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Abstract

Learning Scene Arrangements in 3D scenes is a fundamental task for the fields of scene

understanding and 3D scene generative models. Scene arrangements have been used in

the past for building generative models as well as generating semantic parsing graphs

for indoor scenes. In this dissertation we study how spatial scene arrangements can

be used to build a hierarchical generative model for scenes and the benefits of doing

so. Moreover, we study how scene arrangements can be used to find the hierarchical

parsing graph of scenes. We propose a baseline hierarchical model and we compare it

to a baseline flat model by evaluating how the probability of scenes under both models

behaves.
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Chapter 1

Introduction

In this chapter the main objectives of this dissertation are presented and the motivation

behind them is explained. Moreover, the contributions of this research are introduced

and the outline of this dissertation is explained.

1.1 Motivation and Objective

Learning scene arrangements is an active research area in the field of machine learning,

computer vision and computer graphics (CG). It is well known that humans are able

to understand how objects are arranged in scenes, and decide whether a scene looks

realistic or not. Moreover, humans are able to recognise whether objects in scenes are

related to each other and should be interpreted as groups or not. Representing this

knowledge is a task that researchers have sought to address in recent years but one

that has still not been completely solved. Being able to model the inherent structure of

scenes and represent the knowledge that governs scene arrangements is of particular

interest for synthetic 3D generative models, for scene analysis in robotics and semantic

analysis of scenes for machine learning purposes. The motivation of this dissertation is

to understand how the inherent structure of scenes can be modelled for indoor scenes

of houses and analysing which are the benefits of doing so.

Scene understanding and learning scene arrangements can be used to rearrange

objects, generate new synthetic scenes or parse unseen scenes. When analysing indoor

scenes it is usually the case that objects in a scene belong to functional groups such

as tables and chairs, sofas and televisions or beds and side stands. Following this

idea, there have been several proposals (Merrell et al., 2011; Xu et al., 2002; Yu et al.,

2011) focused on how to rearrange a given set of objects in a scene, by forming groups

1



Chapter 1. Introduction 2

in order to make it more realistic. Learning how to rearrange objects can be used

as a basis for generating new scenes. However, scene generation implies sampling

new objects which usually are grouped together and spatially arrange them in order

to create new scenes. Several generative models have been proposed in the recent

years (Henderson and Ferrari, 2017; Handa et al., 2016; Wang et al., 2018; Qi et al.,

2018), that could be potentially used by interior designers to come up with new ideas

of how to rearrange indoor spaces, and moreover, could also be used in video games

for synthetic environment generation. Nevertheless, even if these models are able to

synthesise new scenes they do not particularly address the problem of parsing real

scenes. The question of scene understanding and parsing has been addressed by Liu

et al. (2014) by generating semantic parsing trees for 3D scenes. In addition, Yang

et al. (2017); Zhao and Zhu (2013) have tackled this problem by analysing images of

scenes and creating semantic parsing trees based on functional groups and geometric

relationship. Scene parsing and understanding is of particular interest for robotics since

autonomous agents have to understand their surroundings and make decisions.

In order to learn how objects are arranged in real scenes it is necessary to have

human generated examples of scenes. Gathering large-enough data-sets of 3D scenes,

that account for the diversity of objects and layouts present in real-world data used to be

prohibitively expensive. This meant that, previously data-sets of 3D scenes used to be

composed only by a couple of hundreds of examples as the RGBD data-set introduced

by Silberman et al. (2012). Recently, however, the SUNCG data-set was introduced

(Song et al., 2017), this is composed by 45,000 human generated 3D scenes of houses

and has opened the path for new studies under the field of scene generative models and

scene understanding.

Even if several generative models have been proposed in the recent years, it is

the case that we need perceptual tests to evaluate these models. This means that we

still need human supervision to decide whether a generative model is performing good

and new scenes look realistic. Moreover, when addressing the question of how to

parse scenes it is the common consensus that hierarchical models should be used and

that scenes should be addressed as hierarchical structures. In this dissertation we are

motivated by these particular topics. Is it possible to evaluate the probability of a

scene under a model and is there a benefit in using hierarchical models rather than

flat structures to parse scenes? Our hypothesis is that hierarchical models are a better

representation of the inherent structure behind scenes and these models extract more

valuable information from scenes compared to flat models.
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The objective of this research is driven by this question. We will test our hypoth-

esis by proposing two simple generative models, which should be able to evaluate the

probability of scenes. One of these models will interpret scenes as flat structures with

no spatial relationship between objects and the second one will model scenes as hier-

archical structures which allow scene arrangements. Moreover, we will analyse how

scene arrangements can be learned based on a previous method used by Henderson

and Ferrari (2017) and Fisher et al. (2012), which involves clustering objects using a

Gaussian Mixture Model. Furthermore, we propose a strategy to learn the most prob-

able hierarchical interpretation of a scene under our model. Finally, we will use the

SUNCG database to train our models and compare the probability of scenes under both

models in order to analyse the benefits of using hierarchical models when interpreting

indoor scenes.

1.2 Contributions

The contributions of this dissertation are as follows:

1. We present a simple generative model for 3D scenes that interprets scenes as flat

structures were the spatial relationship between objects is not modelled and the

probability of unseen scenes under the model can be evaluated.

2. We present a second generative model for 3D scenes which accounts for the

possibility of arrangements in scenes and multiple hierarchical interpretations.

This model is properly normalised and parametric so that given an hierarchical

interpretation the probability a scene can be evaluated under the model.

3. Further analysis is done, with focus on how scene arrangements can be learned

using Gaussian Mixture Models.

4. We propose a strategy for learning the hierarchical parsing graph of a scene

under our hierarchical model.

5. The benefits of using a hierarchical model are analysed in depth by comparing

this to a flat model. Moreover, further analysis is done on how the probability of

scenes changes as groups of objects are clustered in our hierarchical model.
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1.3 Dissertation Outline

In Chapter 2, the background knowledge required to understand this dissertation project

is explained. In Chapter 3, we present the recent and more classic related works in the

field of scene understanding and 3D scenes generative models. Following this in Chap-

ter 4, the resources needed in order to implement our generative models and develop

the experiments done are explained. Once this is done in Chapter 5, the definition for

the generative models that are going to be used to analyse the benefits of using a hier-

archical model are presented and, in Chapter 6, we expose the experiments designed

to test our hypothesis and their results. Finally, in Chapter 7 we give our conclusions

on the experiment’s results and provide further discussion on our models selection and

design as well as proposing future research works that could follow this dissertation.



Chapter 2

Background

In this chapter we explain the background knowledge that is necessary in order to

understand the methods proposed in Chapter 5 and the experiments done in Chapter 6.

2.1 The Infinite Gaussian Mixture Model

The infinite Gaussian Mixture model was proposed by Rasmussen (2000) as an exten-

sion to the finite Gaussian Mixture model with k defined elements defined by equation:

P (y|µ1, · · · ,µk,S1, · · · ,Sk,p1, · · · ,pk) =
k

Â
j=1

piN (µ j,S j). (2.1)

The finite Gaussian Mixture Model can be used in practice to approximate the distri-

bution of any multidimensional data-set y composed by {y1, · · · ,yn} points by a com-

bination of k different multivariate Gaussian distributions with parameters µ j and co-

variance S j using mixing coefficients p j. Moreover, this model can be used to cluster

points in a data-set given the assumption that each data-point yi in the data-set is as-

signed an indicator ci which indicates which of the k clusters N (µ j,S j) generated the

data-point. In the finite mixture model the mixing coefficients p j need to be positive

and sum to one. This model is useful for modelling unknown distributions, however,

one of the main drawbacks of using a finite mixture model is that parameter k needs to

be set beforehand in order to fit the model. Furthermore, the model fitting is usually

done by Expectation Maximisation which can converge to local minima.

In order to sort out this drawbacks in Rasmussen (2000) it is proposed to use a

Bayesian inference framework to approximate the distribution of y using a Gaussian

Mixture Model with infinite elements (k ! •). In practice for a finite data-set a finite

number of clusters k will be used. The main advantages of using this approach is that

5
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the number of clusters k needed to represent the distribution of the data, is learned

during the process of fitting the model and does not has to be set by the user. This is

quite useful if there is no prior knowledge about the possible number of clusters in the

data-set.

The model is fitted in the following way. To begin with, the author sets up a

Bayesian inference procedure to learn the parameters of a Mixture model with k con-

stant elements. In order to do this, priors are defined on the parameters µ j, S j and p j

given constant k . Having set the priors, it is possible to derive the posterior distribution

for the parameters µ j, S j, p j and the indicators ci using the likelihood of the data given

by Equation 2.1. Once the posteriors are defined, it is to possible sample from these

using different sampling techniques as Gibbs Sampling or Adaptive Rejection Sam-

pling (ARS) (Gilks and Wild, 1992). Having set the framework, the author derives the

formulation for the priors given the limit k ! • and by doing this it derives the poste-

rior distribution of the parameters of the model µ j, S j and p j, and hidden variables ci

when k ! •. Once this is done, by sampling from the posterior it is possible to define

a finite approximation of the infinite mixture model that approximates the distribution

of the data from data-set y.

Using this technique it is possible to approximate any distribution as a Gaussian

Mixture Model with no prior definition of k the number of clusters. Nevertheless,

in practice it is necessary to set an hyper-parameter a which defines the prior on the

concentration of the clusters. As stated by the author, using and infinite mixture model

has the advantage that the number of clusters is automatically learned. Moreover, by

using MCMC sampling techniques as Gibbs sampling local minima convergence is

mitigated when fitting the model. Finally, using this technique simplifies the problem

of having to work with finite models with unknown number of components as proposed

by Richardson and Green (1997).

2.2 Tukey’s Fences

In data analysis Tukey’s fences are a methodology for detecting outliers in the data

samples. This method is based on the box plots to represent the distribution of data

proposed by Tukey (1977). Box plots and Tukey’s fences are based on the Interquar-

tile Range (IQR) concept. The IQR is a statistical measure defined by the difference
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between the third quartile and the first quartile of the data:

IQR = Q3 �Q1. (2.2)

The IQR can be used to detect outliers and Tukey proposed to build a fence using the

IQR given by the following formula:

[Q1� k(Q3�Q1),Q3 + k(Q3�Q1)] = [Q1� kIQR,Q3 + kIQR], (2.3)

and label each data-point outside this interval as an outlier in the data-set. It was

proposed to use k = 1.5, however, other values are still valid for this formula.



Chapter 3

Related Work

In this chapter, we review the related work regarding learning scene arrangements and

rearranging objects in scenes, generative models for 3D scenes, and scene understand-

ing by building semantic parsing graphs. This related work section is based on our

previous research carried out for the Informatics Research Proposal (IPP) (Rondan,

2018). Firstly, we review the most relevant related work for object rearrangement,

secondly, we present several of the recent proposals regarding generative models, and

finally, the relevant work on scene understanding and parsing is described.

3.1 Rearranging Objects in Scenes

The first approach to solve the problem of learning scene arrangements was to generate

algorithms that were able to rearrange a given set of objects in a scene. In this section

we describe the relevant related work related to this task.

3.1.1 An interactive framework for object rearrangement

Interior design guidelines were used by Merrell et al. (2011) in order to generate a

system that could rearrange objects in scenes. This was achieved by taking into ac-

count the fact that objects in scenes must respect a functional criteria, and modelled

the functional relationships between objects based on this. Moreover, they modelled

the clearance space that needs to be respected between objects, in order for these to be

accessible and modelled the geometric pairwise relationships between them. Further-

more, they incorporated a visual criteria to their model, which stated objects groups

should respect alignments and have focal points were group’s objects are faced. All

8
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these concepts were integrated into a density function and arrangements were sampled

from this distribution using a Markov chain Monte Carlo sampler. For a particular set

of objects, the algorithm will offer several sets of arrangements from which the user

can choose which one to use. Moreover, the system could also work in an unassisted

way; suggesting only one arrangement to users, however, the assisted mode was pre-

ferred when evaluated by professional interior designers. Although this method can

output realistic scenes, given the nature of the probability distribution, it can only be

sampled using Markov chain Monte Carlo techniques. Therefore, it is not possible to

evaluate the probability of scenes under this model.

3.1.2 Rearranging objects as an optimisation problem

The problem of rearranging objects can also be addressed as an optimisation prob-

lem, which was studied by Yu et al. (2011). Using similar concepts as Merrell et al.

(2011), Yu et al. (2011) suggested the use of interior design guidelines, spatial relation-

ships, pairwise relationships and hierarchical relationships between objects to build a

cost function. Spatial relationships modelled the distance and relative orientation of

an object to its nearest wall. Pairwise relationships modelled the relationship between

objects that usually appear together, such as televisions and sofas or tables and chairs.

Moreover, the hierarchical relationships modelled the relations between objects that are

placed one over another, such as a candelabrum and table. These relationships were

learned from positive examples, and in particular, pairwise relationships were labelled

by users in the training data. The cost function was optimised using simulated anneal-

ing (Kirkpatrick, 1984) and Metropolis-Hastings state-search step (Metropolis et al.,

1953; Hastings, 1970). This is one of the first reported algorithms to fully automatise

the problem of rearranging objects in scenes. Finally, the method was evaluated using

perceptual test and the results suggest, as stated by the authors, that the participants

in the experiment do not clearly prefer human arranged scenes to their automatically

optimised scenes.

3.2 Generative Models

Following the work done for the rearrangement of objects in scenes, several generative

models for 3D scenes were presented. In this section, we describe the most relevant

models introduced until the moment of this work.
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3.2.1 Scene generation based on user examples

In Fisher et al. (2012), new synthetic scenes are generated based on a minimal set of

examples provided by users. In order to achieve this, contextual categories of objects

that can be interchangeable in scenes based on neighbourhood similarity were defined.

Moreover, the occurrence of objects in scenes was modelled using a Bayesian Net-

work and a probability function was defined to account for parent-child relationships

between objects. The spatial relationship between objects was modelled using a Gaus-

sian Mixture Model learned from the example scenes. Furthermore, the surface place-

ment of objects was modelled using a probability distribution, taking into account that

objects, can lie on the floor, be placed on walls, or be supported by other objects. They

augment the user provided examples using an existing database of scenes, and used

these to learn the different distributions’ parameters. Finally, scenes were synthesised

by sampling from the Bayesian network and the different probability density functions.

This approach was used to synthesise scenes of small environments like desks with ob-

jects above or dining tables with objects rather than complete rooms scenes modelling

bigger objects’ arrangements. Nevertheless, when evaluated by perceptual tests the re-

sults showed that at least 80% of the newly generated scenes were not distinguishable

from human generated ones.

3.2.2 A framework for hierarchical scene generation

Recently Handa et al. (2016) proposed a framework for generating new scenes based

on the work done by Merrell et al. (2011), extending this approach in order to generate

scenes hierarchically. They proposed to address the scene generation task as an energy

minimisation problem. In order to achieve this, an energy function was defined that

accounted for pairwise relationships between objects similarly to Merrell et al. (2011),

ensured visibility between objects and avoided bounding box intersections. Moreover,

the energy function modelled the position and relative rotation of objects to walls. The

coefficients for these terms were learned from prior scenes. For the energy function

optimisation they proposed to solve it hierarchically using simulated annealing. In

order to generate a new scene, they initialised this with all its objects placed in the

middle, and optimised the energy function by iterations selecting random objects at

each iteration. Moreover, they optimised the function hierarchically, this means they

grouped objects and optimised the position of groups at each iteration. Using hier-

archical structures to generate scenes gave more realistic results than incorporating
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independent objects in the energy function. The authors only evaluate the proposed

framework qualitatively, nevertheless, it is relevant as it introduces an approach on

how to optimise objects’ positions in scenes hierarchically.

3.2.3 Probabilistic model for 3D scene sampling

The scene generation problem can also be targeted using probabilistic models. In a

Henderson and Ferrari (2017) a data driven method was introduced which models the

occurrence of objects in scenes using different probability distributions. Their model

is trained using the newly introduced data-set of scenes SUNCG (Song et al., 2017).

In this method the authors generate new scenes by modelling the occurrence of objects

and the spatial distribution of object conditioned to different room types. Furthermore,

objects are clustered together to form arrangements and these arrangements are used in

the generative process of creating new scenes. The process of generating new scenes

is described in detail in this section since some ideas from this probabilistic approach

are going to be used as a basis for our research on objects arrangements and scene

probability evaluation.

To begin with, the authors define the probability distributions for objects classes

occurrence given a particular room type. To do this, they account for five object cate-

gories: big objects placed on the floor (furniture), small objects (small objects placed

on furniture, e.g. books, laptops), wall objects, ceiling objects and rugs. Having done

this, the probability of object counts for each object class is defined based on Poisson

distributions for big counts and categorical distributions for small counts.

To position objects in rooms, it was proposed to use a deformable cell grid, where

each object will take a particular cell in the grid but the cell size is not defined. This was

done taking into account that an object’s size is given by their associated CAD model.

Therefore, cell sizes were defined once the objects’ CAD models were sampled. In

order to select a particular cell for an object, the authors defined the probability of

objects being placed next to a wall or in the middle of rooms. Once the cells were

defined the CAD models for the objects were sampled. Finally, the cell sizes were

selected to fit the sampled CAD models and padding was added sampling from an

isotropic 4D Gaussian restricted to positive values.

Placing independent objects in new scenes still lacks the component that in realis-

tic scenes objects tend to cluster together in functional groups. In order to fulfil this

requirement, the authors search for patterns in the training data using the following
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procedure. Given a K-tuple of objects classes that can be possible in the training data.

The authors designate for each K-tuple, a base class object, and search for the occur-

rences of this K-tuple in the training data. They extract all the relative locations of

objects around the base object for and fit an Infinite Gaussian Mixture Model (Ras-

mussen, 2000). The mixture model is fitted using Bayesian variational inference and

each Gaussian cluster is assigned a diagonal covariance matrix. For each K-tuple of

classes, this method learns the different configurations the K-tuple can take. For ex-

ample, they are able to cluster the different configurations in which desks and chairs

group and extract the different configurations in which beds and side stands arrange.

Once objects patterns have been found, in order to sample arrangements, they save the

found occurrences from the training scenes and sample from these in order to have

a realistic results when generating scenes. Objects patterns are placed following the

same process as independent objects.

This generative model was evaluated using perceptual tests and participants were

asked to select between human generated scenes and scenes generated by the model.

Participants preferred human generated scenes 70% of the time, and synthetic scenes

generated by the model 30% of the time. The perfect output for this kind of tests is

to get the users unable to distinguish between human generates scenes and synthetic

ones, with a 50%-50% result.

3.2.4 A deep learning approach for scene generation

It is well known that deep learning models need big data-sets to be trained. With the

introduction of the SUNCG data-set containing more than 250,000 scenes of rooms,

the possibility for deep generative models was opened. In Wang et al. (2018) a deep

generative model for synthesising new scenes was introduced. The model generates

new scenes using a pipeline of three components: Continue?, CategoryLocation and

InstanceOrientation. These components are described in the following paragraphs.

The first component is a multilayer perceptron that outputs the probability of adding

a new object to a scene given the current objects and high-level features from the top-

down view of the scene. These high-level features are extracted using a deep convo-

lutional network trained with the top-down views of scenes augmented with semantic

features as object category per pixel, depth per pixel, and walls, doors and windows

information. In this way objects are sampled conditional to the previous objects in the

scene. If a new object needs to be added, the component CategoryLocation makes the
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decision of which object category to add and where in the scene it should be placed.

The structure of CategoryLocation is similar to Continue?, however, this component

outputs the probability distribution of categories given the position and the scene. In

order to get these distributions, the authors discretise the scene space using a grid of

cells and for each cell they output the probability distribution of categories. Given the

distribution for each cell it is possible to sample from the joint distribution of categories

and location. The final component InstanceOrientation outputs the orientation of the

new object in a scene, however, in order to do this a 3D model for the selected category

needs to be sampled. For this reason, the authors model the relations between CAD

models, and cluster them in collections. The object’s 3D model is sampled from the

same collection as previously placed objects. Having done this InstanceOrientation

outputs the probability of orientations given the sampled position.

This method is compared to other baselines which generate objects independently

and has better results in perceptual studies. Moreover, when compared to human gen-

erated scenes, human generated scenes are still preferred since the generative model

has some failure modes were inconsistent objects are placed (e.g. tables with no chairs

or to many side stands with beds). Nevertheless, this is one of the first approaches that

uses deep leaning models to extract features from real scenes and use these features in

a generative process that creates new synthetic scenes.

3.3 Scene Parsing

In addition to generative models another relevant scene analysis task relates to scene

understanding and generating semantic parsing graphs. In this section we review the

method for generating scene graphs that is most related to our research.

3.3.1 Scene parsing with probabilistic grammars

In order to address the problem of scene parsing, Liu et al. (2014) proposed using prob-

abilistic grammars to learn the grammar rules that rule the formation of scenes. Scenes

of bedrooms with labelled objects and annotated scene graphs were used to achieve

this goal. The selected parsing graphs described scenes by forming hierarchical struc-

tures with semantic groups of objects as sleeping area or storage area. The method for

learning the grammars is the following. Firstly, the authors defined a grammar of the
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form:

G =< L,R,P >, (3.1)

where L denotes for the labels of the objects and semantic groups existing in the scene,

R denotes the rules that define the grammar and P includes the probabilistic parameters

included in these rules. Secondly, the authors proposed to learn the grammar rules and

associated probabilities from the training data by setting L using the occurrences of

objects and groups in scenes, building R by analysing dependencies in groups and

setting P based on the data-set statistics.

The problem of parsing a new scene is formulated as a dynamic programming

problem for belief propagation in a pruned search space, as stated by the authors. This

means they prune the search space of possible configurations and propose candidate

configurations which are incorporated into an energy function, which is optimised to

find the most probable configuration. Their energy function is aimed to approximate

the maximum a posteriori probability (MAP) (Bishop, 2006) estimation of a parsing

graph for a scene.

Finally, in order to evaluate this method, generated scene graphs were compared

to ground truth data annotated by humans, and it was possible to get almost 100%

accuracy for small data-sets of scenes.



Chapter 4

Resources

In this chapter we describe the different Software and Hardware resources needed to

implement the models defined in the following chapter and the experiments explained

in Chapter 6

4.1 Software & Hardware

The models and experiments described in this project were implemented using python

2.7.15 in addition to scientific computing libraries as numpy and scipy. Moreover,

scikit-learn (Pedregosa et al., 2011) and code from Henderson and Ferrari (2017) which

will be explained in section 4.3 were used to train the models defined in Chapter 5.

Finally, matplotlib (Hunter, 2007) was used to generate the plots presented in Chapter

6.

All the models were trained using an Intel i5 CPU at 2.4GHz, no GPUs are needed

for this project. The average training and evaluating time of the final experiments is 3

hours on the testing set.

4.2 SUNCG Dataset

The SUNCG data-set is a set of 45,000 of human-generated CG scenes of houses and

apartments made available by Song et al. (2017). This is the largest available data-set of

indoor scenes at the moment and includes more than 250.000 scenes of rooms in houses

corresponding to different room types. These are the following: Bedroom, Living

Room, Toilet, Kitchen, Bathroom, Room, Dining Room, Garage, Office, Hallway,

Hall, Child Room, Balcony, Storage, Guest Room, Lobby, Entryway, Terrace, Logia,

15
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Boiler Room, Aeration, Passenger Elevator and Freight Elevator. From the room types

available the ones with the largest amount of samples are listed in Table 4.1.

Room Type Room Count

Bedroom 34,655

Living Room 29,014

Toilet 27,230

Kitchen 23,720

Table 4.1: Most prevalent room type counts

Each of the 45,000 scenes is labelled and a ”json” file is provided that states the

types of rooms included in the scene, which objects are included in each room, assigns

a CAD model for each object and defines the bounding box of space occupied by the

object in the scene. Moreover, meta-data is provided that maps each CAD model to a

corresponding object class; object classes extracted from the data-set for this project

are listed in Appendix A. Furthermore, a toolbox1 is provided for visualising scenes.

The data-set can be downloaded by signing a licence agreement on the available on the

authors web page2. Samples from houses included in SUNCG can be seen in Figure

4.1 and samples from rooms showing objects with their corresponding bounding box

can be seen in Figure 4.2.

1http://suncg.cs.princeton.edu/, accessed 13 Aug 2018
2https://github.com/shurans/SUNCGtoolbox, accessed 13 Aug 2018
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Figure 4.1: Sample Scenes from SUNCG

Figure 4.2: Sample rooms with objects bounding boxes
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4.3 Learning Objects Arrangements in Rooms

In recent years several research groups have been working on the topic of learning how

objects arrange in scenes and proposing generative models as the ones explained in the

related work chapter. One important task in order to generate new scenes is to learn

object arrangement patterns. Fisher et al. (2012) and Henderson and Ferrari (2017)

have tried modelling objects groupings as a Gaussian Mixture model that maps relative

locations of objects with respect of a reference object. The first one worked under a

limited amount of training scenes, generating artificial configurations by adding jitter

to real configurations in order to learn the mixture model as explained in the paper. The

second one used the whole SUNCG data-set to cluster existing configurations of object

patterns. We will work under this idea of modelling scene arrangements as mixture

models because it can learn objects groupings and different grouping configurations in

an unsupervised way. Moreover, using a Gaussian mixture model it is possible to define

the probability of a particular set of objects to be considered a group. In particular

we will expand on the idea presented by Henderson and Ferrari (2017), since it was

already implemented using the SUNCG data-set and code from the original paper was

provided by the authors.

As explained in Section 3.2.3 by analysing every K-tuple of object classes existing

in the training data, extracting all the occurrences of this particular K-tuple, selecting

a centre object class and measuring the relative locations of objects in the K-tuple

around the centre object it is possible to learn how objects cluster. However, given the

amount of scenes and object classes available in SUNCG this approach is feasible as

it is not computationally practical. In practice some selected tuples of object classes

that are expected to cluster together can be used to learn how these arrange in different

configurations. Some examples of tuples that were analysed are (single bed, stand) or

(stand, double bed, stand) or (desk, chair). Full list of class tuples used for finding

patterns is listed in Appendix B.

Given a particular set of classes the provided code by Henderson and Ferrari is able

to load the data-set, find all occurrences of the class tuple and extract all the relative

locations between the centre object and remaining objects. Having extracted this infor-

mation it fits an infinite Gaussian Mixture Model using a Dirichlet process as proposed

by Rasmussen (2000) and explained in Section 2.1. In practice the mixture model is

fitted using Bayesian inference using scikit-learn libraries. For a finite amount of data

this results in a finite approximation of the infinite mixture model. Finally, for each
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set of classes it is able to learn different configurations in which these classes clus-

ter together. Given the finite approximation with k elements of the Infinite Gaussian

mixture

P (x) =
K

Â
i=1

pkN (x;µk,Sk), (4.1)

for each cluster N (µk,sk) the code evaluates the area where satellite objects group. In

order to evaluate this area the following decision was made by Henderson and Ferrari.

Given the covariance matrix Sk the diagonal elements are the variances of the x and y

positions of each satellite object. For each satellite object Oi given the variances s2
xi

and s2
yi

the area in which objects cluster is computed with the following formula:

area = 2
p

2sxi
2
p

2syi
. (4.2)

If for a given Gaussian cluster the mentioned areas is smaller than a certain threshold

(2m
2) for each satellite object and if the full cluster contains a minimum amount of

occurrences (200). Then, the parameters µk and Sk are extracted and this cluster is

saved as a particular configuration of the selected classes. The extracted configurations

will be referred as motifs; in Figure 4.3 different motifs for (stand, single bed) tuple

are shown and in Figure 4.4 different motifs of (double bed dresser) are presented.

In each of these figures different occurrences of these particular motifs are plotted

together. Finally, some real occurrences of motifs are shown in Figure 4.5. This code

Figure 4.3: Sample motifs for stand, single bed

will be used as a resource for this project and we will expand on the idea of using a

Gaussian Mixture Model to model the occurrence of objects as groups.
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Figure 4.4: Sample motifs for double bed, dresser

(a) Single Bed - Stand (b) Single Bed - Dresser / Desk - Chair

(c) Sofa - Tv Stand

Figure 4.5: Example real occurrences of motifs in scenes
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Scene Representation Models

In this chapter we will describe the scene representation models that will be used to test

the hypothesis that hierarchical models are better for learning the inherent structure of

scenes than flat models. For this purpose, we will define a baseline model M1 which

does not know about spatial relationships between scene objects and a hierarchical

model M2 which is able to learn object arrangements and treat scenes as hierarchical

structures. These models are based on previous definitions proposed in our IPP work

(Rondan, 2018), however, improvements have been added to these previous definitions.

Given these two models we will define the evaluation metrics which will be used to

compare them.

5.1 Scope of Models

Both models will be data-driven and trained with extracted scenes from SUNCG data-

set (Song et al., 2017). This data-set is the most complete data-set of 3D indoor scenes

available at the moment and has been used by several research papers related to 3D

scene understanding recently (Qi et al., 2018; Wang et al., 2018). SUNCG accounts

for different type of objects which can be placed on walls, above other objects or on

the ceiling. For the scope of this project we will simplify the problem to only work

with furniture objects placed in the floor, objects classes used for this project are listed

in Appendix A. This will allow us to treat a scene as a 2D structure, nevertheless these

models can be extended to 3D with some simple additions. Moreover, as explained

in Section 4.2, the data-set is composed of a set of houses with different room types

in each house, however, for this project we will select one room type and train the

model on extracted scenes from this particular room type. The room type selection is

21
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explained in Section 6.2. Furthermore, rooms can have different shapes and numbers

of walls, as a simplification only scenes with four walls will be considered. Finally,

the model will be constrained to a particular room size range. This restrictions are not

included in the equations defining the models but will be considered when cleaning the

data and explaining the experiments in Chapter 6.

Each scene in the data-set is composed by a set of objects which have a particular

object class, a position, an orientation as well as an associated CAD model which

defines the size of the object. In order for the models to be complete we will need to

define a distribution that models the dimensions of rooms, a distribution that models the

occurrence of objects in scenes, a spatial model that defines the location and orientation

of objects in the scene space and in the case of the hierarchical model we will need to

define a grouping model. Moreover, since each model could be able to generate scenes

that are not valid we will define a normalisation constant for each model, which defines

the ratio of valid scenes to total scenes generated. The need of this normalisation

constant is given by the fact that the model will generate a considerable amount of

invalid scenes by definition. If we want to evaluate the real probability of valid scenes

we need to normalise the model knowing the probability of a scene to be valid.

In order to define both models M1 and M2, we will make some basic definitions

and will take some basic assumptions. The final objective of this chapter is to be able

to define the probability of a real scene given each one of the models. For this purpose,

we will treat each scene as a set of objects S :

S = {O1,O2, · · · ,ON}, (5.1)

where each object will be defined by the following set:

Oi = {ci,xi,yi}, (5.2)

where ci is the object class and {xi,yi} defines the object’s position in the scene. For our

modelling we will exclude rotations and CAD Models from the object representation.

Nevertheless, this could be added to the models in the future. In this section we will

define models M1 and M2, explain how to generate new scenes from each of the models

and give a formulation for P (S |M1) and P (S |M2).

5.2 Baseline Model M1

A baseline model for representing scenes is to treat all objects belonging to a scene as

being spatially independent objects. In order to test that hierarchical models are able
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to learn the inherent structure of scenes, we will compare such models to this baseline

flat model. This model will be referred as M1 throughout the document.

Given a scene S , for model M1 we will define that the only possible hierarchical

configuration for the objects in the scene is given by the flat parsing tree that is shown

in Figure 5.1.

S

O1 O2 · · · ON

Figure 5.1: Independent model scene graph

As explained in the introduction of the chapter for the formulation of the model

M1 it is necessary to define an object occurrence model, a spatial model that models

objects position independently given it’s object class, a scene size model and a normal-

isation constant Z1. This will allow to sample new synthetic scenes and evaluate the

probability of exiting scenes. For model M1 for each object in a new scene, CAD mod-

els will be sampled uniformly from the available models corresponding to the object

class.

5.2.1 Occurrence model

The occurrence model specifies the probability of a particular number of instances

of an object class to be present in a scene. The standard distribution to model the

frequency of an event is the Poisson distribution. For this reason, we modelled the

probability of occurrence of and object class ck with a Poisson distribution with pa-

rameter lck
. All the lck

parameters for each class distribution will be learned from the

training data. The occurrence model will define the probability of an object with class

ck of having nck
instances in a scene. A similar strategy for object count was used by

Henderson and Ferrari (2017) to sample the total number of objects for a scene.

5.2.1.1 Sampling process

For a new scene given an object class ci the cardinality of this class can be sampled

from:

nci
s Poisson(lci

), (5.3)
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where parameter lci
has been inferred from the training set of scenes. In practice given

the distribution of objects in the training set, most classes will have zero instances in a

new scene.

5.2.1.2 Probability evaluation

Given a scene S set as expressed in Equation 5.1, in order to evaluate the probability

of occurrence of these particular objects under model M1 we need to evaluate the

probability of the number of occurrences per class. Given all possible object classes ck

and nck
the cardinality of each class in the scene, the occurrence probability of S under

M1 is:

Pocc(S |M1) = ’
k

Poisson(nck
;lck

). (5.4)

5.2.2 Spatial model

This model will define the spatial distribution of objects under M1. One of the simplest

ways to model the spatial distribution is to divide each scene in a discrete grid of cells.

For this reason, scenes will be divided into a 2D grid of N ⇥M cells as seen in Figure

5.2, where objects will be approximated to be placed in the centre of each cell. Using

the training data a categorical distribution can be learned in order to represent the

probability of an object with class ci to be placed in a grid cell gh j. A similar grid

division strategy was used by Wang et al. (2018) for finding the probability of object

categories to be placed in the different cells. Nevertheless, they used deep learning

models to learn the probability of object classes given the position. In this model we

will use a categorical distribution.

g00 · · · g0M

... gh j

...

gN0 · · · gNM

Figure 5.2: Discretised scene in cell grid

The cell grid size parameters N,M will be selected using a grid parameter search

strategy under a validation set of scenes and testing which grid cell division has better

results.
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5.2.2.1 Sampling process

For each object Oi and given its class ci a cell gh j will be sampled from:

gh j s Categorical(ci) (5.5)

After sampling a cell the object position xi,yi will be set in the centre of the sampled

cell. Finally, Orientation qi will be sampled uniformly from a discrete orientations

[0, p
2 ,p,

3p
2 ].

5.2.2.2 Probability evaluation

Given a scene S and given the area for each cell in the grid Ac the spatial probability

Ploc of an object being placed in a particular cell gh j as:

Ploc(Oi|M1) = Categorical({xi,yi} 2 gh j|ci)/Ac. (5.6)

Taking this into account the final spatial probability of a scene S is:

Ploc(S |M1) =
N

’
i=1

(Categorical({xi,yi} 2 gh j|ci)/Ac). (5.7)

5.2.3 Room size model

Given the training data we will learn the distribution of a scene sizes. Each scene

will be defined by dimensions X ,Y referring to the width and length of rooms. Since

X ,Y dimensions can be interpreted as continuous variables and modelling the height of

scenes its not interesting for the purpose of this project, we will model X ,Y dimensions

as a 2D Gaussian with mean µD and covariance SD. Parameters µD and SD are inferred

from the training data.

5.2.3.1 Sampling process

When generating new scenes dimensions X ,Y will be sampled from the defined distri-

bution and samples that are outside the boundaries of the training data scenes dimen-

sions will be rejected. This will avoid sampling extremely small scenes or extremely

big ones.

(X ,Y )s N (µD,SD). (5.8)
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5.2.3.2 Probability evaluation

The probability of a scene having particular dimension can be evaluated using a trun-

cated Gaussian, however for the purposes of this project this will not be interesting.

Since both models M1 and M2 will be used to compare the probability of a scene. And

the probability of the room size will be the same under both models.

5.2.4 Normalisation constant

Given that model M1 will be able to generate more scenes that those which are possible

in the real world we will define a normalisation constant to evaluate the real probability

of scenes under this model. The definition of the normalisation constant Z1 is the

following:

Z1 =
#Valid Scenes

#Total Possible scenes
. (5.9)

The value of this constant will be computed experimentally by sampling scenes from

the model and finding the ratio of valid scenes to total scenes like in a rejection sam-

pling strategy. A scene is considered invalid when there is occlusion between objects,

or intersection between objects and walls. If there are no intersections a new sampled

scene is considered valid.

5.2.5 Scene sampling

The process of sampling a new scene is the following:

• Sample scene dimensions (X ,Y ).

• For each possible class sample the number of instances nck
in the scene.

• For each object instance Oi sample a CAD model uniformly from the available

CAD models in the data-set.

• For each object instance Oi sample the object location and rotation in the scene

(xi,yi,qi)
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5.2.6 Final probability

For model M1 given a scene S as described by set in Equation 5.1 the probability of

the scene under model M1 is:

P (S |M1) =
1

Z1
Pocc(S |M1))Ploc(S |M1), (5.10)

P (S |M1) =
1

Z1
’

j

Poisson(c j;lc j
)’

i

Categorical(xi,yi|ci)/Ac, (5.11)

where index j iterates over all possible classes and index i over existing scene objects.

5.3 Hierarchical Model M2

In order to test the hypothesis of this project a hierarchical model was designed . This

model needed to be able to generate new synthetic scenes as well as evaluating the

probability of real world scenes. The designed model will be referred to M2 throughout

this document. In contrast to the baseline model M1, in model M2 for each scene S
given by Equation 5.1 we will consider different hierarchical interpretations. Each

hierarchical interpretation will be referred as a configuration C and will be described

by a parsing tree composed of as a set of independent objects Oi and object clusters

Yk. The structure of a parsing tree for a configuration C of S under this model can be

seen in Figure 5.3. For this project we will only work with one level of hierarchy. Each

possible possible configuration C of S will be defined by a set:

C = {O1,Y1, · · · , ,YK,ON}, (5.12)

where each group YK is a group of objects belonging to S which are clustered together:

Yk = {Ok1, · · · ,OkNk
} : Oki 2 S 8i, (5.13)

and each Yk will be described by mk a motif class, {xk,yk} which define the position

of the group in the scene and Pmk
a probability distribution that models the spatial

distribution of the objects {Ok1, · · · ,OkNk
} given {xk,yk}. This probability distribution

will be defined in section 5.3.3.

Each motif class represents how a particular set of objects classes can cluster to-

gether in different shapes as explained in section 4.3. As an example an object class

tuple (single bed, stand) can take different valid spatial configurations that will be

called motifs and the will belong to the pattern (single bed, stand).
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S

O1 Y1

O11 · · · O1N1

· · · YK

Ok1 · · · OkNk

ON

Figure 5.3: Scene graph with object arrangements for a configuration C

For the formulation of the model M2 as in model M1 we will define an occurrence

model, a spatial model and a room size model, as well as a normalisation constant.

Moreover, since this model accounts for objects groupings it is necessary to model

the spatial distributions of objects within the different grouping clusters, this will be

called the grouping model. Finally, for each independent object a CAD model will be

sampled uniformly from the available models corresponding to the object class, and

for a grouping Yk CAD models corresponding to the grouping objects {Ok1, · · · ,OkNk
}

will be sampled from an existing occurrence of the particular motif. Each of these

distributions is detailed in the following sections.

5.3.1 Occurrence model

The occurrence model specifies the probability of a particular number of instances of

an object class to be present in a scene. As well as modelling the probability of inde-

pendent objects, the occurrence model defines the probability of a particular grouping

motif to be present in the scene. When sampling the occurrence of objects and groups

a particular configuration C will be implicitly sampled.

Using the same strategy as in model M1 the probability of and object class ci or

motif class mk to be present in the scene will be modelled with a Poisson distribution.

The parameters lci
, lmk

for the different objects and motifs class distributions will be

learned from the occurrences of objects and motifs in the training data.

5.3.1.1 Sampling process

For a new scene given an object class ci the cardinality of this object class can be

sampled from:

nci
s Poisson(lci

), (5.14)
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and given a motif class mk the cardinality of this motif class in the new scene can be

sampled from:

nmk
s Poisson(lmk

). (5.15)

The sampling process consists on sampling a number of instances from each know

object class and each know grouping motif class. In practice most object classes and

motif classes will have zero instances in any given scene.

5.3.1.2 Probability evaluation

For a scene S and a particular parsing configuration C the probability of occurrence

of these particular objects and groups under model M2 is computed as below. For

each possible object class ci and each possible motif class mk in the model where the

cardinality of objects in C with class ci is nci
and the number of instances of groups in

C with motif class mk is nmk
(for classes not present cardinality nci

or nmk
will be zero

) the probability of occurrence of this particular configuration set C of scene S under

model M2 is:

Pocc(C |M2) = ’
i

Poisson(nci
;lci

)’
k

Poisson(nmk
;lmk

). (5.16)

5.3.2 Spatial model

In order to represent the spatial distribution of objects and objects clusters a grid strat-

egy will be used as in model M1. The modelling for independent object’s position is

the same as in model M1. And the probability of a particular group Yk to be placed

in a particular cell gh j will be modelled with a categorical distribution. Given that the

model accounts for objects groupings and independent objects, the parameters of the

categorical distribution which models the independent objects will be different from

those in M1. In order to define the spatial probability of a scene a particular config-

uration C has to be decided beforehand which will define object classes ci an motif

classes mk.

5.3.2.1 Sampling process

For each independent object Oi and each group Yk the positions in the grid xi,yi and

xk,yk will be sampled from:

{xi,yi}s Categorical(ci), (5.17)

{xk,yk}s Categorical(mk). (5.18)
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As in M1 rotations qi and qk will be uniformly randomly sampled from [0, p
2 ,p,

3p
2 ].

5.3.2.2 Probability evaluation

Given a scene S represented by configuration C and given the area Ac of each cell

in the scene. The spatial probability Ploc of an independent object being placed in a

particular cell gh j and the spatial probability particular grouping Yk to be placed in a

particular cell gh j is evaluated by the following equations:

Ploc(Oi|M2,C ) = Categorical({xi,yi} 2 gh j|ci)/Ac. (5.19)

Ploc(Yk|M2,C ) = Categorical({xk,yk} 2 gh j|mk)/Ac. (5.20)

5.3.3 Grouping model

Model M2 accounts for object groupings. Given a group Yk with objects {Ok2, · · · ,OkNk
}

and given that the group has motif class mk the spatial distributions of objects this

grouping is given by a probability distribution Pmk
. This distribution is learned using

the method explained in Section 4.3 which takes one object of the OkNk
group objects

as the centre object for the cluster, we will refer to this object as Ok1, and models the

position of the remaining ”satellite” objects {Ok2, · · · ,OkNk
} as an Infinite Gaussian

Mixture Model explained in Section 2.1. From this mixture model some clusters are

extracted as motifs and the distribution each motif mk is modelled as a multivariate

Gaussian with mean µmk
and covariance Smk

.

5.3.3.1 Sampling process

Once the group position {xk,yk} has been sampled then the position {xk1,yk1} from

object Ok1 will be set to {xk,yk} and relative positions {xk2,yk2, · · · ,xkNk
,ykNk

} can be

sampled from:

{xk2,yk2, · · · ,xkNk
,ykNk

}s N (µk,Sk). (5.21)

This sampled positions will be relative to {xk,yk}, therefore, they need to be trans-

formed in global positions when placing objects {Ok2, · · · ,OkNk
} in a new room.

5.3.3.2 Probability Evaluation

For evaluating the probability of a particular spatial configuration of a group of objects

with class mk the probability is derived as follows:
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Ploc(Ok1, · · · ,OkNk
|M2,C ) = Pmk(Oi, · · · ,OkNk

|Yk)Ploc(Yk|M2,C ). (5.22)

As mentioned beforehand in practice Pmk will be a multivariate Gaussian with param-

eters µmk
and Smk

so:

Pmk
(Ok1, · · · ,OkNk

|Yk) = Pmk
(Ok2, · · · ,OkNk

|Ok1)

= N (xk2,yk2, · · · ,xkNk
,ykNk

;µk,Sk).
(5.23)

For the satellite object rotations (qk2, · · · ,qkNk
), these are taken from a existing sampled

occurrence from available occurrences of motif class mk

5.3.4 Room Size model

In this case the room size model is the same as in model M1 respecting the same

sampling process for new scenes.

5.3.5 Normalisation constant

Normalisation Z2 constant for model M2 is calculated as in Equation 5.9, but sampling

scenes from model M2.

5.3.6 Scene sampling

The scene sampling process is the following:

• Sample a room size dimensions X ,Y

• Sample number of instances nci
for each object class ci.

• Sample cardinality for each motif class nmk
for each motif class mk.

• Having sampled all nci
and nmk

C is set.

• For each object instance Oi sample the object location in the scene (xi,yi,qi)

• For each object instance Oi sample a CAD model uniformly from the available

CAD models in the data-set.

• For each object group instance Yk sample an exiting motif instance in the data-set

and get the CAD models.
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• For each group instance Yk sample the grouping location and rotation in the

scene (xk,yk,qk).

• For each group instance Yk set the location for centre object ON1 and sample the

relative locations of the remaining objects ON2, · · · ,ONk. The relative rotations

are taken from the sampled occurrence in the data-set.

5.3.7 Final probability

The final probability of a scene under model M2 is computed as follows:

P (S |M2) = P (O1,O2, · · · ,ON |M2). (5.24)

However, in order to evaluate the probability of scene S under model M2 we will have

to account for the different configurations C that a scene S can take under the model.

We will call Cs the set of possible configurations for a scene S . Given Cs the final

probability is:

P (S |M2) =
1

Z2
Â

C2Cs

P (S |M2,C )P (C |M2). (5.25)

From the definitions of the model we can derive that:

P (C |M2) = Pocc(C |M2), (5.26)

moreover, once C is given then all objects classes ci and motif classes mk are set so:

P (S |M2,C ) = Ploc(S |M2,C ) = ’
i

Ploc(Oi|M2,C )’
k

Ploc(Ok1, · · · ,OkNk
|M2,C ),

(5.27)

where index i over existing independent scene objects and index k over existing object

groups in scene. Given equation 5.28, we will search through Cs in order to find C ⇤

that maximises P (S |M2,C )P (C |M2). It is sensible to think there is one particular

configuration C ⇤ that generated the target scene S and maximises the probability of

the scene. We will search for this particular configuration and given C ⇤ we will lower

bound the probability of S under model M2. This can be derived from Equation 5.24

and this relation is expressed in the following equation:

P (S |M2)�
1

Z2
P (S |M2,C ⇤)P (C ⇤|M2). (5.28)
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5.3.8 Learning the hierarchical structure of scenes

Model M2 admits several interpretations of a scene. In order to approximate the proba-

bility of a scene S under this model, the configuration C ⇤ that maximises the probabil-

ity of the scene needs to be found. We will assume that scene S was generated by C ⇤

and that this configuration represent the correct parsing tree for the scene. Searching

for the highest probability configuration under M2 can be used to learn the parsing tree

of a scene. This follows a similar logic as the approach taken by Liu et al. (2014) were

they find the best parsing graph under their probabilistic grammars model by estimat-

ing the MAP solution for the probability of a configuration given a scene . For our

model this can be derived using Bayes rule:

P (C |S ,M2) µ P (C |M2)P (S |C ,M2). (5.29)

Therefore finding the configuration that maximises the probability of S is also finding

the highest probability configuration.

Finding C ⇤ for a scene can be solved doing a exhaustive search and computing

the probability for all possible configurations. The number of possible configurations

in a scene S is given by the set of objects in the scene, the possible class tuples that

form patterns that appear in the scene and the available motifs for each class tuple.

Moreover, if the scene set has repetition in objects (e.g. several beds, several stands

or dressers) the number of possible configurations increases considerably. The exact

number of configuration becomes difficult to track and the exact formula for this num-

ber is dependent on the repetitions of particular objects in each scene. Nevertheless,

in practice we can find C ⇤ doing a combinatorial search by building a tree with all

the possible configurations. In this search tree, each path is a possible configuration

and on each leaf node we will save the final probability of S for the given the path:

P (S|M2,C ). The tree is built avoiding repetitions when possible and pruning the tree

paths whenever it is possible in order to reduce the search time.

To give further explanation about this search, we will build over an example which

involves repetitions for a scene composed by the following set:

S = {single bed 1,single bed 2,stand 1,stand 2,wardrobe} (5.30)

and for this example the only class tuple which can form groupings is (single bed,

stand). For this pattern we will consider possible motifs: ”motif-A” and ”motif-B”.

Without considering different motifs our search tree has 7 possible paths shown in

Figure 5.4. If motifs are considered for every node composed by a single bed and a
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stand will split in two, this will give us 17 possible configurations. Given this example

if we consider more motifs per class tuple and more grouping patterns the number of

configurations per scene increases exponentially for big objects sets.

S

SB1

SB2

S1

S2

W

P (S |M2,C1)

(SB1, S1)

SB2

S2

W

P (S |M2,C2)

(SB2, S2)

W

P (S |M2,C3)

(SB1, S2)

SB2

S1

W

P (S |M2,C4)

(SB2, S1)

W

P (S |M2,C5)

(SB2, S1)

SB1

S2

W

P (S |M2,C6)

(SB2, S2)

SB1

S1

W

P (S |M2,C7)

SB=Single Bed S=Stand W=Wardrobe

Figure 5.4: Example decision tree for a given scene S without motifs

Once the tree is built and every P (S|M2,C ) is computed we compute the probabil-

ity of each path P (C|M2). Having done this is is possible to find C ⇤ which maximises

the probability of a scene under the model, which is also the highest probability scene

graph interpretation under model M2.

5.4 Evaluation Metrics

For evaluating our models we will use a hold-out strategy, where we will use 70% of

the available input data for training 20% for validation purposes and hyper-parameter

selection and 10% for testing purposes. Once the hyper-parameters are selected we

will retrain the model with the training and validation set all together and compute the

evaluation metrics under the testing set.

For the comparison of both models we will define that if P (S|M2,C ⇤)< P (S|M1)

scene S prefers hypothesis H1, which means that M1 is a better model for representing

scenes. On the other hand if P (S|M2,C ⇤)> P (S|M1) we will say that scene S prefers

hypothesis H2, which means that model M2 is a better model for representing scenes.
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The evaluation metrics we will report are the number of scenes which prefer H1 and

H2. Moreover, we will report the average logP (S|M2,C ⇤) and the average logP (S|M1)

under our testing set. Finally, for the analysis of our models we will report the normal-

isation constants Z1 and Z1 and for model M2 we will report the number of groupings

found.



Chapter 6

Experiments & Results

In this chapter we will explain the experiments designed to test models M1 and M2

and report their results. Firstly, we will detail the data cleaning process. Secondly,

we will expose different experiments done to learn scene arrangements. Moreover, we

will do a further analysis on the hierarchy learning process. Finally, we will present

the results and compute the evaluation metrics defined in Chapter 5 as well as show

examples from new sampled scenes from both models.

6.1 Cleaning the Data

SUNCG data-set has over 45,000 scenes of houses which in total provide more than

250,000 different room scenes. For this project we selected to work on with scenes of

Bedrooms. This selection was done by using the code explained in Chapter 4 in order

to extract motifs from different room types and select the room type with most poten-

tial arrangements. Target room types were: Bedrooms, Dining Rooms, Living Rooms

and Kitchens. These were selected based on the potential for objects arrangements to

appear and the available number of instances for each room. Moreover, since rooms

can have multiple room types we select rooms with extrictly one room type. For the

target rooms, the number of different object arrangement motifs found and the avail-

able room counts are shown in Table 6.1. Given these statistics, it was decided to use

Bedrooms for testing our models.

Having selected the target room type, it was decided to split the original set of

scenes into three different sub-sets divided by room size. This was done taking into

account that room sizes in the data-set are very variable and object count is correlated

to the room size. The data-set of bedrooms was split into three different sets: small

36
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Room Type Room Count Possible Motifs Found

Bedroom 36233 54

Living Room 15675 25

Kitchen 12331 31

Dining Room 6402 29

Table 6.1: Most prevalent room type counts

rooms, medium rooms, and big rooms. The division was done by percentiles based on

room’s area and using a tukey’s fence (explained in Chapter 2) with k = 2 to remove

outliers. Given the size of the data-set, it contains some noisy bedroom scenes that can

have more than 100m
2 area and more than 100 objects. We removed outliers to work

with reasonably sized scenes and realistic object counts. The resulting room count,

area range, and average object count for each set is shown in Table 6.2.

Room Size Room Count Area Range (m
2
) Avg. Objects/Room

Small Rooms 12590 0-18 7.8

Medium Rooms 12578 18-27 11.1

Big Rooms 10690 27-58 13.7

Table 6.2: Room divided by sizes

Once the rooms were divided by area range, the three sub-sets were split in train-

ing, validation and testing sets with proportions 70-20-10 in order to perform all the

experiments in this chapter. The split count for each sub-set is shown in Table 6.3.

Room Size Training Count Validation Count Testing Count

Small Rooms 8731 2579 1279

Medium Rooms 8869 2489 1219

Big Rooms 7511 2058 1120

Table 6.3: Subsets division for training validation and test
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6.2 Learning Pattern Motifs from Scenes

The code provided by Henderson and Ferrari (explained in Section 4.3) was used to

learn objects arrangements in Bedrooms. As explained Henderson and Ferrari ap-

proach can be used to cluster scene arrangement occurrences. In this project we are

also interested in modelling the distribution of objects in groups and finding out the

probability of objects being part of a group or appearing as independent objects. For

this reason, several experiments were done following this idea.

Firstly, we explored the idea of modelling arrangements as a Gaussian Mixture

Model and objects being dependent on an anchor object but independent from each

other in a group. This can be done by fitting the mixture model to the training data

and for each cluster from Equation 4.1 generating a diagonal covariance matrix. After

fitting the model, it was possible to sample new objects arrangements from the differ-

ent clusters of the Mixture model. In Figure 6.1a, it can be seen how new samples

of a motif composed of one double bed and two side stands are distributed, and the

covariance lines for each satellite object are plotted. Moreover, real occurrences for

the selected motif are plot in Figure 6.1b. In these figures it can be seen that the new

sampled positions for the satellite objects (stands) differs from the distribution of the

real occurrences. This is given by the fact than when clustering different motifs using

diagonal covariance matrices can be useful, however, it does not have realistic results

when sampling new instances. As an example, when sampling from a configuration

of double-bed, stand, stand if using diagonal covariance matrices, side tables will not

be properly aligned between each other. This is because use of diagonal a covariance

assumes that side stands’ positions are not strictly correlated. However, it is usually

is the case that their position is correlated. This process was done for the full list of

target class tuples; the list of motifs extracted using diagonal covariance matrices and

new sampled examples from these can be seen in Appendix B.2.

Given these results, we extended the original modelling to learn full covariance

matrices under the Gaussian Mixture Model. With this approach it possible to model

the correlation of objects positions between each others within a particular motif. In

Figure 6.2a the original occurrences of a motif composed by two stands and a double

bed are shown, and new sampled instances are shown in Figure 6.2b. In Figures 6.3a

and 6.3b the same is shown for a particular motif of one single bed and one stand.

Considering the differences between learning objects arrangements using diagonal

and full covariance matrices, we decided to use full covariance matrices since these
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(a) Real Occurrences (b) Sampled Occurrences

Figure 6.1: Sampling from model with diagonal covariance matrices in a motif com-

posed by a double bed and two stands compared to real occurrences

are able to extract more information about the spatial relationships between objects

in the group. The full set of extracted motifs and some new sampled occurrences are

included in Appendix B.3.

Finally, in order to fully define the process of sampling new object arrangement in-

stances, rotations and a CAD models for the group need to be sampled. It was decided

that all rotations for satellite objects and object CAD models for the full group were

sampled from an existing occurrence of the selected motif. In practice this gives more

realistic results since relative rotations are usually related to the particular CAD mod-

els in the grouping. Nevertheless, it is possible to learn the relative rotation of objects

as part of the Mixture Model, this has been done in the past by Fisher et al. (2012).

In this project some experiments were done adding rotations to the mixture model and

results are shown in Appendix B.4. However, as mentioned before, sampling relative

rotations from a real occurrence seems to have more realistic results than sampling

from the mixture model and fitting the mixture model adding rotations as variables in

practice decreases the number of clusters found for each set of classes.
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(a) Real Occurrences (b) Sampled Occurrences

Figure 6.2: Sampling from model with full covariance matrices in a motif composed by

a double bed and two stands compared to real occurrences

(a) Real Occurrences (b) Sampled Occurrences

Figure 6.3: Sampling from model with full covariance matrices in a motif composed by

a sing bed and one stand compared to real occurrences

6.3 Training the models

The process of training the models consist on extracting statistics from the different

room sets. Firstly, for training M1 the global object count per object class was extracted

in order to estimate the lck
parameters of the Poisson distributions. For the categorical

distributions, the count of appearances per class in each cell was extracted. Secondly,

the process of learning scene arrangements in the training sets was done. Therefore,

different motifs of object patterns were learned and occurrences of groups labelled in

the training set. Having done this, M2 was trained using the count of independent
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objects and counts of motifs occurrences found. Moreover, the count of independent

objects and object groups corresponding to a particular motif for each cell in the grid

were used to learn the categorical distributions.

In order to avoid scenes with zero probability during evaluation, we set a prior

probability of 1/1000 for each cell. This means that objects in the testing set will have

a small probability of appearing in unseen positions.

Once this is done all, the parameters for our probability distributions in M1 and M2

are set and new scene can be sampled. Moreover, the experiments for hyper-parameter

selection on the validation set were performed and these are described in the following

section.

6.4 Hyper Parameter Selection - Grid Size

In order to do the final experiments, it was necessary to select a grid size for the model.

To do this the models were trained for several N ⇥M grid sizes for each room set.

Even though N 6= M in general, for simplicity N = M was used, and the grid sizes

varied from 5⇥5 to 10⇥10. This was done for the small and medium size rooms sets.

The big rooms set is excluded due to the computation complexity of evaluating the big

size rooms under the validation set. Doing the tree search from section 5.3.8 under the

big rooms can take up to 6 hours for each grid size.

After training the models for each grid size, the normalisation constants were com-

puted sampling 20,000 scenes. These constants will give an idea of how good the

model is for sampling new synthetic scenes. Moreover, we computed the logP (S |M1)

and logP (S |M2,C ⇤) for each scene in the validation set and we report the average

logP (S |M1) and average logP (S |M2,C ⇤) for each grid size to have a measure of how

probable scenes are under model M1 and M2. The number of scenes which prefer H1

and H2 is reported in addition to the number of groupings found for each grid size. The

results for the small and medium room sets under each grid size are shown in Tables

6.4 and 6.5 respectively.

From these results, it is sensible to select the grid size 5⇥ 5. This selection was

done based on the formulation of this project , were we want to evaluate the probability

of scenes under a hierarchical model. Taking this into account we selected the grid size

that enabled to find more object arrangement occurrences. Moreover, we considered

the normalisation and for 5⇥ 5 grid size the ratio of valid scenes is the higher. For

these reasons, grid size 5⇥5 will be used for the final tests.
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Grid Size 5⇥5 6⇥6 7⇥7 8⇥8 9⇥9 10⇥10

Avg. logP (S|M1) -14.531 -14.349 -14.195 -14.193 -14.253 -14.116

Avg. logP (S|M2,C ⇤) -12.736 -12.743 -12.724 -12.804 -12.820 -12.842

Constant Z1 0.0257 0.02315 0.0205 0.0199 0.02175 0.02135

Constant Z2 0.0345 0.02945 0.0302 0.0306 0.03035 0.03135

Groupings found 1257 1201 1153 1134 1149 1122

Scenes prefer H1 1228 1336 1328 1360 1363 1356

Scenes prefer H2 1351 1243 1251 1219 1216 1223

Table 6.4: Validation Results on Small Rooms based on grid size

Grid Size 5⇥5 6⇥6 7⇥7 8⇥8 9⇥9 10⇥10

Avg. logP (S|M1) -23.056 -22.702 -22.504 -22.423 -22.231 -22.252

Avg. logP (S|M2,C ⇤) -20.269 -20.570 -20.559 -20.704 -20.549 -20.675

Constant Z1 0.0205 0.0195 0.01525 0.0138 0.01505 0.0153

Constant Z2 0.02885 0.024 0.0229 0.0194 0.0208 0.0215

Groupings found 1670 1409 1371 1344 1347 1370

Scenes prefer H1 862 1111 1121 1209 1202 1242

Scenes prefer H2 1627 1378 1368 1280 1287 1247

Table 6.5: Validation Results on Medium Rooms based on grid size

6.5 Final Results

After selecting the grid hyper-parameter, the models were retrained using the validation

and training set all together; the final statistics extracted to fit the models are reported

in Appendix A. Having trained the models, the final normalisation constants were

computed using 100,000 samples. In this section the final values for these constants

are reported, samples from valid scenes for the models are shown and plots for the log

probability of the scenes under each model are presented. Furthermore, we analyse

how the probability of scenes changes as the hierarchical graph is being built. Finally,

we analyse the results and how the probability changes given the number of groupings

found in a scene.
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6.5.1 Training and sampling

The models were retrained trained using the train and validation set in conjunction,

after sampling 100,000 scenes for each room sizes the final normalisation constants

computed are reported in Table 6.6.

Room Size Small Medium Big

Z1 0.02538 0.02166 0.01741

Z2 0.03298 0.02845 0.02555

Table 6.6: Normalisation constants after sampling 100,000 scenes

These constants show that both models M1 and M12 have a high rejection rate

and generate more invalid scenes than valid. However, it can be seen that there is a

difference in the acceptance rate of both models and that model M2 generates more

valid scenes that model M1 suggesting that M2 is a better model for scene modelling.

From the sampling process in models M1 and M2 some valid floor plans were

extracted for each room size and these are presented in Figure 6.4 and 6.5. Further

examples of valid and invalid sampled scenes are reported in Appendix C.

(a) Small room M1 (b) Medium room M1 (c) Big room M1

Figure 6.4: Example valid scenes sampled from M1

6.5.2 Learning the scene hierarchical graph

In this section we will explain how the probability of a real scene from the testing set

varies for the different configurations in can take. We will analyse the scene S shown
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(a) Medium room M2 (b) Medium room M2 (c) Big room M2

Figure 6.5: Example valid scenes sampled from M2

in Figure 6.6; this is composed by seven furniture objects: single-bed, single-bed,

stand, stand, office-chair, desk, wardrobe. Given this scene, a simplified version of the

configurations tree (explained in Section 5.3.8) is presented in Figure 6.7. In practice

the implemented tree has 18 different configurations after pruning nodes; this number

is given by the different combinations of beds and stands and for each combination of

these there are two possible motifs. Since there is only one occurrence of a pattern

composed by one office-chair and one desk the decision about which motif of this

pattern to use can be done in the tree node. This means some paths can be pruned in

this tree. In this simplified tree severalconfigurations are presented, starting from a flat

configuration were all objects are independent adding arrangements until the highest

probability configuration is found. From this figure, it can be clearly seen how the log

probability of the scene under model M2 increases each time a new arrangement is

added to generate a new configuration. Finally, the final scene graph interpretation is

shown in Figure 6.8.

6.5.3 Evaluating the final probability

In this section we will present the final results under the testing set after training both

models on the three different room sizes and learning the hierarchical structure of

scenes.

To begin with, it is sensible to compare the probability of a flat configuration CF

were objects are not grouped under M2 compared to the probability of scenes under

M1. This was done to have a starting point to compare how probabilities evolve as

objects groupings are found in scenes. We computed these probabilities for the three

different room sizes and the resulting plots are shown in Figure 6.9. Moreover, results
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Figure 6.6: Sample scene

S

single-bed

single-bed

stand

stand

office-chair

desk

wardrobe

-35.30

(single-

bed, stand)

single-bed

stand

office-chair

desk

wardrobe

-27.43

(single-

bed, stand)

office-chair

desk

wardrobe

-21.14

(office-

chair, desk)

single-bed

stand

wardrobe

-20.5

(single-

bed, stand)
(office-

chair, desk)

wardrobe

-14.23

Figure 6.7: Decision tree for scene hierarchy with logP (S |M2,C ) given different con-

figurations for scene S .

for the final average log probability of scenes on the testing set under both models

given the selected configuration are reported in Table 6.7.

After the computing probability of the flat configuration of objects under M2 and

compare it to the probability of S under M1 , it can be concluded that if analysing
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Figure 6.8: Scene hierarchical graph

Room Size Small Medium Big

Avg. logP(S |M1) -14.32 -22.85 -31.22

Avg. logP(S |M2,CF) -16.04 -25.15 -33.69

Scenes prefer H1 1103 1047 974

Scenes prefer H2 174 172 146

Table 6.7: Probability of scenes treated as independent objects

scenes without hierarchical structures then model M1 is preferred. The results show

that the average logP (S |M1) is higher in every case to the average logP (S |M2,CF).

Moreover, when analysing which hypothesis H1 or H2 is preferred, H1 is preferred in

86.3% of the small scenes, 85.9% of the medium scenes and 86.9% of the big scenes.

In Figure 6.9 scenes that prefer H1 lie below the red line in the plots.

Taking the flat configuration probability as a baseline, the process of learning the

hierarchical structure of scenes was carried. Having done this, it was possible to eval-

uate P (S|M2,C ⇤) for each scene. These results are plotted on Figure 6.10 labelled by

the number of objects groupings found (these will be used for further analysis) and

they are tabulated in Table 6.8. Analysing these results, it can be seen that representing

scenes as hierarchical structures reverts the trend seen in Figure 6.9. In this scenario

the average logP (S |M2,C ⇤) is higher than the logP (S |M1). Moreover, more scenes

prefer H2 to H1 in the three testing sets. For the best hierarchical configuration C ⇤,

54.9% of the small scenes, 71.4% of the medium scenes and 77.5% of the big scenes

prefer H2 over H1. In Figure 6.10 scenes that prefer H2 lie above the red line in the

plots. This suggests model M2 is a better model for analysing the structure of scenes

and its able to better learn the inherent structure of scenes.
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(a) Small rooms (b) Medium rooms

(c) Big rooms

Figure 6.9: Flat Configuration Probability under M1 and M2

Some further exploration was done under both models. It was studied how the

probability of scenes conditional to the number of groupings found behaved. These

results are shown in Figure 6.10 and in Tables 6.9, 6.10 and 6.11 it is reported how

the probability of scenes varies depending on the number of groupings found for the

small, medium and big rooms respectively. Inspecting these results, it can be seen that

the ratio between the probability of scenes under model M2 and M1 increases as the

number of arrangements found increases and this trend is valid in all room sizes. This

behaviour supports the theory that scenes should be interpreted as hierarchical graphs

taking into account the relationships between objects and that model M2 is better for

representing the inherent structure of scenes.

These results also show that even if the ratio between the probability under M2 and

M1 increases, the global probability values decrease as scenes become more complex

and have more objects and groups. Therefore, it is sensible to study how the probability

of scenes behaves based on the number of objects per scene. Further exploration was
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Room Size Small Medium Big

Avg. logP (S|M1) -14.32 -22.85 -31.22

Avg. logP (S|M2,C ⇤) -12.54 -19.45 -25.77

Scenes prefer H1 577 349 252

Scenes prefer H2 702 870 868

Groupings found 630 930 1104

Table 6.8: Testing set results after finding configuration C ⇤

(a) Small rooms (b) Medium rooms

(c) Big rooms

Figure 6.10: Results with number of groupings labelled

done by labelling the probability of scenes given the number of objects present in the

scene. Figures relating these probabilities can be seen in Appendix D. Nevertheless,

due to the way the models are designed it is expected that the probability of scenes

will decrease as the number of objects in a scene increases. On the other hand, bigger

counts of objects support finding more arrangements as shown by results where more
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Groupings Found 0 1 2 3

Scenes Count 737 455 80 5

Avg. logP (S|M1) -11.662 -16.981 -22.543 -31.624

Avg. logP (S|M2,C ⇤) -12.519 -12.498 -12.742 -16.066

Table 6.9: Small rooms results based on groupings found

Groupings Found 0 1 2 3 4 5

Scenes Count 477 572 155 13 1 1

Avg. logP (S|M1) -18.029 -24.417 -29.851 -41.308 -61.721 -62.187

Avg. logP (S|M2,C ⇤) -18.770 -19.915 -19.271 -23.786 -33.630 -29.650

Table 6.10: Medium rooms results based on groupings found

Groupings Found 0 1 2 3 4 5

Scenes Count 368 468 226 50 6 2

Avg. logP (S|M1) -22.899 -31.108 -39.633 -49.439 -65.366 -77.903

Avg. logP (S|M2,C ⇤) -23.475 -25.671 -27.826 -32.009 -40.062 -41.734

Table 6.11: Big rooms results based on groupings found

groupings were found under the medium and big size rooms. For this reason, if we

want to explore how the effect of arrangements affects the probability of scenes it is

necessary to mitigate the effect of the object count in scenes. Therefore, we normalised

the probability values by the object count. The relationship between the probability of

a scene and its object count is of exponential nature given that each object adds a new

term to the spatial probability. Therefore, we decided to compute the following values:

logP (S|M1)/#Ob jects (6.1)

logP (S|M2,C ⇤)/#Ob jects, (6.2)

and explored how the probability of scenes evolves for the different number of ob-

jects’ arrangements found in scenes normalised by the number of objects in each scene.

These results are plotted in Figure 6.11 labelled by number of groups found and plots

labelled by object count are included in Appendix D. Moreover, results analysed by

number of groups found are tabulated in tables 6.12, 6.13 and 6.14 for each testing
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set. From these results, it is even more clear how the probability of scenes increases

whenever an arrangement is found and added to a configuration. In the previous re-

sults we could infer this from the ratio between logP (S|M2,C ⇤) and logP (S|M1).

However, when normalising by the number of objects it can be clearly seen how

logP (S|M2,C ⇤)/Ob jects increases as more groups are found.

(a) Small rooms (b) Medium rooms

(c) Big rooms

Figure 6.11: Results with number of groupings labelled normalised by number of objects

per scene

Groupings Found 0 1 2 3

Scenes Count 737 455 80 5

Avg. logP (S|M1)/Ob j -3.370 -3.416 -3.631 -3.898

Avg. logP (S|M2,C ⇤)/Ob j -3.598 -2.401 -1.981 -1.932

Table 6.12: Small rooms results normalised by object based on groupings found



Chapter 6. Experiments & Results 51

Groupings Found 0 1 2 3 4 5

Scenes Count 477 572 155 13 1 1

Avg. logP (S|M1)/Ob j -4.389 -4.065 -4.126 -4.166 -5.143 -4.441

Avg. logP (S|M2,C ⇤)/Ob j -4.539 -3.228 -2.561 -2.323 -2.803 -2.118

Table 6.13: Medium rooms normalised by object results based on groupings found

Groupings Found 0 1 2 3 4 5

Scenes Count 368 468 226 50 6 2

Avg. logP (S|M1)/Ob j -5.310 -4.685 -4.813 -4.826 -4.920 -4.994

Avg. logP (S|M2,C ⇤)/Ob j -5.399 -3.769 -3.283 -3.042 -2.942 -2.660

Table 6.14: Big rooms results normalised by object based on groupings found

All the results in this section support the hypothesis that hierarchical models are

able to extract the inherent structure of scenes and learn how objects arrange in scenes.



Chapter 7

Conclusions

In the previous chapters we defined two probabilistic models for 3D scene sampling

and evaluation and provided several experiments which test the probability of real

world scenes under both models. Moreover, we presented the results of these ex-

periments under different room sizes data-sets and made further analysis of how our

hierarchical model can be used to learn the hierarchical structure of scenes.

In this chapter we put our results into context, analysing how they fit in with the

related work in the field and summarise our contributions to the field of generative

modelling of 3D scenes. Moreover, we do some further discussion on the possible

drawbacks of our experiments and finally, we present some future research ideas that

could follow this project.

7.1 Contributions

In this dissertation we presented two baseline generative models for 3D scenes, one

that models scenes with no hierarchical interpretation and one that models scenes as

hierarchical structures and accounts for the relationship between objects. These two

models are properly normalised and are tractable enough that the probability of scenes

can be evaluated. The main contribution to the field is that we provide two properly

defined baseline models that are able to evaluate the probability of real scenes. More-

over, we test an already presented method for learning scene arrangements and we use

objects spatial relationships to learn the hierarchical representation of a scene under

our hierarchical model. Finally, we tested our hypothesis that hierarchical models are

better for representing the inherent structure of scenes compared to flat models. These

contributions are going to be discussed in this section.

52
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Much of the literature in the area as Henderson and Ferrari (2017); Fisher et al.

(2012) has focused on the problem of generating new scenes and getting realistic re-

sults, however, in practice the likelihood of scenes under these models is intractable.

This is given by the fact that most models at some level introduce human crafted

rules to make scenes look more realistic and by doing this the models become non-

parametric. Moreover, modelling the representation space of 3D scenes with prob-

ability distributions is a high dimensional problem which has not been completely

solved. In this dissertation we presented two models which are parametric, normalised

and tractable, therefore, the probability of real scenes can be evaluated. On the other

hand, these models have a high rejection rate generating more invalid scenes than valid

scenes and the generated scenes are not comparable with humanly generated scenes.

Nevertheless, these results were expected since the motivation of this project was re-

lated to the evaluation of scenes rather than defining realistic generative models. Nowa-

days, when evaluating generative models these are evaluated using perceptual tests,

which involve human participants deciding whether synthetic scenes or human gener-

ated scenes look more realistic. The models presented in this research, and particularly

model M2 could be used as a baseline to evaluate generative models by comparing the

probability of synthetic scenes to real scenes under the model. Nevertheless, this pos-

sibility has to be addressed by future research.

Learning scene arrangements using Gaussian Mixture models based on pairwise

spatial relationships between objects in combination with finding the maximum prob-

ability hierarchical representation provides a new method for learning scene graphs.

To our knowledge this approach has not been reported in the past. The closest to our

method, is the work by Liu et al Liu et al. (2014) which uses probabilistic grammars

models to learn the hierarchical graph of scenes. Moreover, based on work by Hen-

derson and Ferrari (2017) we did further exploration over the idea of using an Infinite

Gaussian mixture model to model pairwise relationship between objects. This ap-

proach was also recently used by Wang et al. (2018) for comparison to evaluate their

generative model, and in the past by Fisher et al. (2012) using a finite mixture model. In

our research we explored different ways in which objects arrangements can be model

using this method and decided that using full covariance matrices yields better results

when using the learned probability distribution to evaluate objects arrangement as well

as sampling new ones.

Both models were developed in order to test the hypothesis that hierarchical mod-

els are able to learn the inherent structure of scenes. From the results obtained we can
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clearly conclude that modelling scenes using hierarchical structures based on spatial

objects arrangements learns valuable information from scenes, and therefore, scenes

evaluated under model M2 have a higher average probability than when evaluated un-

der model M1. This suggests that model M2 is better for modelling the indoor scene

space than model M1. Finally, when testing how the probability of scenes changes as

the groupings are added, we can conclude that clustering objects increases the prob-

ability of scenes under model M2 which implies that clustering objects and building

hierarchical structures is a more realistic way of modelling scenes. Therefore, the ben-

efits of using a hierarchical model are clearly expressed by the results of this project

and we can conclude that hierarchical models are better for representing the inherent

structure of scenes than flat models.

7.2 Discussion

In this section we discuss about our models formulation and suggest improvements to

them given the results obtained.

In analysing our results, the first drawback of our models seems to be the use of a

categorical distribution on a discrete grid of cells for modelling the spatial distribution

of object classes in scenes. This can generate big discrete jumps in the probability

values for adjacent cells. It is sensible to think that a more realistic approach will be to

use a well defined continuous PDF function to model the spatial distribution of object

classes in scenes. Our motivation for using the categorical distribution was simplicity,

however, it should be possible to extend this to the continuous domain in future work.

The SUNCG data-set provides a significant amount of data and has enabled several

new data driven methods to sample new scenes and some deep learning approaches

to this problem. However, the provided data is quite noisy and contains scenes with

alien objects. For example, objects as sinks and toilets or kitchen appliances appear in

scenes labelled as bedrooms which was our target study room type. Having said this,

although a data cleaning process was done before training our models a more extensive

filtering process can lead to better results when sampling new rooms.

Doing an exhaustive search in order to find the maximum probability configuration

C ⇤ is a simple solution to the problem and is effective for small object counts. Nev-

ertheless, it was the case that some complex scenes with more than 20 objects took

more than 30 minutes to be solved. This problem could be addressed in the future as a

dynamic programming problem in order to find the optimal solution faster.
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Finally, further improvement to the models could be done by learning probability

distributions over the rotations of objects and object’s CAD models. This can lead to

more realistic results when generating scenes new scene.

7.3 Future Research Work

Given the results of our research in this section we analyse some possible research

directions based on our project.

The first sensible suggestion to continue with this research is to explore how more

levels of hierarchical grouping work when learning arrangements and generating the

hierarchical graph. Given that motif occurrences are labelled when doing the process

of learning object arrangements is should be possible to cluster motifs together using

a Gaussian Mixture Model. Moreover, in this particular project a constrained number

of classes was used to learn object arrangements. However, the number of classes that

can form groupings in scenes is not completely explored, this could also be explored

in the future. Furthermore, the same experiments presented in this project could be

expanded for different room types.

As mentioned beforehand our models are effective at evaluating the probability of

real scenes, and these could be used in the future to evaluate and compare models.

This possibility could be explored by comparing the probability of synthetic scenes

generated by various generative models to the probability of human generated scenes.

Moreover, the result should be correlated with the results obtained from perceptual

tests, to validate if the probability results from our models suggest the same results as

human supervised validation. Nevertheless, in order to do so it is sensible to think that

rotations for objects and CAD models should be included in the modelling process.

Finally, some recent research such as Wang et al. (2018) have address the scene

synthesis problem as conditional problem, were each object is sampled conditional to

the prior sampled objects. In our case for evaluating the probability of new scenes it

is interesting to model the occurrence probability of objects as a joint distribution. In

our occurrence models, the presence of an object is sampled independently for each

object class. Given the amount of data provided by the SUNCG data set it would be

sensible to try to estimate the joint probability distribution for the occurrence of objects

in scenes, at least for furniture objects. This could be done using a mixture model or

estimating the distribution with Neural Autoregressive Density Estimation (NADE)

Uria et al. (2016) or a Restricted Boltzmann Machine.



Appendix A

Dataset Statistics

A.1 Statistics model M1

Object Class Count Object Class Count Object Class Count

desk 3121 dresser 2483 chair 1405

car 33 bicycle 1 sink 105

bench chair 8 shower 37 tv stand 1171

armchair 1165 ottoman 1175 dressing table 1582

motorcycle 15 game table 2 kitchen cabinet 115

tripod 5 wardrobe cabinet 9719 stand 6872

trash can 13 shoes cabinet 318 storage bench 2

wood board 10 basketball hoop 9 single bed 4159

baby bed 662 double bed 6300 fence 10

table 1 coffee table 1125 fireplace 63

chair set 4 goal post 7 sofa 509

toilet 73 office chair 1988 bathtub 34

workplace 42 bunker bed 908 gym equipment 120

dining table 112 table and chair 8

Table A.1: Class counts for small rooms under model M1
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Object Class Count Object Class Count Object Class Count

desk 4017 dresser 3568 chair 2180

car 33 sofa 1399 bench chair 11

shower 10 tv stand 2421 armchair 2299

ottoman 2556 dressing table 2638 motorcycle 18

game table 24 kitchen cabinet 179 tripod 6

wardrobe cabinet 11411 stand 9707 trash can 11

storage bench 2 double bed 8065 wood board 6

basketball hoop 16 single bed 3418 baby bed 696

sink 44 fence 30 table 4

coffee table 1979 fireplace 195 chair set 2

goal post 13 shoes cabinet 744 toilet 25

kitchen set 2 office chair 2672 bathtub 17

workplace 122 bunker bed 953 gym equipment 195

dining table 190 table and chair 28

Table A.2: Class counts for medium rooms under model M1
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Object Class Count Object Class Count Object Class Count

desk 3645 dresser 3240 fireplace 309

car 22 sink 52 bench chair 10

shower 19 tv stand 2798 armchair 3185

ottoman 3028 dressing table 2890 motorcycle 16

game table 49 kitchen cabinet 755 tripod 3

wardrobe cabinet 10299 stand 8647 trash can 9

storage bench 8 wood board 17 basketball hoop 27

single bed 2721 baby bed 576 double bed 7484

fence 29 coffee table 2696 chair 2147

chair set 7 goal post 10 shoes cabinet 966

toilet 34 kitchen set 18 sofa 2340

office chair 2532 bathtub 21 table and chair 91

bunker bed 738 gym equipment 287 dining table 256

drinkbar 1 workplace 245

Table A.3: Class counts for big rooms under model M1
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Figure A.1: Cell grid with object count per class for small Rooms M1
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Figure A.2: Cell grid with object count per class for small Rooms M1
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Figure A.3: Cell grid with object count per class for Medium Rooms M1
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Figure A.4: Cell grid with object count per class for Medium Rooms M1
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Figure A.5: Cell grid with object count per class for Big Rooms M1
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Figure A.6: Cell grid with object count per class for Big Rooms M1
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A.2 Statistics model M2

Object Class Count Object Class Count Object Class Count

desk 900 dresser 1623 chair 938

car 33 bicycle 1 sink 105

bench chair 8 shower 37 tv stand 1171

armchair 1165 ottoman 1175 dressing table 1582

motorcycle 15 game table 2 kitchen cabinet 115

tripod 5 wardrobe cabinet 9719 stand 2387

trash can 13 shoes cabinet 318 storage bench 2

wood board 10 basketball hoop 9 single bed 2326

baby bed 662 double bed 3915 fence 10

table 1 coffee table 1125 fireplace 63

chair set 4 goal post 7 sofa 509

toilet 73 office chair 234 bathtub 34

workplace 42 bunker bed 908 gym equipment 120

dining table 112 table and chair 8

Table A.4: Class counts for independent objects in small rooms under model M2

Motif Count Motif Count

233c3c40-bed5-4361-8f9a-ad96428619b2 462 fd9f9408-1ff1-47db-8228-0534e4cec7ca 340
4c87a529-5454-4515-872c-8ad580a32df7 132 a4b565e4-d3e9-41cf-94fd-374c9aba5ec0 465
c34751e4-ac2f-41b6-9e0d-fefe1b1f4c03 95 78b55f48-9599-4cf2-99e6-d3ab3499ced4 98
b87f69a5-e526-4bdd-9a5c-ec34127fdd5e 372 84fc9496-3e7d-4ced-b048-debe9515598a 237
8ea30cdd-78a6-4232-a424-4737a3866214 115 0c36a617-bf63-4c36-baef-a95455331e20 237
cfe70ef8-a93c-4641-b728-d64bc9abffdc 73 2e0a141d-d0a4-4bbe-9ac2-be611a8597ca 573
99456681-3f1a-4c48-ba76-dd6c0f9dc0f7 89 8f21bb71-ee45-4e1c-bb93-176dca1573dd 166
f9f66d53-28af-46be-b28c-118bd9ee2d6f 139 a39b1fa7-17bc-4da7-a564-d5f454e4b2f7 85

7367b48c-9b5b-402f-9b75-216ca00c97e8 58 692d2588-cbf0-48e0-b641-aa8844ad1fdc 1664
c62a116b-6f1f-4f8c-b936-bb28916e984e 95 3ca4fb05-d61d-458f-b5ff-b16165569c00 106
9875db7f-1af8-4b81-b885-8b50fec340ed 90 ad87619d-7d2b-4412-ab06-4e84faf988d7 367
03943e84-fd0b-42b1-8970-42367069c3c9 55

Table A.5: Motifs occurrences counts in small rooms under model M2
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Object Class Count Object Class Count Object Class Count

desk 1161 dresser 2935 chair 1601

car 33 sofa 1399 bench chair 11

shower 10 tv stand 2421 armchair 1671

ottoman 2556 dressing table 2638 motorcycle 18

game table 24 kitchen cabinet 179 tripod 6

wardrobe cabinet 11411 stand 2613 trash can 11

storage bench 2 double bed 4613 wood board 6

basketball hoop 16 single bed 1645 baby bed 696

sink 44 fence 30 table 4

coffee table 1821 fireplace 195 chair set 2

goal post 13 shoes cabinet 744 toilet 25

kitchen set 2 office chair 395 bathtub 17

workplace 122 bunker bed 953 gym equipment 195

dining table 190 table and chair 28

Table A.6: Class counts for independent objects in medium rooms under model M2

Motif Count Motif Count

f6ff3122-983f-4f89-9426-427778ec27bc 204 bc092a6f-0083-4a84-927b-f4add001bd71 104
ebc2451d-1554-42d4-833f-fc0dd5cacbd9 130 fd007943-1b79-452a-9ccf-39982c66f00a 40
d7751799-a7c7-4bb9-a985-f09ff079ae03 465 15517aa8-62ec-44ed-a24f-b76cb1ceaafe 40
5f6bf163-1090-4879-8958-688aaa9af1d4 158 ffb06229-67c2-48d3-8efd-ff3bca3b8e3e 56
7024f768-1295-4431-a106-c285406161d5 54 5133c79c-dda3-4e1d-b810-d53fdd94178a 38
4bd692d5-bebc-4da8-b8db-135a56bc897a 153 20519d7d-921f-46eb-9790-af132c39f070 133
98a750ba-7265-40fe-a177-dde56dbebbaf 270 736f8a3e-79c0-42c4-a922-2bdb8e1f6456 41
2aa61777-2459-4a17-b42e-7882a3cf7b4c 79 aee028df-d7f3-4ee8-9d39-a03f530d65a6 44
f715e71e-c781-4cc0-b3ae-cb30124667e5 24 3fdf4331-9ad0-4bac-8d25-190b4646b441 906
f1e50d99-283e-40a2-ade6-87c03dcfb494 35 cae7d1c4-df61-4561-9b15-3518ba50008d 290
d441fda1-5379-438f-a480-b057e4be7186 162 44b88cfd-d866-47d4-847b-2a47299a971a 397
f7765cad-e3db-4258-8745-fa14235b9626 342 e13b9781-f22b-4327-adb1-cc60698f2026 2685
a952390d-afc8-4f24-b8fe-335fde6a0891 59 d23da005-97dc-4567-848d-d83cf378ded4 22
63c50d51-6d77-4ed6-a76f-f3fea5fcb773 305 5bccca56-6859-4580-9b8d-0f4987423d3e 60
5ae0633a-bf14-4228-bba3-01800c5f044e 500 4709f83d-b46b-421f-90d1-04f4963a7834 80
6a949ee8-deb5-432c-bf4a-71a629a64ae4 132 cf427cae-1445-4247-b824-6b2272ccaa85 95

Table A.7: Motifs occurrences counts in medium rooms under model M2



Appendix A. Dataset Statistics 67

Object Class Count Object Class Count Object Class Count

desk 1109 dresser 2778 chair 1691

car 22 sink 52 bench chair 10

shower 19 tv stand 2558 armchair 1984

ottoman 3028 dressing table 2890 motorcycle 16

game table 49 kitchen cabinet 755 tripod 3

wardrobe cabinet 10299 stand 2424 trash can 9

storage bench 8 wood board 17 basketball hoop 27

single bed 1308 baby bed 576 double bed 4278

fence 29 coffee table 2006 table and chair 91

fireplace 309 chair set 7 goal post 10

shoes cabinet 966 toilet 34 kitchen set 18

sofa 1317 bathtub 21 workplace 245

bunker bed 738 gym equipment 287 dining table 256

drinkbar 1 office chair 452

Table A.8: Class counts for independent objects in big rooms under model M2

Motif Count Motif Count

ca925e25-148a-4585-a426-a9f07fbeac16 90 7af4edaa-6b89-4199-a33a-3ea354191acd 161
91cf2a6a-4939-4945-b0b6-9e8b93f6276d 30 f4a355ad-2ddf-4fd9-9e95-28ebad631271 23
ea8fe884-575a-4860-885e-366e928ac7b5 25 ff956359-2d07-444d-b9a9-f68bf30c8365 262
dcb9fcb0-bdea-4fe5-882a-9a7a58c28a4c 60 58b86a16-c7b0-4193-88f6-ed4fb73dbba4 155

170c8c01-2029-4b81-b7df-6938b6cd1009 309 c666b0a0-b1e2-45c1-a288-4c9cbb7f2310 30
492a1079-d9af-4c64-9d1d-bad5a8cee27d 43 86dc6bd9-0f67-4191-826e-b8cc05ae50f7 57
99a327df-48fe-41ae-a5bf-c7cf5b00d488 45 1f29cba1-dc69-4b3d-a0cf-f27494c3ecc7 48
680e60aa-f58e-4042-b51e-b3e3ce9f1e9f 2345 51103616-50d2-4f4b-814e-6f0c02816eef 244
38fcfe54-723b-4cc0-aa7c-a04f47d5a6c3 832 1e966779-bf68-482b-a508-48c82aa6f690 77

ca17353b-7036-4c0c-8981-13261152f861 62 6d99557e-6759-4e4b-94e8-e865bd64183f 38
ceece28c-d342-4bfb-b12b-21f87961b8ce 60 9ca6b7a8-b6b0-4461-880b-084817e7e558 473
53907426-c2e6-45e4-9e87-b4de4d3307ab 47 47c122ae-f43e-4a7f-9e26-3ce539bfec85 317
57b4278d-8dee-4067-9948-2e8fd45f3d15 353 954dc8c3-0f20-4b30-863d-bb3c02c3d439 156
f2c2d2c1-cf06-45ea-b5fd-cd5c1c0708a7 399 8bee4038-d215-4053-a30f-cd38ec048213 74
1b05d50a-fa4e-41c7-9f42-07b7cf82e5ca 51 dacd76f3-a7b2-450d-9403-186f29a63ae6 126
4fc4336e-411d-48a4-a127-5ca8213fb580 351 a4278932-c148-4d01-a510-bac8fd3848f3 126
0c5a94a1-1400-422b-bd34-3f20e5fa0333 141 61787d43-6a95-4734-b0de-5b758f339138 240
644ba11f-3931-4881-931e-e84d3689cfb2 45 4aadb471-ab02-4c96-819c-d58117d4965e 55
2adae9d6-07cc-4b6f-b756-c786ed9c1568 57 4b2db7b6-640b-400a-853d-5139606dd0cf 160
0ead0e91-2d1f-4ae4-be47-a6568e870d64 178 7204631a-071e-49d4-bf64-8abbbc3cf34b 48

Table A.9: Motifs occurrences counts in big rooms under model M2
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Figure A.7: Count of Motifs occurrences in grid for small Rooms M2
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Figure A.8: Count of Motifs occurrences in grid for small Rooms M2
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Figure A.9: Count of Motifs occurrences in grid for medium Rooms M2
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Figure A.10: Count of Motifs occurrences in grid for medium Rooms M2
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Figure A.11: Count of Motifs occurrences in grid for medium Rooms M2
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Figure A.12: Count of Motifs occurrences in grid for big Rooms M2
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Figure A.13: Count of Motifs occurrences in grid for big Rooms M2
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Figure A.14: Count for Motifs occurrences in grid for big Rooms M2
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Figure A.15: Count for Motifs occurrences in grid for big Rooms M2



Appendix B

Learning Objects Arrangements in

Practice

B.1 List of Class Clusters

• (’bed/double bed’, ’stand/stand’, ’stand/stand’)

• (’bed/double bed’, ’dresser/dresser’)

• (’bed/single bed’, ’stand/stand’, ’stand/stand’)

• (’bed/single bed’, ’stand/stand’)

• (’bed/single bed’, ’dresser/dresser’)

• (’bed/single bed’, ’bed/single bed’)

• (’desk/desk’, ’chair/office chair’)

• (’desk/desk’, ’chair/chair’)

• (’workplace/workplace’, ’chair/office chair’)

• (’workplace/workplace’, ’chair/office chair’, ’chair/office chair’)

• (’sofa/sofa’, ’sofa/sofa’)

• (’sofa/sofa’, ’tv stand/tv stand’)

• (’sofa/sofa’, ’table/coffee table’)

• (’chair/armchair’, ’chair/armchair’)

• (’chair/armchair’, ’table/coffee table’)

• (’music/piano’, ’ottoman/ottoman’)

• (’vehicle/car’, ’vehicle/car’)

• (’gym equipment/gym equipment’, ’gym equipment/gym equipment’)
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B.2 Learning with Diagonal Covariances

Figure B.1: Motifs for small rooms learned with diagonal covariance matrices. Real

occurences and samples
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Figure B.2: Motifs for small rooms learned with diagonal covariance matrices. Real

occurences and samples
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B.3 Learning with Full Covariances

Figure B.3: Motifs for small rooms learned with full covariance matrices. Real oc-

curences and samples
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Figure B.4: Motifs for small rooms learned with full covariance matrices. Real oc-

curences and samples
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B.4 Fitting Rotations to Model

Figure B.5: Motifs for small rooms learned fitting rotations and with full covariance ma-

trices. Real occurences and samples
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Figure B.6: Motifs for small rooms learned fitting rotations and with full covariance ma-

trices. Real occurences and samples



Appendix C

Sampling new scenes

C.1 Samples M1

Figure C.1: Valid scenes small rooms

Figure C.2: Invalid scenes small rooms
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Figure C.3: Valid scenes medium rooms

Figure C.4: Invalid scenes medium rooms

Figure C.5: Valid scenes big rooms
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Figure C.6: Invalid scenes big rooms

C.2 Samples M2

Figure C.7: Valid scenes small rooms

Figure C.8: Invalid scenes small rooms
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Figure C.9: Valid scenes medium rooms

Figure C.10: Invalid scenes medium rooms

Figure C.11: Valid scenes big rooms
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Figure C.12: Invalid scenes big rooms



Appendix D

Probability of scenes based on object

count

Figure D.1: Probability of small Rooms labeled by object count
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Figure D.2: Probability of Medium Rooms labeled by object count

Figure D.3: Probability of Big Rooms labeled by object count
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Figure D.4: Probability of small Rooms normalized by object count labeled by object

count

Figure D.5: Probability of Medium Rooms normalized by object count labeled by object

count
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Figure D.6: Probability of Big Rooms normalized by object count labeled by object count
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Ankur Handa, Viorica Pătrăucean, Simon Stent, and Roberto Cipolla. Scenenet: An

annotated model generator for indoor scene understanding. In Robotics and Au-

tomation (ICRA), 2016 IEEE International Conference on, pages 5737–5743. IEEE,

2016.

W Keith Hastings. Monte carlo sampling methods using markov chains and their

applications. 1970.

Paul Henderson and Vittorio Ferrari. A generative model of 3d object layouts in apart-

ments. arXiv preprint arXiv:1711.10939, 2017.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engi-

neering, 9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

Scott Kirkpatrick. Optimization by simulated annealing: Quantitative studies. Journal

of statistical physics, 34(5-6):975–986, 1984.

Tianqiang Liu, Siddhartha Chaudhuri, Vladimir G Kim, Qixing Huang, Niloy J Mitra,

and Thomas Funkhouser. Creating consistent scene graphs using a probabilistic

grammar. ACM Transactions on Graphics (TOG), 33(6):211, 2014.

93



Bibliography 94

Paul Merrell, Eric Schkufza, Zeyang Li, Maneesh Agrawala, and Vladlen Koltun. In-

teractive furniture layout using interior design guidelines. In ACM transactions on

graphics (TOG), volume 30, page 87. ACM, 2011.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H

Teller, and Edward Teller. Equation of state calculations by fast computing ma-

chines. The journal of chemical physics, 21(6):1087–1092, 1953.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

Siyuan Qi, Yixin Zhu, Siyuan Huang, Chenfanfu Jiang, and Song-Chun Zhu. Human-

centric indoor scene synthesis using stochastic grammar. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 5899–5908, 2018.

Carl Edward Rasmussen. The infinite gaussian mixture model. In Advances in Neural

Information Processing Systems 12, pages 554–560. MIT Press, 2000.

Sylvia Richardson and Peter J Green. On bayesian analysis of mixtures with an un-

known number of components (with discussion). Journal of the Royal Statistical

Society: series B (statistical methodology), 59(4):731–792, 1997.

Nicolas Rondan. Informatics research proposal: Learning scene arrangements. 2018.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmenta-

tion and support inference from rgbd images. In European Conference on Computer

Vision, pages 746–760. Springer, 2012.

Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas

Funkhouser. Semantic scene completion from a single depth image. IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2017.

John W Tukey. Exploratory data analysis, volume 2. Reading, Mass., 1977.
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