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Supplementary Table 1 Proteins identified by PMF as putative interaction partners of PrkAc.

Supplementary Fig. 1 Domain structure of PrkA. A: Schematic representation of the domains of PrkA of L.
monocytogenes. The predicted N-terminal intracellular kinase domain is followed by a single transmembrane domain
(TM). The predicted C-terminal extracellular sequence includes three PASTA domains. B: Sequence alignment of the
three PASTA domains from PrkA. Each PASTA repeat consists of an α-helix and three β-strands. Predicted secondary
structures are indicated below the sequences; helix denotes an α-helix and the arrows indicate β-strands. Analysis
of sequences repeats were performed with RADAR (rapid automatic detection and alignment repeats) bioinformatic
tool from European Bioinformatic Institute. Sequences alignment was performed with ClustalW and GeneDoc
softwares. Secondary structure prediction was performed using PsiPred tool from The Bloomsbury Centre for
Bioinformatics.

Supplementary Fig. 2 Spots selected for identification by PMF.
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Listeria monocytogenes is the causative agent of listeriosis, a very serious food-borne human
disease. The analysis of the proteins coded by the L. monocytogenes genome reveals the
presence of two eukaryotic-type Ser/Thr-kinases (lmo1820 and lmo0618) and a Ser/Thr-
phosphatase (lmo1821). Protein phosphorylation regulates enzyme activities and protein
interactions participating in physiological and pathophysiological processes in bacterial
diseases. However in the case of L. monocytogenes there is scarce information about
biochemical properties of these enzymes, as well as the physiological processes that they
modulate. In the present work the catalytic domain of the protein coded by lmo1820 was
produced as a functional His6-tagged Ser/Thr-kinase, and was denominated PrkA. PrkA was
able to autophosphorylate specific Thr residues within its activation loop sequence. A
similar autophosphorylation pattern was previously reported for Ser/Thr-kinases from
related prokaryotes, whose role in kinase activity and substrate recruitment was
demonstrated. We studied the kinase interactome using affinity chromatography and
proteomic approaches. We identified 62 proteins that interact, either directly or indirectly,
with the catalytic domain of PrkA, including proteins that participate in carbohydrates
metabolism, cell wall metabolism and protein synthesis. Our results suggest that PrkA could
be involved in the regulation of a variety of fundamental biological processes.

© 2011 Published by Elsevier B.V.
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1. Introduction

Listeria monocytogenes is a Gram positive rod-shaped bacterium
that can be recovered from a wide range of sources such as
soil, water, vegetation, effluents, human and animal feces and
fresh and processed foods. This bacterium can tolerate hostile
andstress conditionsashigh salt concentrations, acidpHandcan
grow at temperatures ranging from −1 °C to 45 °C [1]. These
features allow these bacteria to survive many of the strategies
used for food preservation and thus they become an important
threat for human health. As a result, L. monocytogenes arises as an
important foodborn pathogen, etiologic agent of listeriosis, and a
sporadic but very seriousdisease [2]. Pregnantwomen,newborns,
elderly and immunosuppressed individuals have predisposition
to more severe presentation of the disease. In these high-risk
populations, listeriosis can produce very serious clinical mani-
festations like septicemia, meningitis, meningoencephalitis and
abortions, resulting in death in 20–30% of the cases despite early
antibiotic treatment [1]. Pathogenesis of L. monocytogenes is
mediated by its ability to effectively invade and replicate within
abroadrangeofeukaryotic cellsand tocross the intestinalbarrier,
blood-brain barrier, and plancental barrier in the mammalian
host. L. monocytogenes has a relatively complex infectious cycle
with different stages: internalization in host cells, intracellular
proliferation and intercellular spread. Each stage of the intracel-
lular parasitism is dependent upon the differential expression of
distinct virulence factors [3].

The extraordinary capacity of L. monocytogenes to adapt and
respond to environmental changes seems to be related to an
extensive repertoire of predicted regulatory proteins, including
differentRNApolymerasesigma factors, transcription factorsand
protein phosphorylation systems [4]. Proteinphosphorylation is a
major mechanism in signal transduction processes by which
environmental stimuli are translated into cellular responses and
represents one of the most important post-translational mod-
ifications regulating enzyme activities and protein interactions
[5,6]. Signal transduction in prokaryotes is predominantly accom-
plished by the so called two-component systems, consisting of
His-kinase sensors and their associated response regulators [7]. In
contrast, in eukaryotes such signaling pathways are mainly
carried out by Ser/Thr or Tyr-kinases [8]. Long time thought to be
exclusive to eukaryotes, a bulk of evidence raised from genome
sequence data now indicates that Ser, Thr, and Tyr phosphory-
lation is alsowidespread in prokaryotes [9]. These eukaryotic-like
signalingsystemshavebeenshowntocontrol essential processes
in bacteria, including development, cell growth, stress responses,
central and secondary metabolism, biofilm formation, antibiotic
resistance, and virulence [9–15]. In the case of L.monocytogenes the
presence of eukaryotic-like phosphorylation systems has been
predicted by genome analysis. In particular, it was reported that
the stp gene (lmo1821) encodes a functional Ser/Thr protein
phosphatase (STPP) required for growth of L. monocytogenes and
virulence inmurinemodelof infection. Inaddition, theelongation
factor EF-Tu was described as a target for this phosphatase [16].
However, there is no information regarding the corresponding
phosphorylating enzymes, endogenous substrates and their role
in bacteria physiology and physiopathology.

In the present work we report the cloning, expression and
purification of the catalytic domain of the gene product of
Please cite this article as: Lima A, et al, Serine/threonine protein
Biochemical characterization and identification of interacting pa
lmo1820, named PrkA, a putative transmembrane Ser/Thr
protein kinase (STPK) coded by the L. monocytogenes genome.
We produced the catalytic domain of PrkA (PrkAc) as a
functional enzyme able to phosphorylate an exogenous sub-
strate at Ser and/or Thr residues. We also demonstrate that
PrkAc is autophophorylated at specific conserved Thr residues.
Finally, as a first attempt in deciphering the potential role of
PrkA, we identified 62 proteins that possibly interact, directly or
indirectly, with the phosphorylated catalytic domain. These
putative interaction partners participate in a wide range of
cellular processes, indicating that PrkA could have a role in the
regulation of a diversity of essential biological functions in
L. monocytogenes.
2. Materials and methods

2.1. Bacterial strains, vectors, and culture conditions

Escherichia coli DH5α and E. coli M15[pREP] (Qiagen) were used
for plasmid maintenance and protein expression, respective-
ly. The plasmid pQE32 (Qiagen) was used as protein expression
vector. E. coli strains were cultured on Luria-Bertani (LB) agar or
broth.When required,media were supplementedwith 100 μg/ml
ampicillin and 25 μg/ml kanamycin. L. monocytogenes EGDe was
cultured on LB agar or broth supplemented with 50mM glucose.

2.2. General genetic techniques

Genomic DNA from L. monocytogenes EGDe was prepared by
heating bacterial colonies in ultrapurewater at 100 °C for 5 min.
Cellular debris were discarded by centrifugation a 10,000 g and
the supernatant, containing genomic DNA, was used as
template for PCR reactions. Plasmid DNA from E. coli cells was
prepared with Wizard Plus Minipreps DNA purification system
(Promega). DNA fragments from agarose gels were obtained
using the GFX PCR DNA and Gel Band Purification Kit (GE
Healthcare). DNA digestion with restriction enzymes, ligation
reactions with T4 DNA ligase and agarose gel electrophoresis
were carried out according to methods described by Sambrook
et al. [17]. Transformation of E. coli competent cellswith plasmid
DNA was performed using the CaCl2 method [17].

2.3. Sequence analysis

Protein sequence of the potential STPK PrkA (lmo1820) from
L. monocytogenes EGDewas obtained from Listilist web site (http://
genolist.pasteur.fr/ListiList/). Multiple sequence alignment of
PrkAwith other characterizedSTPKs fromrelatedmicroorganism
was carried out using ClustalW software (http://www.ebi.ac.uk/
Tools/clustalw/). Analyses related to sequence conservationwere
performedusing theGenedoc softwarehttp://www.nrbsc.org/gfx/
genedoc/. Other bioinformatics tools (TMHMM server v 2.0,
RADAR available at http://www.expasy.ch/tools/) were used for
thepredictionof transmembranedomains andsequence repeats.

2.4. Cloning, expression and purification of PrkAc

PrkAc (amino acids 1–338) was produced as a His6-tagged
protein in E. coli. For that purpose, DNA fragment corresponding
kinase PrkA of the human pathogen Listeria monocytogenes:
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to PrkAc was synthesized using genomic DNA from L. mono-
cytogenes EGDe as a template and the followingprimers: 1820CU,
5′-GATGCTGGATCCTGATTGGTAAGCGATT-3′ and 1820CL, 5′-
AACAATGTCGACCTATTTCTTTTTCTTGCTCAT-3′. Primers
1820CU and 1820CL contained the BamHI and SalI restrictions
sites, respectively. After digestions with the corresponding
restriction enzymes, the PCR product was cloned into pQE32
vector (Qiagen). The resultingplasmidwas introduced intoE. coli
M15[pREP4] for protein expression. The sequence of the cloned
protein was verified by DNA sequencing.

Theexpression strainwasgrownat 37 °Cuntilmid-logphase
in LB broth supplemented with ampicillin and kanamycin.
Induction of protein expression was conducted for 4 h at 37 °C
after the addition of 1 mM isopropyl-β-thiogalactopyranoside.
Then, bacterial pellets were resuspended in 50mM NaH2PO4,
300 mM NaCl, 10 mM imidazol and lysed by sonication on ice
followed by centrifugation. The His6-tagged proteins were
purifiedundernative conditionbyNi2+-affinity chromatography
according to the manufacturer instruction (Qiagen) followed by
dialysis against 50mM HEPES, pH 7.2. Protein purification was
monitored by SDS-PAGE [18] and protein concentrations were
determined by Bradford assays [19].

2.5. In vitro phosphorylation and de-phosphorylation
assays

Protein kinase assay was carried out using recombinant PrkAc
in 50 mM HEPES buffer, pH 7.0, containing 1 mM DTT, 2.5 mM
MnCl2, and 100 μM ATP. Myelin basic protein (MBP) was used
as substrate at a concentration of 25 μM (kinase-substrates
molar ratios of 1:10). Reactions were performed at 37 °C for
30 min. Phosphorylation of MBP at peptide 30–41 was moni-
tored by MS measurements after tryptic digestion.

For autophosphorylation assay, PrkAc was pre-treated with
alkaline phosphatase from calf intestine (Roche Diagnostic) and
its de-phosphorylation state was confirmed by MS of digested
protein.De-phosphorylated kinasewas isolated from themixture
using Ni2+-affinity resin and incubated at 37 °C in presence of
MnCl2, ATP as described above. Autophosphosphorylated pep-
tides were detected by MS after tryptic digestion.

2.6. Sample preparation for MS analysis

Proteolytic digestion was carried out by incubating the proteins
with trypsin (sequence grade, Promega) in 50mM ammonium
bicarbonate, pH 8.3, for 2 h at 37 °C (enzyme–substrate ratios
1:10). The β-elimination reactions at phosphoresidues were
performed by treating 2 μg of PrkAc tryptic peptides with a
saturated solution of Ba(OH)2 at room temperature for 4 h as
previously reported [20]. Then, the samples were acidified with
10% TFA.

For analysis of proteins obtained from acrylamide gels,
selected spots or bands were manually cut and in-gel
digested with trypsin (sequence grade, Promega) as described
[21]. Peptides were extracted from gels using aqueous 60%
ACN containing 0.1% TFA and concentrated by vacuum
drying.

Prior to MS analyses, samples were desalted using C18
reverse phase micro-columns (Omix®Tips, Varian) and
eluted directly onto the sample plate for MALDI-MS with
Please cite this article as: Lima A, et al, Serine/threonine protein
Biochemical characterization and identification of interacting pa
CHCA matrix solution in aqueous 60% ACN containing 0.1%
TFA.
2.7. MALDI-TOF MS analysis

Mass spectra of peptides mixtures were acquired in a 4800
MALDI TOF/TOF instrument (Applied Biosystems) in positive
ion reflector mode. Mass spectra were externally calibrated
using a mixture of peptide standards (Applied Biosystems).
MS/MS analyses of selected peptides were performed.

Proteins were identified by the database searching of
measured peptide m/z values using the MASCOT program
(Matrix Science http://www.matrixscience.com/search form
select.html), and based on the following search parameters:
monoisotopic mass tolerance, 0.05 Da; fragment mass toler-
ance, 0.3 Da; partial methionine oxidation, cysteine carbami-
domethylation and one missed tryptic cleavage allowed.
Protein mass and taxonomy were unrestricted. Significant
scores (p<0.05) were used as criteria for positive protein
identification.

Phosphorylation state of presumptive phosphopeptides
was confirmed by MS/MS experiments. The identification of
phosphorylated residues was achieved by MS/MS analysis of
peptides treated with Ba(OH)2.

2.8. Preparation of L. monocytogenes protein extracts

L. monocytogenes were grown in LB supplemented with 50 mM
glucose at 37 °C until mid-log phase. Pellets were resuspended
in25 mMHEPESpH7.4, 150mMNaCl, 1 mMEDTA,0.1%TritonX-
100, 1% glycerol, 10 μg/ml proteases inhibitor mix (GE Health-
care). Bacterial suspension was treated with 1mg/ml lysozyme
and incubated on ice for 30min. Then, cells were disrupted by
sonicationon ice. After treatmentwith 10 μg/mlRNAse and5 μg/
mlDNAse, cells debriswas removedby centrifugationat 10,000 g
for 30 min at 4 °C and the supernatants were collected and
stored at −80 °C. Total protein concentration was determined
using 2D-Quant kit (GE Healthcare).

2.9. Surface plasmon resonance analysis

Surface plasmon resonance experiments were performed on a
BIAcore 3000 instrument (BIAcore, Piscataway, NJ). PrkAc was
immobilized using standard amine-coupling procedures
(Amine Coupling Kit, BIAcore) on a CM5 sensorchip at pH 4
to a final density of 8800 resonance units (RU). Then, the
instrument was primed with running buffer (20 mMHEPES pH
7.4, 150 mM NaCl, 5 mM EDTA, 0.005% Tween 20). A flow cell
activated and blocked with ethanolamine was left as a control
surface for non-specific binding.

Forty microlitres of 15 μg/ml of a L. monocytogenes total
protein extract were injected onto the surfaces. Binding
experiments were performed at 25 °C at a flow rate of 10 μl/
min during 240 s. After extensive washing with running
buffer, ligands were eluted using 50 μl of 20 mM glycine pH 3
or 1 M NaCl at flow rate of 100 μl/min during 30 s in two
independent experiments. All data processing was carried out
using the BIAevaluation 4.1 software provided by BIAcore.
Binding responses were first double-referenced by subtracting
kinase PrkA of the human pathogen Listeria monocytogenes:
rtners through..., J Prot (2011), doi:10.1016/j.jprot.2011.03.005
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signals corresponding to both reference flow cell and from the
average of blank (buffer) injections.

2.10. Preparation of immobilized PrkAc affinity resin

Recombinant PrkAc was covalently coupled to HiTrap NHS-
activated HP (Amersham Biosciences) following the instruc-
tions provided by the manufacturer. Briefly, the resin was
washed with cold 1 mM HCl and activated with coupling
buffer (0.2 M NaHCO3, 0.5 M NaCl, pH 8.3). Then, 400 μg of
PrkAc was added to the activated resin and incubated for 4 h
at 4 °C with gentle agitation. Washing and blocking of the
resin unreacted groups was performed by alternated washes
with 0.5 M ethanolamine, 0.5 M NaCl, pH 8.3 and 0.1 M
CH3COONa, 0.5 M NaCl, pH 4. The same process was carried
out to prepare a control resin, but omitting the addition of
PrkAc in the coupling step.

Covalent binding of PrkAc to resins was confirmed by
proteolytic digestion with trypsin and MS analysis. The
activity of the covalently bound PrkAc was also tested using
MBP as substrate and monitoring its phosphorylation by MS
analysis.

2.11. Affinity chromatography

L. monocytogenes protein extract (600 μl, 7 mg/ml) prepared as
described was added to immobilized PrkAc and control resin
(previously equilibrated with 25 mM HEPES pH 7.4, 150 mM
NaCl, 1 mM EDTA, 1% Triton X-100, 1% glycerol) and incubated
for 4 h at 4 °C with gentle agitation. Then, resins were
extensively washed with 10 mM HEPES, 150 mM NaCl, pH 8.3
and finally bound proteins were eluted with 20 mM glycine pH
3.0. The chromatographic fractionswere analyzedby12.5%SDS-
PAGE followed by silver staining. Additionally, eluted fractions
were concentrated and analyzed by 2D electrophoresis. Two
affinity chromatography experiments were run independently
with different cell extracts.

2.12. 2D electrophoresis

First dimension was performed with commercially available
IPG-strips (7 cm, linear 3–10, GE Healthcare). Eluted protein
fractions were purified and concentrated with 2-D Clean-Up kit
(GE Healthcare) and dissolved in 125 μl of rehydration solution
(7 M urea, 2 M thiourea, 2% CHAPS, 0.5% IPG buffer 3–10 [GE
Healthcare], 0.002% bromophenol blue). Samples in rehydration
solution were loaded onto IPG-strips by passive rehydration
during 12 h at room temperature.

The isoelectric focusing was done in an IPGphor Unit
(Pharmacia Biotech) employing the following voltage profile:
constant phase of 300 V for 30 min; linear increase to 1000 V in
30 min; linear increase to 5000 V in 80 min and a final constant
phase of 5000 V to reach total of 6.5 kVh. Prior running the
second dimension, IPG-strips were reduced for 15 min in
equilibration buffer (6 M urea, 75 mM Tris–HCl pH 8.8, 29.3%
glycerol, 2% SDS, 0.002% bromophenol blue) supplemented
with DTT (10 mg/ml) and subsequently alkylated for 15 min in
equilibration buffer supplemented with iodoacetamide
(25 mg/ml). The second-dimensional separation was per-
formed in 12.5% SDS-PAGE using a SE 260 mini-vertical gel
Please cite this article as: Lima A, et al, Serine/threonine protein
Biochemical characterization and identification of interacting pa
electrophoresis unit (GE Healthcare). The size markers used
were Amersham LowMolecularWeight Calibration Kit for SDS
Electrophoresis (GE Healthcare).

The gels were silver stained according to protocols
described [22]. Images were digitalized using a UMAX Power-
Look 1120 scanner and LabScan 5.0 software (GE Healthcare).
3. Results and discussion

3.1. Sequence analysis

The analysis of the L. monocytogenes EGDe genome revealed the
presence of two putative STPKs (lmo0618 and lmo1820) and one
STPP (lmo1821). In the 10.2 kbp region that encloses the gene
coding PrkA (lmo1820) eight open reading frames are found
(http://genolist.pasteur.fr/ListiList/) (Fig. 1). This gene cluster
also includes the gene lmo1821 and other genes involved in
information pathways (DNA, RNA and protein metabolism
and modification) (lmo1819, lmo1822, fmt, and priA) and
intermediarymetabolism (lmo1818 and lmo1825). Thepresence
in the same genome region of a STPP gene preceding the STPK
gene was also found in other bacteria suggesting a functional
association between theses enzymes [23–27]. Particularly it has
been observed that such STPK/STPP couples act as functional
pairs in Mycobacterium tuberculosis, Staphylococcus aureus and
Bacillus subtilis [23,25,28,29].

TheSTPKPrkA isapredicted655aminoacids transmembrane
protein, with a theoretical molecular mass of 72 kDa and a pI
value of 4.99. Sequence analysis showed the presence of a
patternof basic residues followedby apredicted transmembrane
domain suggesting that the N-terminal region (residues 1–338) is
orientated toward the cytoplasm [30]. It was also observed that
PrkA N-terminal sequence contains a predicted STPK that
exhibits all the conserved subdomanis (subdomains I to V, VIa,
VIbandVII toXI) and thenearly invariant residues thatdefine the
Hanks family of eukaryotic protein kinases [8] (Fig. 2). Protein
sequence alignments showed that theputative kinasedomainof
PrkA has high homology with the catalytic domain of other well
studiedbacterial STPK, suchasPrkC fromB. subtilis (68% identity),
StkP form Streptococcus pneumoniae (53% identity), Stk1 from S.
aureus (49% identity) and PknB fromM. tuberculosis (46% identity)
(Fig. 2).

Analysis of the C-terminal domain sequence of PrkA showed
the presence of several copies of PASTA domains (Penicillin-
binding protein and Ser/Thr kinase Associate) (supplementary
Fig. 1). This domain interacts with peptidoglycan fragments and
β-lactamic antibiotics and is present in high molecular weight
penicillin-binding proteins and eukaryotic-like STPKs of a
variety of pathogens [31,32]. This structural organization, with
extracellular PASTAdomains and intracellular kinase domain is
also well conserved in different prokaryotic STPKs, including
PknB from M. tuberculosis, Corynebacterium glutamicum and
S. aureus, PrkC from B. subtilis and StkP from S. penumoniae
[23,24,33–35], pointing to the regulation of related processes by
protein phosphorylation in response to similar stimuli in these
microorganisms. STPKs from this group participate in the
regulation of diverse bacterial processes including growth, cell
division, developmental states, central and secondary metabo-
lism and expression of virulence factors [13–15].
kinase PrkA of the human pathogen Listeria monocytogenes:
rtners through..., J Prot (2011), doi:10.1016/j.jprot.2011.03.005
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Fig. 1 –Q1 Organization of the genome region enclosing the gene that encodes for the putative Ser/Thr protein kinase PrkA. Arrows
indicate the orientation of transcription. This region encodes six ORFs involved in information pathways (dark gray) and two
ORFs involved in secondary metabolism (light gray). lmo1818: similar to ribulose-5-phosphate 3-epimerase; lmo1819: similar to
ribosome associated GTPase; lmo1820: PrkA, similar to putative Ser/Thr-specific protein kinase; lmo1821: similar to putative
phosphoprotein phosphatase; lmo1822: similar to RNA-binding Sun protein; fmt: similar to methionyl-tRNA formyltransferase;
priA: similar to primosomal replication factor Y; lmo1825: similar to pantothenatemetabolism flavoprotein homolog; STPK: Ser/
Thr protein kinase; STPP pSer/pThr protein phosphatase.
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3.2. PrkAc expression and purification

In order to perform the characterization of the STPK PrkA, we
expressed the entire N-terminal region encompassing the
kinase domain as a His6-tagged protein (PrkAc). DNA sequence
corresponding to amino acids 1–338 was amplified by PCR and
partial sequencing assured error-free amplification and in-
frame fusion with the His6-tag of the expression vector.

Purification of PrkAcwas performedunder native conditions
usingNi2+-NTAaffinity resin. SDS-PAGEanalysis showedaband
that migrates according to the predicted molecular mass of the
recombinant protein (39 kDa for the catalytic domain) and two
additional bands ranging from 41 to 43 kDa (Fig. 3). All these
proteinswere identified by PMF as PrkA demonstrating that the
protein expressed in E. coli has at least three isoforms with
different migration behavior in SDS-PAGE.

The recombinant protein PrkAcwas examined for its ability
to phosphorylate the exogenous substrate MBP. Comparison
of mass spectra of digested MBP after and before incubation
with PrkAc in the presence of ATP and Mn2 revealed that
sequence 30–41 is phosphorylated by the kinase. Signal of
native sequence (m/z=1339.61) present in control spectra
decreased after phosphorylation reaction and concomitantly
a signal with amass increment of 80 Da (m/z=1419.68) became
apparent (Fig. 4). This particular MBP peptide was found to be
systematically and extensively phosphorylated by several myco-
bacterial STPKs. Its detection by MS was previously reported as a
sensitive marker of kinase activity [36]. Phosphorylation of MBP
tryptic peptide 30–41 by PrkAc was further confirmed by MS/MS
analysis (Fig. 4). The presence of daughter ions with mass
differences of 80 Da (loss of HPO3) and 98 Da (loss of H3PO4) is
characteristic of phosphorylated peptides [36,37]. These results
clearly demonstrate that PrkAc was produced in E. coli as a
functional STPK able to phosphorylate the exogenous substrate
MBP. The fact that PrkAc phosphorylates the same MBP peptide
than mycobacterial protein kinases probably reflects some
specificity of bacterial kinases towards this sequence.

3.3. Identification of phosphorylated peptides and residues
in PrkAc

The overall phosphorylation status of the recombinant kinase
was tested by MALDI-TOF mass measurements of tryptic
digestions of PrkAc before and after the treatment with alkaline
phosphatase. Results obtained from spectra comparison allowed
us to predict the presence of phospho-Ser and phospho-Thr
Please cite this article as: Lima A, et al, Serine/threonine protein
Biochemical characterization and identification of interacting pa
containingpeptides (m/z=3733.72,m/z=3813.96, andm/z=3893.90
could be assigned to the mono-, di-, and tri-phosphorylated
tryptic peptide 160–183 respectively) (Fig. 5). Additionally, the
multiple phosphorylated state of these peptides was confirmed
byMS/MS analyses (data not shown). It is interesting to note that
this multiple phosphorylated peptide is enclosed within the
conserved motifs DFG and PE of Hanks kinases corresponding to
the activation loop in several STPK from related bacteria
[8,23,25,36,38–40].

The identificationof phosphorylation sites byMS/MSanalyses
isusuallychallengingbecause fragmentationofphosphopeptides
ismainly dominated by the neutral loss of phosphate group. This
fact precludes the detection of sequence-specific ion signals
rendering difficult the localization of modification sites [36]. For
that reason,we treated thephosphorylatedpeptideswithBa(OH)2
to generate de-hydro amino acids from phospho-Ser and
phospho-Thr residues by β-elimination of H3PO4. Such deriva-
tives have better properties for MS/MS experiments. Moreover
they show a mass difference of 18 Da compared to the parent
amino acid residue, thus becoming a useful tag for phosphor-
esidue identification [41]. The spectrum of Ba(OH)2 treated
peptides showed signals 18, 36 and54 Da lower than theexpected
for native peptides 160–183, indicating the presence of species
that have been generated bymultipleβ-elimination of phosphate
group (Fig. 6).

The phosphorylation sites were assigned bymanual inspec-
tion ofMS/MS spectrumof the ion generated afterβ-elimination
reaction of the tri-phosphorylated peptide. This spectrum
shows mostly y-ions and the presence of signals with mass
differences of 18 Da (and multiple thereof) in relation to the
theoretical expected values, was clearly detected allowing the
unequivocally identification of modified residues (Fig. 6). The
results allowed us to identify the phosphorylation sites as
Thr171, Thr174 andThr176within the sequence 160–183 of PrkA
activation loop. At least two of this Thr residues are highly
conserved in the activation loop sequence of other bacterial
STPKs and its phosphorylated state has been reported
[23,35,36,38,40]. In addition, it was demonstrated for some
STPKs, suchasPrkC fromB. subtilisandPknBfromM. tuberculosis,
that the phosphorylation of these conserved Thr residues in the
activation loop regulates kinase activity [23,35].

To test if phosphorylation of the activation loop sequence
was a result of anautocatalytic reaction, the recombinant kinase
was de-phosphorylated using alkaline phosphatase, purified
using Ni2+-NTA resin and re-incubated in the presence of ATP
andMn2+. The phosphorylation status of PrkAc was followed by
kinase PrkA of the human pathogen Listeria monocytogenes:
rtners through..., J Prot (2011), doi:10.1016/j.jprot.2011.03.005
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Fig. 2 – Protein sequence alignment of the N-terminal domain of PrkA and catalytic domains of other characterized bacterial Ser/
Thr protein kinases. PrkA, putative STPK from L. monocytogenes; PrkC, from B. subtilis; Stk, from S. aureus; StkP, from S.
pneumoniae; and PknB, from M. tuberculosis. Sequences alignment was performed with ClustalW and GeneDoc softwares.
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the Hanks family of eukaryotic-like protein kinases are indicated above and nearly invariant residues are indicated below the
alignment.
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MSanalysisafterproteolytic treatment. Spectraanalysisshowed
that phosphatase treatment results in activation loop de-
phosphorylation, indicated by the disappearance of phosphor-
ylatedspeciesand the increaseofnativepeptidem/z signal.After
incubation of the de-phosphorylated enzyme with ATP the
activation loop phosphopeptides were clearly detected in the
mass spectrum, indicating that PrkAc presented autocatalytic
activity (data not shown).
Please cite this article as: Lima A, et al, Serine/threonine protein
Biochemical characterization and identification of interacting pa
The activation loop phosphorylation status is important to
control the active/inactive conformational switch in numer-
ous kinases. A wide range of regulatory mechanism has been
suggested for this loop, such as the contribution to the
appropriate alignment of the catalytic residues and the
correction of the relative orientation of different domains
allowing the binding of the protein substrate and/or ATP [42].
The relevance of the activation loop phosphorylation has been
kinase PrkA of the human pathogen Listeria monocytogenes:
rtners through..., J Prot (2011), doi:10.1016/j.jprot.2011.03.005
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Fig. 3 – Over-expression and purification of His6-tagged
PrkAc. Proteins were purified with Ni2+-NTA resin, separated
on 12.5% SDS-PAGE and stained with Coomassie blue. Lane
1: molecular weight marker (Amersham Low Molecular
Weight Calibration Kit for SDS Electrophoresis); lanes 2–5:
different fractions eluted with 500 mM imizadol. At least 3
bands ranging from 39 to 43 kDa were detected in the eluted
fractions and were identified as PrkA from L. monocytogenes
by PMF.

Fig. 4 – Activity of PrkAc using myelin-basic protein (MBP) as
a substrate. Mass spectra ofMBP digest before (A) and after (B)
incubation with the kinase in the presence of ATP and Mn2+.
Arrows indicate the tryptic peptides 30–41 from native MBP
and the presumptivemono-phosphorylated species. TheMS/
MS analysis of m/z=1419.68 shows the neutral loss of 98 Da
characteristic of phosphopeptides (C).
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demonstrated by using point mutation in PknB from
M. tuberculosis and PrkC from B. subtilis [23,35]. In addition
our group has demonstrated that phosphorylated residues in
the activation loop are not only important for enzyme activity
but also defines a high affinity docking site that is relevant for
substrate recruitment [43]. Considering these evidences from
homologous proteins, we can suggest that the very well
conserved phosphorylation pattern here reported for PrkA,
participates in activity control and perhaps also in substrate
recruitment by protein interactions mediated by specific
phospho-residues recognition.

3.4. Identification of putative interacting partners of PrkAc

As a first approach to reveal possible interactions between
phosphorylated PrkAc and proteins from L. monocytogenes
cellular extracts,weuseda surfaceplasmon resonance strategy.
These experiments allowed us to determine that immobilized
PrkAc interacted with components of L. monocytogenes protein
extract (data not shown).

In order to identify the proteins that possibly interact with
PrkAc we carried out affinity chromatography experiments
using the conditions obtained from surface plasmon resonance
experiments. For that purposes, we first immobilized recombi-
nant PrkAc to a Hi-trap NHS-activated resin HP (Amersham
Bioscience). A fraction of the resin submitted to the process of
immobilization was digested with trypsin and analyzed by MS
to confirm the coupling of PrkAc. Only tryptic masses from
PrkAc were detected, discarding the presence of significant
amounts of contaminating proteins. The incubation of the
covalently bound kinase with MBP under phosphorylation
conditions showed that the immobilized protein was an active
enzyme (data not shown).

To recover either individual proteins or protein complexes
that bind to PrkAc, we incubated the modified and control
Please cite this article as: Lima A, et al, Serine/threonine protein
Biochemical characterization and identification of interacting pa
resin with a soluble protein extract from L. monocytogenes
EGDe. After extensive washing the ligands were eluted using
acid pH. The different fractions of the affinity chromatography
were primarily analyzed by one-dimensional SDS-PAGE and
visualized by silver staining. From these analyses we could
observed that many proteins were retained by PrkAc resin
while we did not detect proteins in control resins (data not
shown).

In order to achieve a better resolution, eluted protein were
separated by 2D electrophoresis. Analysis of 2D gels allowed
us to detect a specific protein profile of eluted proteins in
kinase PrkA of the human pathogen Listeria monocytogenes:
rtners through..., J Prot (2011), doi:10.1016/j.jprot.2011.03.005
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Fig. 5 – Detection of phosporylated peptides in PrkAc. Mass
spectra of tryptic digestion of PrkAc before (A) and after (B) the
treatment with alkaline phosphatase. Mass signals
corresponding to native peptide 150–183 (MH+) and its
mono-, di- and tri-phoshorylated ions, showing a mass shift
in 80 Da and multiples thereof, are indicated with arrows.
The multiple phosphorylation of the sequences 150–183 was
confirmed by the disappearance of the corresponding ions
from the spectrum after phosphatase treatment.

8 J O U R N A L O F P R O T E O M I C S X X ( 2 0 1 1 ) X X X – X X X
independent experiments that clearly differed from the 2D
profile of total cellular extracts (data not shown). Spots
detected in all replicates were processed for protein identifi-
cation by PMF (Fig. 7 and supplementary Fig. 2). This strategy
allowed the identification of 62 proteins that possibly interact,
directly or indirectly, with PrkAc. For each protein identified,
supplementary Table 1 reports protein Mascot scores and ion
scores generated from fragmentation of selected m/z values,
protein sequence coverage, and other parameters used in the
identification. Table 1 displays the complete list of PrkAc
putative interactors identified in this study, grouped accord-
ing to their functional category. The two largest groups were
composed of proteins functionally related to the metabolism
of carbohydrates (26%) and protein synthesis (19%) (Fig. 8).
This is followed by proteins involved in transport and binding
of proteins and lipoproteins (10%) and in cell wall metabolism
(9%). A primary conclusion that arises from the diversity of
proteins identified as potential interaction partners of PrkAc
Please cite this article as: Lima A, et al, Serine/threonine protein
Biochemical characterization and identification of interacting pa
could be that the signal transduction pathways mediated by
this STPK in L. monocytogenes could be affecting a great variety
of fundamental biological functions.

Since the immobilized protein is the autophosphorylated
catalyticdomainof a STPK,weconsider thepossibility that some
of the potential interacting partners were also substrates of the
kinase. Therefore we searched reported phosphoproteomes to
see if the identifiedproteinswerephosphorylatedat SerorThr in
other microorganism. We found that 48% of the proteins were
described to be phosphorylated in at least one of the following
microorganisms: C. glutamicum, B. subtilis, E. coli, M. tuberculosis,
Pseudomonas aeruginosa, P. putida, Lactococcus lactis, S. pneumoniae,
and Campylobacter jejuni [44–53].

It is also important to note that many of these putative
partners were reported as the proteins most frequently
identified in differential expression proteomic analysis based
on 2D gel approaches [54,55]. If the identification of these
proteins represents a technical artifact or reveals that they
participate in a general cell mechanism is still a matter of
debate [54,55]. Even when our experimental approach points
to a specific interaction of these proteins with PrkAc, we have
to be very careful with the interpretation of these results. In
addition to these frequently detected proteins, less abundant
regulatory proteins were also identified as possible interactors
of PrkAc.

The list of proteins and protein families identified provides
information regarding possible functions of PrkAc. In the
following paragraphs we focus on some of the potential
interaction partners of PrkAc that are related to STPKs function
in other organisms and whose relevance has been reported or
strongly suggested.

3.4.1. Proteins involved in the carbohydrate metabolism
We identified 15 proteins related to the glycolytic pathway and
the tricarboxylic acid (TCA) cycle. Some of them (aldolase,
glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate
kinase, lactate dehydrogenase, acetate kinase, dihydrolipoamide
dehydrogenase and α-cetoglutarate dehydrogenase) were found
to be phosphorylated at Ser, Thr or Tyr residues trough
phosphoprotemic studies in other microorganisms [44–53]. It
was also proved that the transcriptional profile of two enzymes
involved in the TCA cycle (dihydrolipoamide succinyltransferase
andoxoglutaratedehydrogenaseE1) is affectedby the STPKPknB
from S. aureus [56]. Additionally, in M. tuberculosis and
C. glutamicum it has been demonstrated that the regulation of
TCA cycle is mediated by STPKs [57,58]. In these bacteria, the
STPKs PknB and PknG phosphorylate a protein containing a FHA
domain (GarA y OdhI in M. tuberculosis and C. glutamicum
respectively) which in their de-phosphorylated forms inhibit
the enzyme 2-oxoglutarato dehydrogenase [57,58]. FHAdomains
are small protein modules that mediate protein–protein inter-
actions in the STPK-mediated signal transduction pathways
through the recognition of specific phosphorylated residues [59].
Genome sequence analyses have revealed that all members of
the order actinomycetales present GarA-homologous proteins
which show strong sequence conservation at the C-terminus
FHA domain [43]. However, the analysis of the proteins coded by
the L. monocytogenes genome does not predict the presence FHA-
containing proteins. Therefore, the STPKPrkA in L.monocytogenes
could be involved in the modulation of the TCA cycle through a
kinase PrkA of the human pathogen Listeria monocytogenes:
rtners through..., J Prot (2011), doi:10.1016/j.jprot.2011.03.005
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different mechanism from that described in themembers of the
order actinomycetales.

3.4.2. Proteins involved in cellular information pathways
(DNA, RNA and protein synthesis and related proteins)
We identified the following proteins that are implicated in
DNA and RNA synthesis: DNA polymerase, RNA polymerase
(α and β subunits), transcriptional repressor Rex and the RNA
binding protein Sun. The RNA polymerase was found phos-
phorylated by phosphoproteomic approaches inM. tuberculosis
and S. pneumoniae [49,52].

One of themost interesting proteins arising from this study
is the RNA binding protein Sun. The gene that codes for Sun
Please cite this article as: Lima A, et al, Serine/threonine protein
Biochemical characterization and identification of interacting pa
(lmo1822) is located in the same genomic region and adjacent
to the genes lmo1820 and lmo1821 (coding for PrkA and Stp
respectively), probably organized in an operon. This observa-
tion suggests that both proteins could be genetically and
functionally linked. The fact that both STPK and its substrates
are encoded in the same genomic region is recurrent for many
STPKs from many organisms [60–63].

We also detected 9 proteins involved in the biosynthesis of
proteins, as ribosomal proteins, aminoacyl t-RNA synthetases,
the translation initiation factor InfB, and the translation
elongation factors EF-Tu and EF-G. The translation initiation
and elongation factors and the isoleucyl-tRNA synthetase were
found to be phosphorylated in other bacteria [44–46,48–53].
kinase PrkA of the human pathogen Listeria monocytogenes:
rtners through..., J Prot (2011), doi:10.1016/j.jprot.2011.03.005
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Additionally, the elongation factors EF-Tu and EF-G were
described as substrates of the STPK and the STPP from B. subtilis
[60,64], and EF-Tu was also recognized as the substrate of the
STPP from L. monocytogenes [16]. Taking into account that EF-Tu
is indeed phosphorylated in L. monocytogenes that only encodes
twoSTPKs, the identification of this protein in PrkA interactome
suggest that itmight be an endogenous substrate of this kinase.

3.4.3. Proteins involved in the cell wall metabolism
In this studywe identified 5 proteins that participate in the cell
wall metabolism: the cell shape determining proteins MreB
and Mbl, and the proteins involved in the peptidoglycan
synthesis, N-acetylglucosaminyl transferase, UDP-N-acetylglu-
cosamine pyrophosphorylase (GlmU) and glucose-1-phosphate
thymidylyltransferase. Several STPKs, in particular the ones
thathavePASTAdomainsassensorextracellulardomains, have
been implicated in the regulation of the cell wall metabolism.
Please cite this article as: Lima A, et al, Serine/threonine protein
Biochemical characterization and identification of interacting pa
Different proteins related to the growth and cellular division
were identified as substrates of STPKs, as DivA, PbpA ,FtsZ and
GlmU from M. tuberculosis and GlmS from S. pneumoniae [61,65–
69]. GlmU was also found as a phosphorylated protein in
S. pneumoniae through phosphoproteomic techniques [52].
Furthermore, it has been described that the overexpression
and partial depletion of PknB alters cell morphology in
M. tuberculosis indicating defects in cell wall synthesis and
possibly cell division [67]. It has also been shown that PknB from
S. aureus had a strong regulatory impact on the transcriptional
profile of genes encoding proteins involved in the cell wall
metabolism [56].

3.4.4. Transport/binding proteins and lipoproteins
Different transport proteins were identified as proteins that
possibly interact with PrkAc as distinct ABC transporters, and
a PTS system involved in the transport of carbohydrates.
kinase PrkA of the human pathogen Listeria monocytogenes:
rtners through..., J Prot (2011), doi:10.1016/j.jprot.2011.03.005
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Table 1t1:1 – Proteins identified as putative interaction partners of PrkAc classified according to their functional categorya.
t1:2
t1:3 Accession # Protein description Spot # Phosphorylation

reportedb

t1:4 Cell wall
t1:5 lmo1548 Similar to cell-shape determining protein MreB 16 –
t1:6 lmo2525 Similar to MreB-like protein 70 –
t1:7 lmo1081 Similar to glucose-1-phosphate thymidylyltransferase 40 –
t1:8 lmo0198 Highly similar to UDP-N-acetylglucosamine pyrophosphorylase

(GlmU)
66 Yes

t1:9 lmo2035 Similar to peptidoglycan synthesis enzymes, putative phospho-
N-acetylmuramoyl-pentapeptide-transferase (MurG)

67 –

t1:10

t1:11 Transport/binding proteins and lipoproteins
t1:12 lmo2372 Similar to ABC transporter, ATP-binding protein 44 –
t1:13 lmo2415 Similar to ABC transporter, ATP-binding protein 41 –
t1:14 lmo1849 Similar to metal cations ABC transporter, ATP-binding protein 23 –
t1:15 lmo2192 Similar to oligopeptide ABC transporter, ATP-binding protein 22, 76 –
t1:16 lmo2114 Similar to ABC transporter, ATP-binding protein 73 –
t1:17 lmo0096 Similar to PTS system, mannose-specific, factor IIAB 2, 37 –
t1:18

t1:19 Membrane bioenergetics
t1:20 lmo2529 Highly similar to H+-transporting ATP synthase chain beta 30 Yes
t1:21 lmo2389 Similar to NADH dehydrogenase 18
t1:22

t1:23 Protein secretion
t1:24 lmo2510 Translocase binding subunit, SecA 7 Yes
t1:25

t1:26 Metabolism of carbohydrates and related molecules — specific pathways
t1:27 lmo1581 Acetate kinase (ackA) 14 Yes
t1:28 lmo1634 Similar to alcohol-acetaldehyde dehydrogenase 28, 63 –
t1:29 lmo0811 Similar to carbonic anhydrase 49 –
t1:30 lmo0727 Similar to L-glutamine-D-fructose-6-phosphate amidotransferase 54 –
t1:31 lmo2556 Similar to fructose-1,6-bisphosphate aldolase (fbaA) 3, 43 Yes
t1:32 lmo0210 L-lactate dehydrogenase (ldh) 37 Yes
t1:33 lmo1570 Highly similar to pyruvate kinase (pykA) 52, 53, 56 Yes
t1:34 lmo0982 Similar to glucanase and peptidase 69 –
t1:35

t1:36 Metabolism of carbohydrates and related molecules — main glycolytic pathways
t1:37 lmo1054 Highly similar to pyruvate dehyrogenase (dihydrolipoamide

acetyltransferase E2 subunit) (pdhC)
5 Yes

t1:38 lmo1055 Highly similar to dihydrolipoamide dehydrogenase, E3 subunit of
pyruvate dehydrogenase complex (pdhD)

1 Yes

t1:39 lmo2455 Highly similar to enolase (eno) 10 Yes
t1:40 lmo2459 Highly similar to glyceraldehyde-3-phosphate dehydrogenase (gap) 15, 16, 33 Yes
t1:41 lmo1072 Highly similar to pyruvate carboxylase (pycA) 9 Yes
t1:42 lmo1052 Highly similar to pyruvate dehydrogenase (E1 alpha subunit) (pdhA) 19 Yes
t1:43 lmo1053 Highly similar to pyruvate dehydrogenase (E1 beta subunit) (pdhB) 13 Yes
t1:44 lmo1374 Similar to branched-chain alpha-keto acid dehydrogenase E2 subunit

(lipoamide acyltransferase)
65 Yes

t1:45

t1:46 Metabolism of amino acids and related molecules
t1:47 lmo0978 Similar to branched-chain amino acid aminotransferase 34 –
t1:48 lmo1928 Similar to chorismate synthase (aroF) 36 –
t1:49 lmo0223 Highly similar to cysteine synthase (cysK) 72 Yes
t1:50

t1:51 Metabolism of nucleotides and nucleic acids
t1:52 lmo2758 Similar to inosine-monophosphate dehydrogenase (guaB) 21, 61 Yes
t1:53 lmo2559 CTP synthetase (pyrG) 60 –
t1:54

t1:55 Metabolism of lipids
t1:56 lmo1809 Similar to plsX protein involved in fatty acid/phospholipid synthesis 68 –
t1:57 lmo1572 Highly similar to acetyl CoA carboxylase (alpha subunit) (accA) 71 –
t1:58 lmo0970 Similar to enoyl-acyl-carrier protein reductase 75 Yes
t1:59

t1:60 Metabolism of coenzymes and prosthetic groups
t1:61 lmo0662 Highly similar to phosphomethylpyrimidine kinase thiD 55 –

(continued on next page)
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t1:62 Table 1 (continued)

t1:63 Accession # Protein description Spot # Phosphorylation
reportedb

t1:64 DNA metabolism
t1:65 lmo1320 DNA polymerase III PolC (alpha subunit) 59 –
t1:66 lmo1398 Recombination protein recA 32 –
t1:67

t1:68 RNA metabolism
t1:69 lmo2072 Similar to redox-sensing transcriptional repressor Rex 29 –
t1:70 lmo2606 DNA-directed RNA polymerase subunit alpha (rpoA) 31 Yes
t1:71 lmo0258 DNA-directed RNA polymerase subunit beta (rpoB) 58 Yes
t1:72 lmo1822 Similar to RNA-binding Sun protein 64 –
t1:73

t1:74 Protein metabolism – synthesis – ribosomal proteins
t1:75 lmo1658 30S ribosomal protein S2, rpsB 20, 35 –
t1:76 lmo2626 30S ribosomal protein S3, rpsC 24 –
t1:77 lmo2620 50S ribosomal protein L5, rplE 25, 27 Yes
t1:78 lmo2617 50S ribosomal protein L6, rplF 26 –
t1:79 lmo0250 50S ribosomal protein L10, rplJ 81 –
t1:80

t1:81 Protein metabolism – synthesis – aminoacyl-tRNA synthetases
t1:82 lmo2019 Isoleucyl-tRNA synthetase (ileS) 8 Yes
t1:83 lmo1222 Phenylalanyl-tRNA synthetase beta subunit (pheT) 7 –
t1:84

t1:85 Protein metabolism – synthesis – initiation, elongation
t1:86 lmo1325 Highly similar to translation initiation factor IF-2 (infB) 62 Yes
t1:87 lmo2654 Highly similar to translation elongation factor G, (fus) 6 Yes
t1:88 lmo2653 Elongation factor Tu (tufA) 11, 12, 42 Yes
t1:89

t1:90 Protein metabolism — modification
t1:91 lmo1709 Similar to methionine aminopeptidase 74 –
t1:92

t1:93 Protein metabolism — folding
t1:94 lmo1473 Class I heat-shock protein (molecular chaperone) DnaK 4 Yes
t1:95

t1:96 Adaptation to atypical conditions and detoxification
t1:97 lmo1138 Similar to ATP-dependent Clp protease proteolytic component 78, 79 Yes
t1:98 lmo1583 Similar to thiol peroxidase 45 Yes
t1:99 lmo1439 Superoxide dismutase (sod) 80 Yes
t1:100

t1:101 Similar to unknown proteins
t1:102 lmo1401 Hypothetical protein 74 –
t1:103 lmo0799 Hypothetical protein 77 Yes

a Functional categorization obtained from http://genolist.pasteur.edu.fr/ListiListt1:104
b Phosphorylation reported in homologous proteins from Corynebacterium glutamicum [56], Bacillus subtilis [57–59], Escherichia coli [60],
Mycobacterium tuberculosis [61,77Q2 ], Pseudomonas putida and P. aeruginosa [62], Lactococcus lactis [63], Streptococcus pneumoniae [64] and Campylobacter
jejuni [65].t1:105
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Through phosphoproteomic studies, various PTS systems
were found phosphorylated at Ser and/or Thr residues in
E. coli and L. lactis [48,51].

3.4.5. Proteins involved in adaptation to atypical conditions
and detoxification
The protein similar to ATP-dependent Clp protease proteolytic
component, classified as a protein implicated in the adapta-
tion to atypical conditions, and the proteins involved in
detoxification, superoxide dismutase and thiol peroxidase
were identified as putative interactors of PrkAc. All of these
proteins were found phosphorylated in other organisms
[48,51]. Particularly, it was reported that the activity of the
Please cite this article as: Lima A, et al, Serine/threonine protein
Biochemical characterization and identification of interacting pa
superoxide dismutase from L. monocytogenes is regulated by
phosphorylation at Ser and Thr residues being most active at
its non-phosphorylated form [70].

In summary, in the present work we identify 62 candidates
that provide a starting point for further biochemical and cellular
studies. The physiological relevance of the proteins and protein
families identified in this interactome analysis has to be further
examined. According to recent proteomic meta-analysis many
of these proteins families (including glycolytic enzymes and
elongation factors) are frequently detected as differentially
expressed in various conditions raising concern about their
specificity [54,55]. Basedonprevious reportswecanhypothesize
that some of these frequently identified proteins present in
kinase PrkA of the human pathogen Listeria monocytogenes:
rtners through..., J Prot (2011), doi:10.1016/j.jprot.2011.03.005
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Fig. 8 – Functional classification of the PrkAc putative
interactors.

13J O U R N A L O F P R O T E O M I C S X X ( 2 0 1 1 ) X X X – X X X
PrkAc interactomemay be relevant and should not be excluded
without additional analysis. For example, EF-Tu and superoxide
dismutase from L. monocytogenes have been reported to be
phosphorylated in vivo in Thr and Ser residues and EF-Tu has
been identified as a substrate of STPP in this bacterium [16,70].
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4. Conclusions

In this work we describe for the first time a functional STPK
from L. monocytogenes and start to unravel the processes
controlled by protein phosphorylation in this human patho-
gen. We demonstrated that PrkA is an active STPK able to
phosphorylate the exogenous substrate MBP at Ser and/or Thr
residues and able to autophosphorylate specific Thr residues
within its activation loop sequence. Moreover, using an
interactomic approach we identified 62 proteins as potential
interaction partners of PrkAc. The diversity of proteins identi-
fied suggests that the signal transduction pathwaysmediated by
this STPK in L. monocytogenes may affect a large variety of
fundamental biological functions including protein synthesis,
cell wall metabolism, and carbohydrates metabolism. Interest-
ingly, these processes are also regulated by phosphorylation in
other bacteria, suggesting that these enzymes could be control-
ling conserved functions in prokaryotes [13,15,16,51].

In addition some of the proteins identified in this study arise
as possible physiologically relevant interactors of PrkA. In
particular evidence coming from other organisms suggests
that the enzyme UDP-N-acetylglucosamine pyrophosphorylase
(GlmU) implicated in peptidoglycan biosynthesis might be
important in PrkA signal transduction pathways. STPKs with
extracellular PASTA domains have been reported to bind
peptidoglycan fragments and to participate in the regulation
of cell wall synthesis and cell division in several bacteria [31]. In
addition, phosphorylated residues have been identified inGlmU
homologs by phosphoproteomic studies, suggesting that this
activity is controlled by the action of STPKs [52]. Interestingly
enough, the kinase reported to phosphorylate GlmU in
Please cite this article as: Lima A, et al, Serine/threonine protein
Biochemical characterization and identification of interacting pa
M. tuberculosis is PknB, an enzyme highly homologous to PrkA
[68].

Also it is worth mentioning the identification of the RNA
binding protein Sun as an interactor of PrkA. The specific
recovery of this protein, which is expressed at low levels (not
identified previously in 2D gels of total protein extracts from
L. monocytogenes), and co-localizedwith this kinase in the same
operon points to the biological relevance of this interaction.
Further work is now being undertaken to validate and
characterize these interaction partners of PrkAc and its
possible biological relevance.

The presentwork provided us useful information regarding
selected pathways that may be regulated by kinase activity.
This framework will be the starting point for a more detailed
and comprehensive analysis of the role of this STPK in
bacterial physiopathology.

Supplementary materials related to this article can be
found online at doi:10.1016/j.jprot.2011.03.005.
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