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    Abstract     Soil bacteria living around plants exert neutral, benefi cial, or detrimental 
effects on plant growth and development. These effects are the result of signal 
exchange in which there is a mutual recognition of diffusible molecules produced 
by the plant and microbe partners. Understanding the molecular signaling network 
involved in microbe–plant interaction is a promising opportunity to improve crop 
productivity and agriculture sustainability. Many approaches have been used to 
decipher these molecular signals, and the results show that plants and microorganisms 
respond by inducing the expression of, and releasing, a mixture of molecules that 
includes fl avonoids,  phytohormones, pattern recognition receptors, nodulins, lectins, 
enzymes, lipo-chitooligosaccharides, exopolysaccharides, amino acids, fatty acids, 
vitamins, and volatiles. 

 This chapter reviews current knowledge of the diverse signaling pathways 
that are turned on when plants interact with benefi cial microbes, with emphasis on 
 bacteria belonging to the genera  Rhizobium ,  Azospirillum , and  Pseudomonas .  

        Benefi cial Rhizospheric Microbes 

 Mutualistic association between microbes and plants brings benefi ts to the interacting 
partners. Some mutualistic microbes (plant–arbuscular mycorrhizal fungi interactions 
have been excluded from this chapter) are rhizospheric bacteria known as plant growth 
promoting rhizobacteria (PGPR) (Glick  1995 ) because they exert a positive infl uence 
on plant growth. Over the last decade, several PGPR have been isolated and used as 
bio-fertilizers, giving insight into good agronomical practices (Morel et al.  2012 ). 
Their contribution to plant growth promotion (PGP) can be exerted through direct 
and/or indirect mechanisms. Bacteria that use direct PGP mechanisms secrete metab-
olites such as hormones and polysaccharides, among other molecules, that infl uence 
root and shoot development. Indirect PGP effects include the secretion of bacterial 
metabolites with deleterious properties against the growth of phytopathogens (Lopez-
Bucio et al.  2007 ). These bacteria are collectively called biocontrol agents. 

 The best-known microbe–plant mutualistic interaction is the diazotrophic micro-
bial association with plants. Diazotrophs are free-living or symbiotic microbes that 
fi x and reduce atmospheric nitrogen to ammonia. This process, called biological 
nitrogen fi xation (BNF), is catalyzed by the bacterial enzyme nitrogenase (Masson- 
Boivin et al.  2009 ; Bhattacharjee et al.  2008 ). Examples of bacterial diazotrophs are 
 Azotobacter  (free-living diazotroph),  Azospirillum  (associative symbiont),  Azoarcus  
and  Gluconacetobacter diazotrophicus  (endophytic non-nodular symbionts), and 
rhizobia (endophytic nodular symbionts). PGPR also produce phytohormones 
(Cassán et al.  2009 ), iron-sequestering siderophores (Yadegari et al.  2010 ), phosphate- 
solubilizing molecules (Wani et al.  2007 ), and/or 1-aminocyclopropane- 1-carboxylate 
deaminase (Remans et al.  2007 ), among others. Examples of non- diazotrophic PGPR 
are  Pseudomonas  and  Bacillus  (Parmar and Dufresne  2011 ). 

 There is an exchange of signaling molecules between both interacting partner 
cells in mutualistic PGPR–plant interactions, leading to changes in gene expression. 
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This chapter reviews the progress in molecular signaling research involving benefi -
cial microbe–plant interactions reported in recent years. 

    Rhizobia–Legume Symbiotic Association 

 The rhizobia–legume association is the best-known endosymbiotic microbe–plant 
interaction and, together with plant–mycorrhizal fungi interactions, is recognized 
for its importance in sustaining agricultural ecosystems and productivity. Rhizobia 
consist of several genera of the subclass Alpha- and Betaproteobacteria that are well 
known for their ability to form mutualistic associations, especially (but not exclu-
sively) with leguminous plants ( Fabaceae ). Rhizobia induce the formation of root 
nodules where BNF occurs (Bapaume and Reinhardt  2012 ). The rhizobia–legume 
association is specifi c (each rhizobium establishes a symbiosis with only a limited 
set of host plants and vice versa). Plants mutually compatible with the same species 
of  Rhizobium  are called “cross-inoculation groups” (Morel et al.  2012 ). 

 Root colonization by rhizobia is accompanied with important changes in root 
architecture and gene expression in root and shoot, which lead to the nitrogen-fi xing 
phenotype. During the process of BNF, rhizobia provide reduced nitrogen to the 
plant in exchange for carbohydrates and a micro-aerobic environment for the effec-
tive functioning of the oxygen-sensitive nitrogenase. Establishment of the symbiosis 
requires the reciprocal recognition of partners and the production of various 
signaling molecules that are required to regulate nodule initiation and differentiation 
and  nitrogen fi xation. Briefl y, nitrogen fi xation is preceded by root morphological 
changes that include highly coordinated events. Most legumes constitutively release 
root-diffusible attractant signal molecules (fl avonoids), which trigger rhizobial 
production of specifi c lipo-chitooligosaccharides known as nodulation factors 
(Nod Factors or NFs) (Hassan and Mathesius  2012 ) (see section “ Extracellular 
Polysaccharides ”). NFs are among the most important molecules in the microbe–
plant dialog, mediating rhizobia recognition by the plant root and nodule organogen-
esis (Masson-Boivin et al.  2009 ). NF recognition is accompanied by curling of root 
hairs, where bacteria are entrapped, and formation of plant-derived infection threads 
(IT) that carry the rhizobia into the dividing cells of the inner cortex, the nodule 
primordium (Fournier et al.  2008 ). Then, rhizobia are released into the nodule 
primordium where they differentiate into bacteroids, the symbiotic rhizobial form 
that expresses the nitrogen-fi xing enzyme, nitrogenase (Oldroyd et al.  2011 ). 

 Rhizobia–legume symbiosis is regulated by transcriptional reprogramming of 
host cells that ensures the functioning of the nodule. Many reprogrammed genes are 
membrane proteins with important roles in signaling, intracellular accommodation, 
and nutrient transport (Bapaume and Reinhardt  2012 ; see section “ PGPR and Plant 
Root Attachment ”). In addition to BNF, most rhizobia have been found to produce 
auxins. The roles of auxins in rhizobia–legume interactions are related to plant 
growth and nodule organogenesis (Lambrecht et al.  2000 ; see section “ Phytohormones 
Production ”).  
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     Azospirillum –Plant Association 

 Bacteria belonging to the genus  Azospirillum  are free-living, nitrogen-fi xing, 
surface- colonizing, and, sometimes, endophytic diazotroph Alphaproteobacteria 
(family Rhodospirillaceae).  Azospirillum  spp. establish associations that are 
benefi cial to plants, but with no apparent preference for specifi c plants, and can be 
successfully applied to plants that have never been colonized before by azospirilla 
(Bianco and Defez  2011 ; Guerrero-Molina et al.  2011 ; Reis et al.  2011 ). Currently, 
there is a limited market for commercial bio-fertilizers for non-legume crops 
based on  Azospirillum  spp., but they have been shown to be effi cient PGPR 
(Figueiredo et al.  2010 ). 

  Azospirillum  is a nitrogen-fi xing microbe, but given that azospirilla promote 
plant growth even in nitrogen-rich conditions, PGP by  Azospirillum  might be 
attributed to other mechanisms rather than BNF (Okon and Kapulnik  1986 ), 
such as deamination of the ethylene precursor 1-aminocyclopropane-1-carboxylate 
and siderophore (Tortora et al.  2011 ), auxin, or nitric oxide production (Baudoin 
et al.  2010 ; Spaepen et al.  2007 ). Among these PGP properties, auxin production 
is thought to be the main mode of action of  Azospirillum brasilense . This assump-
tion was corroborated in experiments using genetically modifi ed azospirilla that 
showed enhanced auxin production (Baudoin et al.  2010 ; Spaepen et al.  2007 , 
 2008 ). Many other workers have also reported that plant hormone production by 
 Azospirillum  spp. is the main mechanism that explains the PGP effect (Reis 
et al.  2011 ; Bashan et al.  2004 ; Lambrecht et al.  2000 ; Okon and Labandera-
Gonzalez  1994 ). Auxin production by azospirilla promotes root development 
and proliferation, leading to enhanced nutrient uptake (Lambrecht et al.  2000 ) 
and increased root exudation of molecules to the rhizosphere. Molecules exuded 
by the root act as chemoeffectors that attract azospirilla to the rhizosphere (che-
motaxis), thereby increasing the chance of root–bacterial interactions. This was, 
and still is, the mechanism that in fact explains how azospirilla promote plant 
growth (Hayat et al.  2010 ). 

 Azospirilla are considered “helper” bacteria that promote rhizobia–plant interac-
tions (Morel et al.  2012 ). Co-inoculation with azospirilla stimulates nodulation 
(early nodulation and more nodules), nodule function, and plant growth and devel-
opment when compared with inoculation with rhizobia alone (Bianco and Defez 
 2011 ; Remans et al.  2008 ). The evidence supports a mix of molecules secreted to 
the rhizosphere being involved in improving rhizobia–legume association. Auxin 
production by azospirilla, during co-inoculation, stimulates morphological and 
physiological changes in the root system, increasing the number of potential sites 
for rhizobial infection, thus leading to a much higher number of nodules (Bianco 
and Defez  2011 ). Some direct evidence also suggests that during co-inoculation, 
 Azospirillum  spp. induce the synthesis of chemoattractant fl avonoids by roots of 
chickpea, common bean, and alfalfa (Star et al.  2012 ; Dardanelli et al.  2008 ; 
Burdman et al.  1996 ; Volpin et al.  1996 ).  
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    Other PGPR–Plant Interactions 

 There is a long list of microbes that establish benefi cial interactions with plants, but 
some endophytes and  Pseudomonas  head the list. 

    Endophytes 

 Endophytes are bacteria that infect and colonize the plant apoplast, evading or 
suppressing the host plant defense system. Many facultative endophytic bacteria 
can also survive in the rhizosphere, where they can enter their host plant via the 
roots (Badri et al.  2009 ). PGPR are bacteria that live in soil near the root,  colonize 
the root surface, reside in root tissue, or live inside plant cells in specialized 
structures, promoting plant growth; thus, most endophytes might be considered 
PGPR. Given the semantic overlap and the difference between PGPR and endo-
phytes, many researchers have adopted two simple terms: intracellular PGPR 
(iPGPR), for bacteria residing inside plant cells, and extracellular PGPR (ePGPR) 
for those bacteria living outside plant cells, root surface, or rhizosphere (Gray 
and Smith  2005 ). However, the defi nition of endophytes is still controversial. 
Many authors claim that ePGPR are simply epiphytes and iPGPR are just endophytes 
(Ikeda et al.  2010 ). 

 In endophyte–plant interactions, bacteria are not restricted to a specifi c compart-
ment within the plant but can be found in roots, stems, and leaves. Like rhizobia, 
most endophytes commonly used as inoculants are diazotrophs that improve plant 
growth. Examples of endophyte–plant interactions are  Burkholderia  and sugarcane, 
 Herbaspirillum  and a broad range of host plants, and  Azospirillum  and rice 
(Govindarajan et al.  2008 ). It has been shown that crop yield increase after endo-
phyte inoculation is mainly due to BNF. Details about endophytes for non-legumes 
can be read in Bhattacharjee et al. ( 2008 ).  

     Pseudomonas  

 The genus  Pseudomonas  includes the most diverse and ecologically signifi cant 
group of bacteria, belonging to the class Gammaproteobacteria. They are ubiqui-
tously distributed in terrestrial and marine environments and have been found asso-
ciated with animals and plants (Kiil et al.  2008 ). Their genetic diversity is a 
refl ection of their ecological diversity (Silby et al.  2009 ). Many  Pseudomonas  spp. 
have been extensively studied as PGPR. There is evidence that some  Pseudomonas  
spp. produce siderophores (Rosas et al.  2006 ), phenolic compounds (Combes-
Meynet et al.  2011 ), lytic enzymes (Egamberdieva et al.  2010 ), and phytohormones 
(Pallai et al.  2012 ; Khalid et al.  2011 ; Khakipour et al.  2008 ); solubilize phosphate 
(Azziz et al.  2012 ); act as biocontrol agents of phytopathogenic microbes 
(Quagliotto et al.  2009 ); and induce systemic resistance (Bakker et al.  2007 ), thus 
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promoting plant growth. Moreover, some rhizospheric  Pseudomonas  spp. interact 
synergistically with other PGPR, assisting PGPR–plant colonization and suppress-
ing plant pathogens (Parmar and Dufresne  2011 ). Many studies support the action 
of  Pseudomonas  spp. as “helper” bacteria during the establishment of the rhizobia–
legume interaction, evidenced by the promotion of plant growth during co-inoculation 
(Morel et al.  2012 ; Malik and Sindhu  2011 ). This helper effect might be explained 
by the production of phytohormones (Malik and Sindhu  2011 ; Egamberdieva et al. 
 2010 ), a qualitative change in plant-secreted fl avonoids (Parmar and Dadarwal 
 1999 ), or the solubilization of non-available nutrients (mainly refi xation of exoge-
nously applied phosphorus), among other actions (Medeot et al.  2010 ).  

     Delftia  

 Recently, a new genus has emerged as a PGPR. Bacteria belonging to the genus 
 Delftia  have been described as novel PGP microbes (diazotrophic and biocontrol 
agents against various plant pathogens). They fi x atmospheric nitrogen, produce the 
auxin indole-3-acetic acid and siderophores, promote alfalfa and clover growth under 
nitrogen-rich conditions, and assist as a “helper” bacterium during rhizobia–legume 
interaction, probably due to auxin production (Ubalde et al.  2012 ; Morel et al.  2011 ; 
Han et al.  2005 ).    

    Early Signaling Events: The Role of Root Exudates 

 The root system of plants imports water and nutrients from the soil solution but also 
releases low- and high-molecular-weight compounds to the rhizosphere. Root exu-
dates are composed of a broad range of root-secreted molecules that act as a com-
plex chemical cocktail that mediates interactions occurring in the rhizosphere and 
shapes soil microbial communities (Okumoto and Pilot  2011 ). Their chemical com-
position is infl uenced by environmental conditions, plant genotype, and the multi-
partite interactions occurring in the rhizosphere, among other factors. 

 Carbon-based compounds are the main constituent of this complex cocktail, but 
ions, oxygen, and inorganic acids are also important components with relevant roles 
during rhizospheric interactions (Badri and Vivanco  2009 ). Exuded molecules 
include low-molecular-weight compounds, such as sugars and phenolics, and 
high-molecular- weight compounds such as polysaccharides and proteins, which 
often compose a larger proportion of the total mass of the exudate (Cai et al.  2012 ). 
Even though these chemicals are root-secreted, many rhizobacteria also secrete 
metabolites that contribute to the pool of molecules that mediate rhizospheric 
interactions (Badri et al.  2009 ). Table  6.1  summarizes examples of these bacterial-
secreted compounds and their general role in plants. The sections below describe 
current knowledge of different plant and bacterial metabolites involved in microbe–
plant interactions.
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   Table 6.1    Some bacterial-secreted compounds and their role in plant physiology and architecture   

 Chemical group 
 Bacterial 
metabolite  Plant response  Reference 

 Phytohormones  Salicylic acid, 
jasmonic 
acid, and 
ethylene 

 Immune plant 
defense activation 
through SAR a  
(mainly) and ISR b  

 Bent ( 2010 ), Bakker et al. 
( 2007 ), Ping and 
Boland ( 2004 ) 

 Inhibition of legume 
response to NF 
and rhizobia 

 Oldroyd and Downie 
( 2008 ), Ramos Solano 
et al. ( 2009 ), Ding 
et al. ( 2008 ), Sun et al. 
( 2006 ) 

 Cytokinins, 
auxins, and 
gibberellins 

 Phyto-stimulation. 
Morphogenesis 

    Morel et al. ( 2011 ), 
Cassán et al. ( 2009 ), 
Ferguson and 
Beveridge ( 2009 ), 
Boiero et al. ( 2007 ), 
Remans et al. ( 2007 ), 
( 2008 ), Lopez- Bucio 
et al. ( 2007 ), Spaepen 
et al. ( 2007 ) 

 Auxins  Pathogenesis (i.e., 
gall induction, 
necrotic lesions) 

 Ding et al. ( 2008 ), 
Chalupowicz et al. 
( 2006 ), Robert- 
Seilaniantz et al. 
( 2007 ), Lambrecht 
et al. ( 2000 ) 

  N -acyl- l -homoserine 
lactones (AHLs) 
and QS c -related 
signals 

 AHLs  Modulation of root 
system 
architecture 

 Ortiz-Castro et al. 
( 2008a ), von Rad et al. 
( 2008 ) 

 Induction of ISR  Schuhegger et al. ( 2006 ) 
 AHL-degrading 

lactonases 
 Interference with QS 

signals required 
for virulence in 
phytopathogens 

 Friesen et al. ( 2011 ) 

 Volatile organic 
compounds 

 Acetoin, 
butanediol, 
1-octen- 3-ol, 
and 
butyrolactone 

 Modulation of 
root system 
architecture 

 Gutierrez-Luna et al. 
( 2010 ), Lopez- Bucio 
et al. ( 2007 ) 

 ISR  Ryu et al. ( 2005 ), Ping and 
Boland ( 2004 ) 

 Phenolic compounds  Flavonoids, 
phenolic 
acids 

  nod -gene inducers  Mandal et al. ( 2010 ), 
Parmar and Dadarwal 
( 1999 ) 

 Antimicrobial 
agents, ISR 

 Combes-Meynet et al. 
( 2011 ), Parmar and 
Dufresne ( 2011 ) 

 Lipopolysaccharides 
(LPS) and 
extracellular-
related factors 

 Siderophores, 
LPS 

 ISR  Ping and Boland ( 2004 ) 

   a   SAR  systemic acquired resistance 
  b   ISR  induced systemic resistance 
  c   QS  quorum sensing  
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         Phytohormones Production 

 Phytohormones are chemical messengers produced by plants and microorganisms, 
which coordinate plant cellular activities at low concentrations (Ferguson and 
Beveridge  2009 ). Common phytohormones belong to fi ve major classes: auxins, 
cytokinins, gibberellins, abscisic acid, and ethylene. Other known phytohormones 
are brassinosteroids, salicylic acid, jasmonates, polyamines, nitric oxide, strigolac-
tones, etc. (Pieterse et al.  2009 ). The following microbes are known phytohormone 
producers:  Pseudomonas  (Khakipour et al.  2008 ),  Azospirillum  (Khalid et al.  2011 ), 
rhizobia (Etesami et al.  2009 ),  Bacillus  (Lim and Kim  2009 ), and  Delftia  (Morel 
et al.  2011 ). Microbial secreted hormones, mainly cytokinins (CKs) and auxins, act 
as signaling molecules that coordinate changes in plant cell division and differentia-
tion, affecting root and shoot architecture and functioning (Boiero et al.  2007 ; 
Lopez-Bucio et al.  2007 ; Ryu et al.  2005 ). In this section, we review information 
concerning phytohormones (auxins and CKs) that positively correlate with PGP 
during microbe–plant interaction (Tables  6.2  and  6.3 ).

    The    information supports the view that a mix of phytohormones, rather than a 
single effector, acts to control plant cellular processes at multiple levels (Yoshimitsu 
et al.  2011 ), including major effects on plant growth and the induction of plant immune 
defenses. During the microbe–plant interaction, bacterial-produced phyto- hormones, 
mainly auxins and CKs, also have phyto-stimulation effects (Robert- Seilaniantz et al. 
 2007 ). Most of the information that supports this affi rmation was gathered working in 
the areas of rhizobia–legume and azospirilla–wheat interactions. 

 CKs are purine derivatives produced in root tips and developing seeds and are 
transported via the xylem from roots to shoots (Ortiz-Castro et al.  2009 ). Some 
effects of CKs in plants are the induction of root and shoot cell division, cell growth 
and dedifferentiation, apical dominance, lateral bud growth, leaf expansion, and 
delayed senescence. Zeatin is the most common CK, but other cytokinin-like 
 substances are known: isopentenyladenine, isopentenyladenosine, zeatin riboside, 
and dihydrozeatin riboside (Davies  2010 ). CKs are probably the most studied 
 phytohormones involved in nodule organogenesis (Ariel et al.  2012 ; Op den Camp 
et al.  2011 ; Oldroyd and Downie  2008 ; Murray et al.  2007 ; Tirichine et al.  2007 ). 
They have been proposed as secondary signal molecules that perceive NF at the root 
 epidermis. In response to NF application at roots, a local increase in CK levels is 
detected, which induces nodule primordial development in the cortex cells, thus 
infl uencing bacterial infection (Heckmann et al.  2011 ; Ding et al.  2008 ; Murray et al. 
 2007 ; Oldroyd  2007 ; Tirichine et al.  2007 ). For instance, Murray et al. ( 2007 ) and 
Tirichine et al. ( 2007 ) showed that plant CK signaling pathway activation by rhizo-
bial cells is necessary (and suffi cient) to activate nodule formation in  L .  japonicum . 
CK production by plant-associated bacteria, other than rhizobia, has also been well 
documented. Some examples of CK-producing bacteria are  Bacillus megaterium  and 
 Azospirillum  (Ortiz-Castro et al.  2008b ). 

 Many plant pathogenic bacteria also secrete CK analogs or activate plant 
CK production to form gall structures, leading to delayed senescence activity 
and  suppression of plant basal defense mechanisms (Chalupowicz et al.  2006 ). 
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The production of CKs enhances pathogenicity and modulates the physiology of 
host plants (Choi et al.  2011 ). In contrast, plant-derived CKs may be involved in 
plant resistance to pathogen infection (Choi et al.  2011 ). However, the molecular 
mechanisms of CK action in disease resistance against a wide spectrum of patho-
gens and the reason for the opposite effects of CKs on plant responses against 
 pathogens are still unclear. 

 In addition to CKs, auxins also infl uence plant growth. Auxins are compounds 
with aromatic ring and carboxylic acid groups. The increasing amount of data about 
bacterial strains with the ability to increase the pool of auxins available to plants 
leads to the assumption that their production is one of the major direct factors that 
promote root and plant growth (Khalid et al.  2011 ; Ali et al.  2009 ). Auxins act on 
root architecture increasing the number of lateral roots and root hair elongation. They 
are also responsible for apical dominance acting as a signaling molecule in root and 
shoot growth (Ferguson and Beveridge  2009 ). As a result of increased root bulk, the 
plant may scavenge a larger area for nutrient and water uptake, and the root has a 
larger number of potential niches for benefi cial or pathogenic microbial infection. 

 Tryptophan is an amino acid commonly found in root exudates, and it is the main 
precursor of auxin biosynthesis (Etesami et al.  2009 ). Indole-3-acetic acid (IAA) is 
the main auxin in plants, controlling cell enlargement and division, tissue differen-
tiation, and responses to light and gravity. Many PGPR, such as  Azospirillum , 
 Pseudomonas ,  Delftia , and  Rhizobium  species, induce root proliferation through IAA 
production (Morel et al.  2011 ; Spaepen et al.  2007 ,  2008 ; Kapulnik et al.  1985 ). 
However, various phytopathogens also have the ability to produce IAA and/or alter 
its levels in plants, facilitating host infection and virulence and causing uncontrolled 
growth in plant tissues (mainly tumor and gall induction) (Chalupowicz et al.  2006 ; 
Robert-Seilaniantz et al.  2007 ).  Agrobacterium ,  Pseudomonas , and  Erwinia  produce 
IAA as part of their pathogenic behavior (Lambrecht et al.  2000 ). Other indolic 
compounds with auxin activity are indole-3-butyric acid, indole-3-pyruvic acid, 
indoleacetamide and indole-2-carboxylic acid (Lim and Kim  2009 ). 

 Gibberellins and brassinosteroids also play an important role during nodule for-
mation (Oldroyd and Downie  2008 ). It has been shown that brassinosteroids act 
together with auxins on many developmental plant processes (Yoshimitsu et al. 
 2011 ). Strigolactones are plant hormones that contribute to apical dominance 
(Ferguson and Beveridge  2009 ). They are exuded by roots in extremely low concen-
trations (Steinkellner et al.  2007 ). They act as chemical signals for root colonization 
by symbiotic arbuscular mycorrhizal fungi and inhibit shoot branching. Even though 
there are no reports of microbial production of strigolactones, it has been suggested 
that this class of phytohormones has biological signaling functions in the rhizo-
sphere (Tsuchiya and McCourt  2009 ; Steinkellner et al.  2007 ).  

    Other Secondary Metabolites 

 Plants produce an extremely diverse array of low molecular mass compounds, often 
called secondary metabolites, which include, among others, alkaloids, essential oils 
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or essences, steroids, terpenoids, and phenolic compounds. Some secondary 
 metabolites are commonly found in plants, but others are specifi c to only a few 
related plant species and/or are produced in particular conditions (Pichersky and 
Gershenzon  2002 ). Most of them are signaling molecules, and even if their roles in 
signaling are unknown, some are strictly necessary, like fl avonoids. Here, we sum-
marize some of the highlights of plant secondary metabolites involved in plant–
microorganism interaction, other than phytohormones, which have been covered in 
section “ Phytohormones Production .” 

    Volatile Organic Compounds (VOCs) 

 VOCs are molecules that have high vapor pressure and vaporize to the atmosphere 
under normal conditions (Ortiz-Castro et al.  2009 ). The fi rst report of a plant VOC 
was the plant hormone ethylene in the year 1910 (recognized as cell-to-cell signal 
transmission in 1934 by Gane) (Bleecker and Kende  2000 ). Since then, it has been 
accepted that plants produce and release a variety of diffusible compounds, includ-
ing low molecular weight compounds, such as terpenoids, modifi ed fatty acids, 
 benzenoids, and other scented substances (Ortiz-Castro et al.  2009 ; Ping and Boland 
 2004 ). Improved techniques for the collection and analysis of volatiles, such as gas 
chromatography-electroantennographic detection, have allowed the detection of 
new plant VOCs (Pichersky and Gershenzon  2002 ). VOCs act as plant growth regu-
lating substances that affect other organisms, acting, for example, as attractants and/
or repellents. Recently, some authors demonstrated that some PGPR can produce 
VOCs as signals that stimulate the growth of plants (Gutierrez-Luna et al.  2010 ). 
Examples of PGPR-producing VOCs are  B .  megaterium  (acetoin and butanediol 
producer) (Lopez-Bucio et al.  2007 ) and  Bacillus  spp. (1-octen-3-ol and butyrolac-
tone producer) (Gutierrez-Luna et al.  2010 ). Many VOCs have been detected in 
rhizospheric soil, but their role in microbe–plant interactions is still uncertain. It has 
been suggested that VOCs may have antibiotic functions acting in the control of 
plant pathogens, induce different phytohormonal signaling networks (Ortiz-Castro 
et al.  2009 ), or activate induced systemic resistance (ISR) via a salicylic acid- and 
jasmonic acid-independent pathway (Ping and Boland  2004 ). For example, the 
VOCs 2,3-butanediol and acetoin, released by  Bacillus  spp., trigger growth promo-
tion of  Arabidopsis  seedlings and induce systemic resistance against  Erwinia caro-
tovora  (Ryu et al.  2005 ). It was concluded that VOCs activate a CK-dependent 
pathway for PGP and an ethylene-dependent signaling pathway for ISR (Ping and 
Boland  2004 ).  

    Phenolic Compounds 

 Phenolic compounds are produced by plants and microbes as well, but they differ in 
chemical structure (Combes-Meynet et al.  2011 ; Mandal et al.  2010 ; Parmar and 
Dadarwal  1999 ). Increasing evidence suggests that root-secreted polyphenols initiate 
and modulate the dialog between roots and soil microbes (Badri and Vivanco  2009 ). 
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 Flavonoids are plant phenolic compounds recognized as important signaling 
molecules in microbe–plant interaction events. The main subclasses of fl avonoids 
include chalcone, fl avone, isofl avone, fl avonol, fl avanone, and isofl avonoid com-
pounds (Cesco et al.  2012 ). The effects of fl avonoids in the rhizosphere depend on 
their chemical composition and concentration. In the rhizosphere, they have a criti-
cal role in early stages of the rhizobia–legume symbiotic interaction and in plant 
defense. The best-known roles attributed to plant fl avonoids are in chemoattraction 
of rhizobia to the legume root and as primary molecular signals for rhizobial  nod - 
gene  induction and NF production (Mandal et al.  2010 ; Badri et al.  2009 ; Oldroyd 
and Downie  2008 ; Steinkellner et al.  2007 ). A wide variety of plant fl avonoids have 
been shown to induce NF production in different rhizobia–legume interactions 
(Table  6.4 ). In the presence of compatible rhizobial strains, the legume host increases 
the exudation of a particular set of fl avonoids, e.g., in the presence of  Sinorhizobium  
strains, alfalfa produces increased amounts of the fl avonoid luteolin. Flavonoids 
protect dividing cells from oxidative damage due to their antioxidant properties and 
ability to modulate several enzymes (Ariel et al.  2012 ; Cesco et al.  2012 ).

      The genome-wide transcriptional response of  Bradyrhizobium japonicum  to 
genistein showed that 100 genes were induced, including all  nod  box-associated 

   Table 6.4    Plant-secreted fl avonoids induce  nod  genes   

 PGPR  Plant  Flavonoid(s)  Effect  Reference 

  Sinorhizobium 
meliloti  

 Alfalfa  Luteolin(3′,4′, 
5,7- tetrahydroxyfl avone) 

  nod -gene inducer  Peters et al. 
( 1986 ) 

  S .  meliloti   Alfalfa  4,4′-dihydroxy-2′-
methoxychalcone, 
4′,7-dihydroxyfl avone, 
4′-7- dihydroxyfl avanone  

 Flavonoids, other 
than luteolin, 
are  nod -gene 
inducers 

 Maxwell 
et al. 
( 1989 ) 

  S .  meliloti   Alfalfa  Chrysoeriol and luteolin   nod -gene 
induction 

 Hartwing 
et al. 
( 1990 ) 

  Azospirillum     
 brasilense  
(co-inoculation 
with 
 Rhizobium 
tropici  and 
 Rhizobium etli ) 

 Common 
bean 

 Daidzein, naringenin, 
genistein, and 
coumestrol 

 Increased root 
hair formation, 
nodule number, 
 nod -gene 
induction 

 Burdman 
et al. 
( 1996 ) 

  Rhizobium 
leguminosarum  

 Pea and 
lentil 

 Hesperetin and naringenin   nod -gene 
induction 

 Begum 
et al. 
( 2001 ) 

  Bradyrhizobium 
japonicum  

 Soybean  Coumestrol  Increased number 
of nodules, 
high degree 
of biofi lm 
formation. 
Weak  nod -gene 
induction 

 Lee et al. 
( 2012 ) 
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genes and fl agellar and transport process genes, suggesting that genistein has a 
much broader function than  nod -gene induction (Lang et al.  2008 ). Flavonoids (nar-
ingenin and hesperetin) are also factors that infl uence rhizobial competitiveness in 
soils, as showed in several biovars of  Rhizobium leguminosarum  (Maj et al.  2010 ). 
Flavonoids also participate in plant host specifi city for few rhizobial species. Plants 
secrete a characteristic group of inducing and non-inducing fl avonoids that are rec-
ognized by rhizobial outer membrane protein, NodD (the LysR-type transcriptional 
regulator that mediates the expression of  nod  genes and a key determinant of host 
specifi city). Both inducing and non-inducing fl avonoids bind NodD and mediate 
conformational changes at  nod -gene promoters, but only a few set of fl avonoids are 
capable of promoting  nod  genes. The production of non-inducing fl avonoids may be 
a mechanism by which legumes prevent overnodulation (Peck et al.  2006 ). The 
rhizospheric microbial community may also alter the amount and composition of 
 nod -inducing signals secreted by the plant. Many reports showed that the inocula-
tion of leguminous plants with  Azospirillum  induces the secretion of a particular set 
of  nod -inducing fl avonoids that facilitate the establishment of the rhizobia–plant 
interaction, even under stress conditions (Burdman et al.  1996 ; Volpin et al.  1996 ; 
Dardanelli et al.  2008 ). 

 Flavonoids shape rhizosphere microbial community structure because they may 
be used as potential carbon sources or may act as toxic substances for microbes that 
do not possess fl avonoid biodegradation pathways (Shaw et al.  2006 ). They may also 
accelerate the biodegradation of xenobiotics, since the chemical structures of many 
fl avonoids and xenobiotics are similar (Cesco et al.  2012 ; Shaw and Burns  2003 ), 
and fl avonoids may have allelopathic effect on other plants (Cesco et al.  2012 ). 

 The role of phenolic compounds as signaling compounds in pathogenic microbe–
plant interactions is undeniable. Usually, phenolic compounds released from seeds 
and roots act against soilborne pathogens and have high antifungal, antibacterial, 
and antiviral activities (Mandal et al.  2010 ). For example,  Pseudomonas  produces 
2,4-diacetylphloroglucinol (DAPG), a phenolic compound with antibiotic proper-
ties, and a signal molecule that induces systemic resistance in plants and stimulates 
root exudation and branching (Combes-Meynet et al.  2011 ). The secretion of cate-
chin by  Combretum albifl orum  interferes with the production of virulence factors by 
 P .  aeruginosa  (Vandeputte et al.  2010 ).  

    Quorum Sensing Responses 

 Quorum sensing (QS) is a phenomenon where microbes communicate and coordi-
nate activities by the accumulation of signal molecules at suffi cient concentration 
(Adonizio et al.  2008 ). Both pathogenic and symbiotic bacteria require QS to inter-
act successfully with their hosts (Badri et al.  2009 ). In Gram-negative bacteria, QS 
is typically mediated by  N -acyl- l -homoserine lactones (AHLs). AHLs are freely 
diffused through the bacterial membrane and distributed within the rhizosphere 
where they regulate the behavior of rhizospheric bacteria. Increasing evidence 
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indicates that higher plants may produce metabolites that mimic AHLs, interfering 
with rhizospheric QS behavior (Gao et al.  2003 ). For example,  Medicago sativa  
produces multiple signal molecules, including  l -canavanine, capable of interfering 
with QS gene expression in  S .  meliloti  (Keshavan et al.  2005 ). Canavanine is an 
arginine analog commonly found in seed and root exudates of a variety of legumes. 
Cai et al. ( 2009 ) found that canavanine is toxic to many soil bacteria but not to some 
rhizobia and suggest that host legumes may exude canavanine to optimize the bacte-
rial population and select benefi cial rhizobia in their rhizospheres. The role of these 
plant AHL-like compounds is still unclear (Ortiz-Castro et al.  2009 ), but some 
authors report direct effects on plant development in a similar way to auxins, by 
modulating root system architecture (more lateral roots and root hairs) (Ortiz-Castro 
et al.  2008a ; von Rad et al.  2008 ). Plant AHL-like compounds are also involved in 
 protection against pathogens. Vandeputte et al. ( 2010 ) reported the secretion by 
 Combretum albifl orum  of the fl avonoid catechin that interferes in the QS signaling 
of  Pseudomonas aeruginosa  PAO1, as the fi rst line of defense against this patho-
gen. Some PGPR can also protect plants by disrupting the QS signals required for 
 pathogen–pathogen communication, interfering with the expression of virulence 
genes. For example,  Bacillus ,  Arthrobacter , and  Klebsiella  produce AHL-degrading 
 lactonases which inactivate AHLs (Friesen et al.  2011 ). Moreover, QS in the rhizo-
sphere can also be disrupted by abiotic factors such as alkaline pH (Reis et al.  2011 ). 
Other PGPR secrete AHLs that induce plant systemic resistance to pathogens. For 
example, AHL molecules produced by  Serratia liquefaciens  MG1 and  P .  putida  
IsoF induce ISR in tomato plants against  Alternaria alternata  via a salicylic acid 
and ethylene-dependent pathway (Schuhegger et al.  2006 ). It is important to high-
light the relevance of disrupting bacterial QS signaling as a strategy to fi ght against 
phytopathogens. This fi eld is still unexplored.   

     Extracellular Polysaccharides 

 Bacterial extracellular polysaccharides (exopolysaccharides, EPSs; lipopolysaccha-
rides, LPSs; capsular polysaccharides, CPSs; and cyclic β-glucans) are usually 
accumulated on cell surfaces and/or secreted into the cell surroundings (Gray and 
Smith  2005 ). They have multiple roles, such as protection against stress (Qurashi 
and Sabri  2012 ; Upadhyay et al.  2011 ), attachment to surfaces (Tsuneda et al.  2003 ), 
plant invasion (Fraysse et al.  2003 ; Troch and Vanderleyden  1996 ), and inhibition 
of the plant defense response in plant–microbe interactions (Kyungseok et al.  2008 ). 
PGPR also produce EPS and other surface polysaccharides as essential components 
that promote interaction with plants (Upadhyay et al.  2011 ). 

 Rhizobial surface polysaccharides are highly important during the early steps of 
microbe–legume interaction. They are essential for the formation of infection thread 
(IT), for nodule development, and for adaptation and survival of rhizobia under 
different environmental conditions (Fischer et al.  2003 ). In rhizobia, surface 
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polysaccharides form a hydrated matrix that contributes to protection against 
abiotic factors and plant products secreted as a defense response during the infec-
tion process. Moreover, CPSs may have an active signaling role during benefi cial 
infections (Parada et al.  2006 ; Becker et al.  2005 ). 

 LPSs are anchored to the surface membrane by a lipidic moiety and inserted into the 
bacterial phospholipid monolayer, and the saccharidic part is oriented outside. Although 
LPS is a constitutive component of the bacterial membrane in  Gram- negative bacteria, 
it is commonly found in very low concentrations in growth media, being released from 
cells in vesicles (Becker et al.  2005 ), and consequently it seems likely that LPSs may 
act as long-distance signaling molecules to target cells (Fraysse et al.  2003 ). They play 
various roles at different stages of the symbiotic process, act as inhibitors of plant 
defense responses, and/or help bacteria to adapt to the  endosymbiotic environment. 
Experimental evidence demonstrates that root exudates, mainly plant-exuded fl avo-
noids, induce changes in the PGPR-extracellular polysaccharide (EPS, LPS-O antigen, 
and CPS) composition, affecting the PGPR–plant interaction (Fischer et al.  2003 ; 
Fraysse et al.  2002 ,  2003 ; Reuhs et al.  1994 ; Dunn et al.  1992 ). 

 The importance of bacterial surface polysaccharides during the symbiotic 
 process has been extensively demonstrated.  Azorhizobium caulinodans  mutants 
with LPS defi ciency (Mathis et al.  2005 ) and LPS with reduced rhamnose content 
(Gao et al.  2001 ) established defective interactions with  Sesbania rostrata , 
 suggesting that both correct LPS amount and composition are required to sustain an 
effective rhizobia–legume interaction. In addition, LPS affects competitiveness and 
colonization as demonstrated by working with  Mesorhizobium loti  mutants defec-
tive in LPS and cyclic β-glucans (D’Antuono et al.  2005 ) and LPS mutants of 
 A .  brasilense  in maize (Jofre et al.  2004 ), respectively. 

 EPSs are mostly species-specifi c heteropolysaccharides with an important role 
for an effi cient symbiotic process. Bacterial mutants which fail to produce EPS 
induce nodules on the roots of the host plant but fail to invade these root nodules. 
Rhizobial EPSs are involved in the invasion process, IT formation, bacteroid and 
nodule development, and plant defense response and also confer protection to 
 rhizobia when exposed to environmental stress (Bomfeti et al.  2011 ). EPSs are also 
involved in plant colonization and cell aggregation, as widely shown in  Azospirillum  
species (Bahat-Samet et al.  2004 ; Jofre et al.  2004 ; Fischer et al.  2003 ; Burdman 
et al.  2000 ). The data showed that aggregation and root colonization properties of 
 Azospirillum  depend on the concentration and composition of EPS. The infl uence 
of EPS during aggregation on rhizospheric soil results in increased water and fertil-
izer availability to inoculated plants (Qurashi and Sabri  2012 ). Some PGPR-EPS 
can also bind cations, including Na + , suggesting a role in mitigation of salinity 
stress by reducing the content of Na +  available for plant uptake (Upadhyay et al. 
 2011 ). EPS produced by specifi c rhizobacteria can also elicit plant-induced resis-
tance against biotic stress. For example, inoculation with the EPS-producing 
 Paenibacillus polymyxa  on peanut seeds signifi cantly suppressed crown rot disease 
caused by  Aspergillus niger  (Haggag  2007 ), and the purifi ed EPS from the PGPR 
 Burkholderia gladioli  induced resistance against  Colletotrichum orbiculare  on 
cucumber (Kyungseok et al.  2008 ). 
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 Among extracellular polysaccharides, the rhizobial lipo-chitooligosaccharide 
known as nodulation factor (Nod factor or NF) is the most studied and probably the 
“movie star” of rhizobia–legume interaction. NFs have an oligomeric backbone of 
β-1,4-linked  N -acetyl- d -glucosamine, N-acylated at the nonreducing terminal resi-
due, and trigger the nodule developmental process. Depending on the rhizobial spe-
cies, NFs have different chemical structures (variation in acyl chain, substitutions at 
the reducing and nonreducing terminal sugar, and additional decorations) (D’Haeze 
and Holsters  2002 ; Geurts and Bisseling  2002 ). Rhizobia perceive plant-secreted 
fl avonoids by binding to NodD, a member of the LysR family of transcriptional 
regulators that triggers NF synthesis. NodD binds to conserved DNA sequences, 
known as  nod  boxes, found in the promoter regions of inducible  nod  genes. NF 
synthesis is commanded by the common  nodABC  genes which encode enzymes 
involved in the core structure, and many other  nod  genes are involved in decora-
tions. Properties and functions of NFs are described throughout the body of the text 
of this chapter.  

     PGPR and Plant Root Attachment 

 Successful colonization and persistence in the rhizosphere are required for PGPR to 
exert their benefi cial effect on plants. Many studies have shown that rhizobacteria 
are attracted to seed and root (chemotaxis) by plant-exuded molecules, the “rhizo-
sphere effect” (Bais et al.  2006 ). Plant roots provide a carbon-rich environment and 
produce signals that are recognized by microbes which in turn produce others sig-
nals that initiate colonization. What are the most important traits in root–microbe 
interaction events? Motility, chemotaxis, and electrotaxis (the ability to use electric 
potentials produced at the root surface which act as attractants) enhance competi-
tiveness during root colonization. Many microbe–plant interactions are mediated by 
the fl agella which modulate attachment of the microbial cell to the root system. This 
process is well known in root colonization by azospirilla. Azospirilla undergo a 
biphasic attachment process, with an initial fl agella-dependent adsorption phase, 
followed by an irreversible anchoring of the bacterium to the surface, and then the 
formation of bacterial aggregates embedded within the fi brillar material (Reis et al. 
 2011 ; Troch and Vanderleyden  1996 ). 

 A model described by Genre and Bonfante ( 2007 ) suggests alternative routes to 
biotrophy in interactions between plants and PGPR, endophytes, and pathogens, 
where precontact signaling contributes to the recognition of rhizobacteria as benefi -
cial or pathogenic. A weak, nonspecifi c, and reversible fi rst contact occurs mediated 
by lectins, bacterial surface proteins, CPS, and/or fl agella (Rodriguez-Navarro et al. 
 2007 ). Then, a direct contact occurs characterized by a rapid translocation of the 
cytosolic and subcellular elements to the contact site (localized secretion). In ben-
efi cial interactions, this secretion leads directly to (1) epiphyte–bacterial aggregates 
on the plant surface or (2) a preemptive assembly of an intracellular apoplastic 
compartment to host the endophyte (Genre and Bonfante  2007 ). In this step, 
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extracellular polysaccharides are the main determinants, required for tight and 
irreversible binding of bacteria (Rodriguez-Navarro et al.  2007 ). 

 In the rhizobia–legume interaction, the endophytes access the root by the ITs, tubu-
lar structures derived from plant plasma membranes that act as “tourist guides” to the 
root cortex. The process of rhizobia accommodation into the nodule primordium may 
be explained by a sequence of events described by Held et al. ( 2010 ). The  extracellular 
colonization of roots by rhizobia leads to the uptake of cells through an intracellular 
(through root hairs) or intercellular (“crack-entry”) infection (Held et al.  2010 ). The 
latter is thought to be the ancestral mechanism of root infection and involves the for-
mation of transcellular ITs within the root cortex (Downie  2010 ). The next section 
gives a brief but more detailed description of rhizobia–legume interaction events.  

    Proteins Involved in Rhizobia–Plant Interaction 

 Proteomics, the identifi cation of a set of proteins under specifi c conditions, is a 
valuable tool to decipher part of the complex network involved in plant and microbe 
communication. Most works dealing with plant–microbe exchange of information 
through a proteomic approach have been performed on plant tissues after bacterial 
inoculation, bacteroids, or nodules. Additional information has also been achieved 
by transcriptomic and metabolomic analysis (Stacey et al.  2006 ). 

 It has been shown that rhizobia inoculation induces or increases the level of 
 several proteins in soybean root hairs (calcium/calmodulin kinase, lipoxygenases, 
phospholipase D, ascorbate peroxidase, phosphoglucomutase, lectin), roots (enzymes 
involved in energy, carbohydrate, amino acid, and fl avonoid metabolism), and bacte-
roids (proteins involved in carbon and nitrogen metabolism, stress response and 
detoxifi cation, ABC transporters and receptors) (Mathesius  2009 ). In addition, large 
amount of information has been generated about the regulation of signal transduction 
involved in bacterial infection and nodule organogenesis and long-distance signaling 
to control nodule number (Oka-Kira and Kawaguchi  2006 ; Popp and Ott  2011 ). 
However, few experiments have analyzed proteins secreted in the rhizosphere or 
those that are associated with the bacterial outer membrane. These experiments 
involve plant growth in liquid media, protein concentration by lyophilization or pre-
cipitation, desalting, two-dimensional gel electrophoresis, and protein identifi cation 
by mass spectrometry (Jayaraman et al.  2012 ). In addition, proteins secreted by bac-
teria or associated with their outer membrane have been found using a  classical 
approach, by the analysis of culture medium after adding plant-secreted molecules, or 
a genomic approach through the study of mutants. Using different approaches, many 
proteins secreted to the rhizosphere and involved in plant–microbe communication 
have been identifi ed. 

 Rhizobial proteins are secreted by general secretion (Sec) and two-arginine (Tat) 
systems of general use (NodO, adhesins, PlyA and PlyB polysaccharide lyases, 
ExoK and ExsH succinoglycan depolymerases, calsymin, cellulose, etc.) and by 
specialized secretion systems (Nops or nodulation outer proteins secreted by the 
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type III secretion system, Msi059 and Msi061 by the type IV secretion system, 
   ribose-binding protein-like by the type V and VI secretion systems) (Downie  2010 ; 
Deakin and Broughton  2009 ; Tseng et al.  2009 ; Fauvart and Michiels  2008 ). Plant 
roots secrete compounds mainly by passive process mediated diffusion, ion chan-
nels, and vesicle transport. But excretion of high-molecular weight compounds by 
roots, including proteins, generally involves vesicular transport. Rhizobial cells 
secrete adhesins such as rhicadhesin that plays an important role in attachment to 
root hairs (Smit et al.  1992 ), hydrolytic proteins such as cellulase that erodes the 
noncrystalline cellulose in the root hair cell wall allowing rhizobial penetration 
(Robledo et al.  2008 ), and glycanases that cut emerging EPS produced by rhizobia 
and are required for biofi lm formation (Russo et al.  2006 ). Many extracellular gly-
canases, involved in nodulation and EPS modifi cation, have been identifi ed and 
characterized in rhizobia: PlyA and PlyB of  R .  leguminosarum  bv.  viciae  and ExoK 
and ExsH of  S .  meliloti . The secreted nodulation-signaling protein NodO was puri-
fi ed from the supernatant of cultures of  R .  leguminosarum  bv.  viciae  supplemented 
with fl avonoids (Sutton et al.  1994 ). NodO is a calcium-binding protein that forms 
cation-selective channels in membranes and may complement NF function by pro-
moting the movement of cations across the root hair membrane (Downie  2010 ).
 M .  sativa  inoculation with  S .  meliloti  caused an increase in the secretion of plant 
hydrolases (chitinases that use NFs as substrates, glycosidases, and peptidases), 
peroxidase precursors, pathogenesis-related proteins (thaumatin-like protein), lectins, 
bacterial superoxide dismutase, glycine betaine-binding ABC transporter, and a 
putative outer membrane lipoprotein transmembrane (De la Peña et al.  2008 ).  

    Rhizobia–Legume Interaction Events 

 Rhizobia–legume signaling strategies are mainly based on sugars such as the NFs, 
EPSs, lipopolysaccharides and capsular polysaccharides, as well as cyclic β-glucans. 
However, roots and microorganisms also produce diverse proteins that play a 
dynamic role in the process of signaling and recognition that occurs during their 
interaction. A picture of events implicated in legume–rhizobia interaction involving 
carbohydrates, fl avonoids, phytohormones, and proteins may be summarized as 
 follows (Fig.  6.1 ).

   Plant roots release species-specifi c mixtures of molecules, such as phytohor-
mones and fl avonoids (that act as bacterial attractants), that initiate the symbiotic 
chemical dialog. Rhizobial cells recognize fl avonoids by their binding to NodD, an 
extracellular membrane protein that works as an environmental sensor and master 
transcriptional activator of genes downstream of promoters known as  nod  boxes. 
In response to  nod -gene activation, rhizobia produce and release the signaling 
 molecule NF that is identifi ed by plant root receptor-like kinases (NFR-LKs). 
Many NFR-LKs have been identifi ed, e.g., LysM-type RLKs NFR5/NFR1 of
 L .  japonicus , NFP/LYK3/LYK4 of  M .  truncatula , SYM10/SYM2 of  Pisum 
sativum , and NFR5αβ/NFR1β of  G .  max . After the NFR-LK-ligand recognition, 
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many physiological events are turned on, such as root hair deformation and IT 
 initiation, depolarization of the plasma membrane, rhizosphere alkalinization, Ca 
 spiking by a calcium-dependent calmodulin kinase (CCaMK), cytoskeletal rear-
rangement, early nodulin gene expression, and fi nally nodule formation. 

 In addition to NF, some rhizobia secrete proteins involved in host specifi city and 
symbiotic effi ciency by a type III secretion system or T3SS. T3SS delivers viru-
lence proteins called effectors directly into the host cells. Rhizobial effector  proteins 
are known as Nops (nodulation outer proteins). Rhizobial NopL and NopP interfere 
with plant signaling pathways acting as positive effectors that enhance nodule 
 formation. These and other Nops effectors might contribute to suppression of plant 
innate immune response or modulate cytoskeletal rearrangements in root cells dur-
ing nodule formation. Thus, rhizobial effectors could facilitate bacterial release 
from IT, initiate symbiosis, and/or promote or maintain persistence of bacteroids 
(Saeki  2011 ; Deakin and Broughton  2009 ). 

 The invading bacteria move through the IT and are taken into the plant cell by a 
type of endocytosis in which they are surrounded by a plant-derived peribacteroid 
membrane. Nodule organogenesis, cell proliferation and dedifferentiation, and bac-
teroid differentiation are driven by plant hormones and systemic signaling peptides 
(ENOD40, CLE, NCR) (Ding et al.  2008 ; Batut et al.  2011 ). Ethylene, jasmonic 

  Fig. 6.1    Overview of rhizobia–legume interaction events. ( a ) Induction of  nod  genes by root- 
exuded fl avonoids and NF production; ( b ) NF perception by NFR-LK elicits calcium signaling that 
leads to localized CK biosynthesis. CK induces the ENOD40 production and downstream signal-
ing for activation of symbiotic response and nodule organogenesis; ( c ) deformation of root hair and 
formation of IT. Bacteria move through the IT; ( d ) rhizobia penetrate cortical cells via IT. They are 
released from unwalled IT into the host cell cytoplasm as membrane-delimited symbiosome into 
bacteroids; ( e ) CLE peptide synthesis in the nodule and recognition by shoot-specifi c receptor 
kinase (LRR-RLK). Production of shoot-derived inhibitor ( SDI ) that regulates nodule number 
( AON ); ( f ) indeterminated nodule produces NCRs that induce bacteroid differentiation       
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acid, and abscisic acid (ABA) regulate NF signaling and affect the nature of 
NF-induced calcium spiking, with ABA being capable of coordinating regulation of 
diverse development pathways associated with nodule formation (Ding et al.  2008 ). 

 CLE (CLAVATA3/endosperm surrounding region) are peptides that have been 
identifi ed in a wide variety of plants. They are key molecules in the regulation of 
nodulation acting as a root-derived ascending signal to the shoot. This peptide is 
probably recognized as a ligand for a leucine-rich repeat (LRR) autoregulation 
receptor kinase that controls multiple aspects of shoot development, jasmonate sig-
naling, and the production of a shoot-derived inhibitor (produced in leaves) that 
regulates root nodule number. These LRR receptor kinases (GmNARK,  Glycine 
max  nodule autoregulation receptor kinase of soybean; HAR1, hypernodulation and 
aberrant root of  Lotus japonicus ; SYM29, symbiosis of pea; and SUNN, super 
numeric nodules of alfalfa) are key regulators of the autoregulation of nodulation 
(AON) signaling pathway that controls a hypernodulated unproductive phenotype 
(Staehelin et al.  2011 ; Popp and Ott  2011 ; Miyazawa et al.  2010 ; Kinkema and 
Gresshoff  2008 ; Oka-Kira and Kawaguchi  2006 ). AON is the major pathway that 
controls nodulation events acting through the inhibition of nodule development in a 
long-distance signaling fashion between root and shoot. NF is also involved in the 
expression of several early nodulin (ENOD) genes (ENOD12 y ENOD40). 

 It has been suggested that CK is an epidermal cell synthesized secondary signal, 
which after translocation to cortex cells triggers the initiation of nodule primordial 
ahead of the upcoming IT (see section “ Phytohormones Production ”). CK induces 
the expression of the  enod40  gene serving as an amplifi cation mechanism, thus trig-
gering a localized hormone imbalance, a state that initiates cell divisions in the root 
cortex (Fang and Hirsch  1998 ). The  enod40  gene codes for two short conserved 
peptides, A and B, which strongly bind the cytosolic sucrose synthase (SuSy) 
enzyme-stimulating sucrose breakdown activity. The data support the view that 
Enod40 peptide may participate in phloem uploading, increasing the carbon sink 
strength in pre-dividing root cortical cells and in mature nodule tissues (Batut et al. 
 2011 ). CK induces the expression of the  Nin  transcriptional regulator within the 
root cortex through the activation of the LHK1 cytokinin receptor, subjected to 
HAR1-mediated autoregulation (Heckmann et al.  2011 ). 

 Some legumes such as  Medicago ,  Pisum ,  Vicia , and  Trifolium  maintain active 
apical meristems that produce indeterminate nodules. This type of nodule under-
goes an irreversible differentiation mediated by nodule-specifi c cysteine-rich (NCR) 
peptides. NCRs are produced by the host cells and targeted to bacteroids where they 
interfere with the rhizobial cell cycle affecting terminal bacterial differentiation. In 
addition, NCRs resemble antimicrobial peptides (Batut et al.  2011 ; Van de Velde 
et al.  2010 ). Findings suggest that after the root epidermal cell recognition of NF, 
several kinase receptors are activated, working as a signal transduction cascade 
responsible for the control and progression of IT, nodule organogenesis, and nitro-
gen fi xation (activation of downstream common  nod  and  sym  genes). These kinase 
receptors are regulated by E3-ubiquitin ligases that act as dynamic modulators of 
cellular reprogramming during rhizobial infections (Popp and Ott  2011 ; Mathesius 
 2009 ). Hundreds of proteins from nodule, xylem, root, and shoot have been 
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implicated in rhizobia–legume interaction (Mathesius  2009 ), but insuffi cient work 
has been done on proteins secreted in the soil by roots and bacteria during microbe–
plant interaction. 

 A large variety of regulatory molecules, including kinases, transcriptional factors, 
and other regulatory molecules, are involved in symbiotic nodule organogenesis, 
and recent reports showed that sRNAs, especially microRNAs (miRNAs), are also 
key regulatory factors of this process. Thus, miRNAs are emerging as riboregulators 
that control gene networks in plant cells through interactions with specifi c target 
mRNAs. Only a few nodulation-responsive miRNAs have been linked to  nodule 
formation: among other miRNAs, miR169 and miR166 overexpression in  M .  trun-
catula  led to lower densities of lateral roots and nodules, and they might be respon-
sible for nodule meristematic zone regulation during nodule differentiation into 
nitrogen-fi xing cells; soybean miR482 targets the resistance gene receptor kinase 
involved in the defense response, playing a role during nodule initiation; miR1511 
and miR1512 target transcripts encoding signaling proteins, including a calmodu-
lin-binding protein (Bazin et al.  2012 ; Khan et al.  2011 ; Voinnet  2008 ). In addition, 
there is strong evidence that there is a connection between miRNA regulation and 
hormone response. Some miRNAs facilitate hormone-induced responses, e.g., the 
miRNAs miR160, 167, and 393 that are implicated in the regulation of auxin signal-
ing target transcripts to reduce lateral root production and are potentially involved 
in nodulation (Simon et al.  2009 ; Bazin et al.  2012 ).   

    Concluding Remarks 

 Compounds exuded by plants and microbes provide a cocktail of molecules (carbo-
hydrates, phytohormones, fl avonoids, amino acids, and proteins) that constitute the 
words of a chemical dialog between plants and microbes in the rhizosphere 
(Fig.  6.2 ). The massive variety of metabolites released by plants suggests that they 
provide a specifi c language for communication. Researchers are deciphering the 
content and signifi cance of the cells’ signaling and responses.    Recent advances in 
analytical skills and biochemical and molecular approaches have provided new 
tools for evaluating the natural roles of these substances and for investigating the 
mechanisms underlying their regulation.

   In brief, the picture of microbe–plant interaction events involves a huge number 
of molecules that span our imagination. Every year a new signaling molecule is 
found, and the overall scene is getting much bigger and more complex. The new 
information on proteins involved in two-component signal transduction systems 
that allow sensing and responding to different stimuli, transcriptional regulators, 
and plant-derived peptides is far from completing the picture of the microbe–plant 
interaction. In this chapter, only some recent and relevant earlier information related 
to molecules involved in microbe–plant interaction have been used to present a 
partial panorama.     
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