeier. From the Internet of Computers to the Internet of
Things. English. Vol. 6462. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
242–259. ISBN: 0302-9743.

[37] P. Mell and T. Grance. The NIST Definition of Cloud Computing. English. 2010.
[38] MongoDB. Projects web-page. URL: https : / / www . mongodb . com/ (visited on

09/20/2019).
[39] G. Montenegro, N. Kushalnagar, J. Hui and D. Culler. Transmission of IPv6 Packets

over IEEE 802.15.4 Networks. RFC 4944. RFC Editor, Sept. 2007.
[40] J. Nieminen, T. Savolainen, M. Isomaki, B. Patil, Z. Shelby and C. Gomez. IPv6

over BLUETOOTH(R) Low Energy. RFC 7668. RFC Editor, Oct. 2015.
[41] Node-OPC. Projects web-page. URL: https://node-opcua.github.io/ (visited on

08/01/2019).
[42] Node.js. Projects web-page. URL: https://nodejs.org (visited on 07/22/2019).
[43] OpenAPI. Projects web-page. URL: https://swagger.io/specification/ (visited

on 09/20/2019).
[44] K. Peffers, T. Tuunanen, C. Gengler, M. Rossi, W. Hui, V. Virtanen and J. Bragge.

The design science research process: A model for producing and presenting infor-
mation systems research. Proceedings of First International Conference on Design
Science Research in Information Systems and Technology DESRIST (Feb. 2006).

[45] A. Pérez, G. Moltó, M. Caballer and A. Calatrava. Serverless computing for container-
based architectures. English. Future Generation Computer Systems 83 (2018), 50–
59.

[46] PostgreSQL. Projects web-page. URL: https://postgresql.org (visited on 07/14/2019).
[47] PostgREST. Projects web-page. URL: https://postgrest.org (visited on 07/14/2019).
[48] Productive4.0. Projects web-page. URL: https://productive40.eu/ (visited on

07/12/2019).
[49] Python. Projects web-page. URL: https://www.python.org/ (visited on 09/20/2019).
[50] RabbitMQ. Projects web-page. URL: https : / / www . rabbitmq . com/ (visited on

09/22/2019).
[51] Z. Shelby, K. Hartke and C. Bormann. The Constrained Application Protocol (CoAP).

RFC 7252. RFC Editor, June 2014.
[52] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu. Edge Computing: Vision and Challenges.

English. IEEE Internet of Things Journal 3.5 (2016), 637–646.
[53] Swagger-node-codegen. Projects NPM-page. URL: https : / / www . npmjs . com /

package/swagger-node-codegen (visited on 09/22/2019).
[54] Systemd. Projects web-page. URL: https://www.freedesktop.org/wiki/Software/

systemd/ (visited on 09/20/2019).

http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://www.npmjs.com/
https://www.mongodb.com/
https://node-opcua.github.io/
https://nodejs.org
https://swagger.io/specification/
https://postgresql.org
https://postgrest.org
https://productive40.eu/
https://www.python.org/
https://www.rabbitmq.com/
https://www.npmjs.com/package/swagger-node-codegen
https://www.npmjs.com/package/swagger-node-codegen
https://www.freedesktop.org/wiki/Software/systemd/
https://www.freedesktop.org/wiki/Software/systemd/

60

[55] TimescaleDB. Projects web-page. URL: https : / / timescale . com/ (visited on
07/14/2019).

[56] A. H. C. Tsang. Condition-based maintenance: tools and decision making. English.
Journal of Quality in Maintenance Engineering 1.3 (1995), 3–17.

[57] P. Varga, F. Blomstedt, L. L. Ferreira, J. Eliasson, M. Johansson, J. Delsing and
I. Martínez de Soria. Making system of systems interoperable – The core com-
ponents of the arrowhead framework. English. Journal of Network and Computer
Applications 81 (2017), 85–95.

[58] M. Weiser. The computer for the 21st Century. English. IEEE Pervasive Computing
1.1 (2002), 19–25.

[59] M. Wollschlaeger, T. Sauter and J. Jasperneite. The Future of Industrial Communi-
cation: Automation Networks in the Era of the Internet of Things and Industry 4.0.
English. IEEE Industrial Electronics Magazine 11.1 (2017), 17–27.

[60] D. Wu, S. Liu, L. Zhang, J. Terpenny, R. X. Gao, T. Kurfess and J. A. Guzzo. A
fog computing-based framework for process monitoring and prognosis in cyber-
manufacturing. Journal of Manufacturing Systems 43 (2017), 25–34. ISSN: 0278-
6125.

[61] L. D. Xu, W. He and S. Li. Internet of Things in Industries: A Survey. IEEE Transac-
tions on Industrial Informatics 10.4 (Nov. 2014), 2233–2243. ISSN: 1551-3203.

[62] L. D. Xu, E. L. Xu and L. Li. Industry 4.0: state of the art and future trends. English.
International Journal of Production Research 56.8 (2018), 2941–2962.

[63] P. Zheng, H. Wang, Z. Sang, R. Y. Zhong, Y. Liu, C. Liu, K. Mubarok, S. Yu and
X. Xu. Smart manufacturing systems for Industry 4.0: Conceptual framework, sce-
narios, and future perspectives. English. Frontiers of Mechanical Engineering 13.2
(2018), 137–150.

https://timescale.com/

	Introduction
	Introduction to Case Metso
	Problem Definition
	Research Questions
	Structure of the Thesis

	Background
	Maintenance Strategies
	PM Based on Scientific Method

	Condition Based Maintenance
	Phases of CBM

	IoT
	Wireless Sensor Networks
	Cloud Computing
	Industrial IoT
	Architecture of IoT

	IoT in the Domain of the Thesis
	Service-oriented Architecture
	Edge and Cloud
	Containerization

	Tools
	Arrowhead Framework
	Philosophy of Arrowhead Framework
	Application Systems
	Supporting Core Systems

	Supporting Tools
	Persistent Storage
	JavaScript and Node.js
	Docker

	Methodologies
	Approach for Solving the Research Questions
	Ideal System and Expectations Placed to AHF

	The Setup Used for Evaluation

	Implementation
	The Software Stack of the Demo application
	Mocking of the Edge

	Application System Development
	Modules

	The System of Systems
	Modules used in Application Systems

	An Alternative Control Approach
	Modules used In the Alternative Control Approach

	Evaluation
	The Ideal System
	Upsides of the Arrowhead Framework
	Shortcomings of the Arrowhead Framework

	Summary of Evaluation

	Conclusion
	References

