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Abstract 

Herschel-Bulkley and Power-Law models are mathematical expressions widely used to 

describe the pseudoplastic nature of drilling muds. Despite their popularity, these models carry 

an intrinsic limitation because the consistency index is a function of the flow behavior index. 

Some works have proposed the use of dimensionless shear rates to overcome this issue. 

However, this solution requires two inputs, which are taken from the experimental data set. The 

bigger the number of experimental points is, the bigger the number of input combinations 

becomes. Moreover, the selection of such points is not a self-evident task and relies heavily on 

one’s experience.  

This thesis presents: first, a methodology from which two objective approaches for 

selection of inputs were derived; second, a MATLAB code that enables curve-fitting of 

rheological data and some hydraulic calculations. These techniques were meant to balance 

computation time and goodness of fit. Non-linear regression, which is the best solution in terms 

of goodness of fit, was taken as a benchmark and was compared to the two proposed 

approaches. Rheological characterization and hydraulic calculations were performed for 

different recipes of oil-based mud (OBM) and polyanionic cellulose (PAC) solution. For the 

fluid modeled by Power-Law model, hydraulic predictions had an error of 3% at most, whereas 

the computing time was only about 5% of the non-linear’s in the worst case. For the fluid 

modeled by Herschel-Bulkley model and flow rates greater than approximately 600 l/min, these 

values were, respectively, 5% and 1%. Therefore, the proposed approaches are extremely faster 

than a non-linear regression at a relatively low cost in terms of accuracy loss. Moreover, it was 

shown how the use of a single iteration can increase the goodness of fit in the dimensionless 

shear rate approach and how error propagation theory can be applied to the dimensionless 

Power-Law model. 

Finally, the methodology and the MATLAB code contributed to a SPE Conference 

Paper that explored the impact of Power-Law model parameters on frictional pressure loss 

uncertainty. 
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 1 

1 Introduction 

The objectives and motivation behind this thesis are presented in this section.  

1.1 Objective 

This thesis intends to expand the work of Saasen and Ytrehus (2018). It aims to provide 

a criterion for the selection of inputs required by their approach and to implement it in a 

MATLAB code that enables curve-fitting of rheological data and some hydraulic calculations. 

Such criterion should fulfill the following requirements: 

• To be objective, that is, not to rely on one’s experience; 

• To require less time to be computed than a non-linear regression; 

• To be accurate (non-linear regression as benchmark). 

To accomplish these aims, some objectives are set: 

• To explain how different curve-fitting approaches impact rheological 

characterization; 

• To determine how the model’s parameters influence one another; 

• To define how to measure the goodness of the fit; 

• To find patterns in accurate curve-fitting solutions; 

• To balance accuracy and computation time (trade-off). 

1.2 Motivation 

Many of the fluids encountered in daily life are Newtonian, which means viscous stress 

at each point of them during flow is linearly proportional to the strain rate at that point. 

Nevertheless, drilling fluids are mostly non-Newtonian; in fact, shear thinning behavior is 

usually desirable for them. The rheological characterization of a fluid is dependent not only on 

the model adopted but also on the numerical technique used to compute its constants. 

Consequently, the numerical approach chosen will have a direct impact on circular and annular 

pressure drop, flow velocity profiles, and other hydraulic parameters.  

Recent works have proposed the use of dimensionless shear rates in rheological 

characterization (Nelson and Ewoldt (2017) and Saasen and Ytrehus (2018)); however, this 

approach still carries a degree of subjectivity that should be avoided. The motivation behind 

this thesis is to solve this problem. Rheological characterization based on a direct objective 
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criterion benefits reproducibility, reliability and digitalization; thus, it is aligned with the 

drilling industry needs.  

In addition, an objective criterion facilitates the implementation of algorithms. A 

MATLAB code is a practical tool and a step further towards reduction of subjectivity. It is also 

an invitation to other students and researches to reproduce and expand the findings of this thesis. 

Therefore, this work provides a path and the means by which future works can contribute to 

Nelson and Ewoldt’s original proposal, namely, the creation of “a database for the engineering 

of yield-stress fluids”.  
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2 Literature Review 

An overview of concepts and key findings that are important to the development of this 

thesis is presented in this section. It is shown how rheological characterization has been 

addressed historically; advantages and disadvantages of different methods are presented. 

Because PLM is a particular case of HBM, all techniques presented next are discussed in terms 

of the latter. A short review of flow theory and error propagation is also provided here. 

2.1 Rheological Models 

Irgens (2014) defined a fluid as “a material that deforms continuously when it is 

subjected to anisotropic states of stress”. This is a classical definition within continuum 

mechanics and reflects the inability of a resting fluid to withstand shear stresses. Newtonian 

fluids are those for which a linear relationship between shear stresses and shear rates is 

observed, whereas non-Newtonian fluids do not obey Newton’s linear law of friction. The latter 

category is subdivided into shear thickening (dilatant) and shear-thinning (pseudoplastic) fluids. 

The discovery of fluids with solid-like behavior and vice versa gave birth to rheology, 

the sicence of flow and deformation of matter. Bingham (1916) studied the flow of clay 

suspensions through capillaries. According to him, “plastic flow can be sharply differentiated 

from viscous flow by the “friction” necessary to start plastic flow”. He also used the idea of a 

“yield stress” to describe the flow of paints (Bingham, 1922).  

  

Figure 1 – Types of time-independent flow behavior (Chhabra and Richardson, 2008). 
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A varity of rheological models have been proposed since the beginning of the 20th 

century. Weir and Bailey (1996) applied statistical methodology to compare 20 of them. They 

concluded that 25% of these were “consistently capable of providing excellent fluid 

characterisation over the whole range of shear reates encountered during drilling operations”.  

Mathematical expressions such as the Power-Law model (PLM) (Ostwald, 1929) and 

the Herschel-Bulkley model (HBM) (Herschel and Bulkley, 1926) are among the more widely 

used to describe the pseudoplastic nature of drilling muds. Naturally, the determination of 

empirical curve-fitting parameters is required to apply these equations. Two parameters are 

necessary for the use of the PLM: consistency index 𝐾 and flow behavior index 𝑛. In addition 

to these, a third parameter, yield stress 𝜏0, is necessary when the HBM is used. Consequently, 

the Power-Law model can be understood as a special case of the Herschel-Bulkley model, for 

which 𝜏0 equals zero, and any technique deployed to compute the parameters from the latter is 

also applicable to the former. The three rheological constants relate the shear stress 𝜏 and the 

shear rate 𝛾̇ as follows: 

 

𝜏 = 𝜏0 + 𝐾𝛾̇𝑛 for |𝜏| > |𝜏0| Eq. 1 

𝛾̇ = 0 for |𝜏| < |𝜏0| Eq. 2 

 

The fluid exhibits shear thinning behavior for 𝑛 < 1 whereas it shows shear thickening 

behavior for 𝑛 > 1. It is important to notice that the dimension of the consistency index is 

dependent on the numerical value of the flow behavior index, that is, 𝐾 [𝑃𝑎 ∙ 𝑠𝑛]. Therefore, a 

direct comparison between consistency indices is not possible when 𝑛 is different among fluids 

(Chhabra and Richardson, 2008). 

The determination of HBM parameters is not straightforward. Different approaches are 

available, and the model’s coefficients may vary significantly depending on which technique is 

applied. Options ranging from simple graphical solutions to interactive non-linear regressions 

(NLR) may be used, thus understanding the advantages and disadvantages of each approach 

should precede its use. 
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2.2 Polymers and Clay 

A drilling mud is a liquid drilling fluid treated with a clay substance (Azar and Samuel, 

2007); depending on its continuous liquid phase, a mud is termed either water-based mud 

(WBM) or oil-based mud (OBM). Drilling fluid performance relates, among other properties, 

to its viscosity; two ingredients play an important role as viscosifiers: polymers and clay 

(Skalle, 2012). 

Polyanionic cellulose (PAC) is a natural-based polymer derived from cellulose. It may 

act as loss agent and viscosifier agent in drilling muds; its influence on these two properties has 

been studied (Mahto and Sharma (2004); Kok and Alikaya (2005); and Yang et al. (2015)). 

Moreover, PAC solutions are adopted as a drilling fluid substitute in laboratory studies (Busch 

et al., 2018). Therefore, they will be used in this thesis to represent a WBM. The rheological 

behavior of such solutions is described by PLM, which applies to muds that have polymers in 

their composition and little or no particulate solids (Caenn et al., 2011).  

Oil-based mud technology benefited by the development of organophilic clays capable 

of forming gels in oil. This is an important feature because it helps the mud density to remain 

uniform during a long circulation break. Among other variables, Schmidt et al. (1987) studied 

the rheological response of OBM to changes in oil type, water concentration and organophilic 

clay concentration and type. Oltedal et al. (2015) examined two OBMs and their common base 

oil; the study included temperature and time dependence tests. Similarly, OBMs, whose 

compositions include organophilic clay, will be tested in this thesis. 

2.3 Flow Curves 

Rheological properties of fluids are measured by devices such as viscometers and 

rheometers that enable shear rate versus shear stress relationship to be plotted in flow curves. 

The FANN Model 35 is a coaxial rotational viscometer widely used in the oil industry; thus, it 

is used here to describe how flow curves are obtained. Test fluid is placed in the annular gap 

between an outer cylinder (cup) and an inner cylinder (bob). Then, rotation of the cup at a 

known velocity causes the test fluid to exert a viscous drag on the bob and to create a torque 

that deflects a spring (FANN, 2016). The combination of a known geometry, a constant 

velocity, and a spring deflection make possible to compute shear rate and shear stress. 
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2.4 Linear Regression 

In regression analysis, when confronted with a curved relationship, a common method 

is to perform a log transformation to allow a linear regression. Aiming to do so, the original 

Herschel-Bulkley equation, Eq. 1, can be rewritten as follows: 

 

log(𝜏 − 𝜏0) = log(𝐾) + 𝑛 log(𝛾̇) Eq. 3 

 

The yield stress may be computed by graphically extrapolating the original data towards 

shear rate equals zero. Subsequently, a least square regression on pairs ( log(𝛾̇); log(𝜏 − 𝜏0)) 

can be performed. Then, the logarithm of the consistency index log(𝐾) and the flow behavior 

index 𝑛 will be computed from the linear and angular coefficients of the regression respectively. 

This method may be improved by guessing several yield stresses and performing a least 

square regression for each as done by Houwen and Geehan (1986). The regression that produces 

the greater correlation coefficient, 𝑅2, gives also the final value of 𝜏0. Although simple, this 

Figure 2 – FANN Model 35 schematic (FANN, 2016). 
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solution requires iterative calculations and is intrinsically expected to produce better fit at the 

low shear rate end of the sampling set, at the expense of the fit at the high shear rate range. 

Low revolutions per minute (RPM) measurements on Fann 35 are more prone to error. 

According to Clark (1995) “it is almost impossible to keep the mechanical system for measuring 

torque in good enough shape to measure torque with any degree of accuracy at low rpm […]”. 

Klotz and Brigham (1998) also acknowledged the lower accuracy of low rpm data and 

introduced weighting factors 𝑤 to each measurement to account for accuracy differences 

between low and high-speed data.  

Another way to enable a linear regression is to compute the yield stress by an 

approximation that consists of multiplying the 3 rpm reading by 2 and then subtracting the 6 

rpm reading (Jachnik, 2003). However, both Kelessidis et al. (2006) and Mullineux (2008) 

advert that 𝐾 and 𝑛 are sensitive to changes in the estimate of 𝜏0, thus a linear regression may 

lead to erroneous results. Mullineux (2008) illustrate this idea by considering a HB curve for 

which 𝜏0 = 5 𝑃𝑎, 𝐾 = 4 𝑃𝑎 ∙ 𝑠0.35 and 𝑛 = 0.35. Subsequently, shear stresses are calculated 

from 80 equally spaced shear rates ranging from 5 𝑠−1 to 400 𝑠−1 (𝛾̇ = 5, 10, … , 395, 400). 

Linear regressions are performed to different estimates of 𝜏0, and correspondent 𝐾 and 𝑛 are 

obtained. The image below exhibits normalized coefficients as an adaptation of the sensitivity 

analysis originally performed by him.  

  

Figure 3 – Linear regression sensitivity analysis (adapted from Mullineux (2008)). 
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Figure 3 shows that an underestimation of the yield stress produces an underestimation 

of flow behavior index 𝑛 and overestimation of consistency index 𝐾. The opposite happens 

when the yield stress is overestimated. Error is more sensitive to overestimation than 

underestimation of 𝜏0. The original analysis by Mullineux shows also that it is possible to 

achieve smaller errors for the linear regression by ignoring some initial data points (low shear 

rate). 

Instead of guessing 𝜏0, it is possible to guess 𝑛 and analogously perform a least square 

regression on pairs (𝛾̇𝑛; 𝜏 ). The final triad is obtained from the maximization of the correlation 

coefficient 𝑅2. This approach leads to results close to what is obtained from a non-linear 

regression. 

2.5 Non-Linear Regression (NLR) 

Whereas the linear regression approach described in the previous section tries to 

maximize the correlation coefficient 𝑅2, a non-linear regression approach usually tries to 

minimize the sum of square errors (SSE). Houwen and Geehan (1986) minimized the following 

equation to compute HB coefficients: 

 

𝑆𝑆𝐸 = ∑(𝜏𝑖 − 𝜏0 + 𝐾𝛾̇𝑖
𝑛)2

𝑖

 Eq. 4 

 

They acknowledged that this method “does a least squares regression on the 𝛾̇, 𝜏 data 

points directly without having to resort to taking logarithms”. Naturally, as high shear rates 

have a greater impact on SSE, this solution will produce a better fit for them.  

From a mathematical point of view, a non-linear technique should produce the more 

accurate solution. However, it brings some disadvantages because it requires the use of a 

computational routine which is not always available in the field (Jachnik, 2003). In addition, 

the optimal mathematical solution may not have physical significance. If not constrained, the 

method can compute negative values of 𝜏0, which is clearly inappropriate as observed by 

Kelessidis et al. (2006). 

SSE is minimized when its partial derivatives with respect to HB parameters are zero. 

The three partial derivatives were rewritten by Mullineux (2008) as three linear equations 

whose determinant of the coefficients is zero. The flow behavior index is the root of the function 

that describes this determinant. 

  



 9 

𝐹(𝑛) =
|

|

𝐾 ∑ 𝛾̇𝑛 ∑ 𝛾̇𝑛 𝑙𝑛(𝛾)̇

∑ 𝛾̇𝑛 ∑ 𝛾̇2𝑛 ∑ 𝛾̇2𝑛 𝑙𝑛(𝛾)̇

∑ 𝜏 ∑ 𝛾̇𝑛 𝜏 ∑ 𝛾̇𝑛 𝜏𝑙𝑛(𝛾)̇
|

|
= 0 Eq. 5 

 

Although a numerical package is necessary to compute a NLR, most programs as 

MATLAB have built-in functions that facilitates these calculations. For instance, by using 

MATLAB lsqcurvefit function, it is possible to solve a non-linear curve fitting problem in a 

least squares sense with few code lines. Finally, as mentioned by Saasen and Ytrehus (2018), it 

is current practice in several industries to use digitalized models for industrial processes 

whenever possible; therefore, a compromise between accuracy and needed computational 

power should be observed when proposing a solution. 

2.6 Dimensionless Shear Rates 

Due to the lack of physical meaning of the consistency index, whose dimension is 

function of the flow behavior index value, Nelson and Ewoldt (2017) proposed rewriting the 

HB equation as: 

 

𝜏 = 𝜏0 [1 + (
𝛾̇

𝛾̇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
)

𝑛

] Eq. 6 

 

The critical shear rate is the value that produces a shear stress that is twice the value of 

yield stress. Fixed dimensions and clearer physical meaning for all parameters benefits the 

comparison and design process of yield-stress fluids. Consistency index and critical shear rate 

are related as follows: 

 

𝐾 =
𝜏0

𝛾̇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
𝑛 Eq. 7 

 

Attempting to provide a solution that is used more easily in digitalized models, Saasen 

and Ytrehus (2018) expanded the work of Nelson and Ewoldt and presented the following 

equations: 

 

𝜏 = 𝜏0 + 𝜏𝑠 (
𝛾̇

𝛾̇𝑠
)

𝑛

 
 

Eq. 8 

𝜏𝑠 = 𝜏 − 𝜏0 for 𝛾̇ = 𝛾̇𝑠 Eq. 9 
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The surplus stress 𝜏𝑠 is the difference between a given shear stress 𝜏, which is measured 

at a shear rate 𝛾̇𝑠, and the yield stress 𝜏0. If the surplus stress is chosen to be equal to 𝜏0, the 

given shear stress 𝜏 equals 2𝜏0, 𝛾̇𝑠 becomes 𝛾̇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, and Nelson and Ewoldt’s equation is 

retrieved. 

Having a first pair of points (𝛾̇𝑠; 𝜏), the determination of the flow behavior index is 

straightforward and requires only the choice of a second pair (𝛾̇𝑥; 𝜏𝑥), from which: 

 

𝑛 =
ln (

𝜏𝑥 − 𝜏0

𝜏 − 𝜏0
)

ln (
𝛾̇𝑥

𝛾̇𝑠
)

 Eq. 10 

 

The suggestion to calculate the yield stress is again to multiply the 3 rpm reading by 2 

and then to subtract the 6 rpm reading. This dimensionless shear rate approach has the 

advantage of not requiring iterative calculations and being able to be performed by means of a 

simple hand calculator. Moreover, it forces the fitted curve to be an exact match to the data 

measured in two points, namely (𝛾̇𝑠; 𝜏) and (𝛾̇𝑥; 𝜏𝑥). As disadvantage, the fitted curve diverges 

progressively from the measured data as shear rate increases beyond the range of these two 

points. However, Saasen and Ytrehus (2018) defended that “with the exception of the flow 

around the Bottom Hole Assembly (BHA), shear rates in excess of 250 𝑠−1 are seldom 

experienced in the field”, thus tests with shear rates as large as 511 and 1022 𝑠−1 are to some 

extent superfluous.  

Naturally, limiting the shear rate range to 250 𝑠−1 has a positive impact on the curve 

fitting accuracy. Nevertheless, Saasen and Ytrehus (2018) addressed only partially how the 

choice of different pairs of input data influences the accuracy of their model. Therefore, there 

is space to some investigation of this matter. 

2.7 Goodness of Fit 

The coefficient of determination, 𝑅2, is widely used to assess the goodness of fit of 

linear regressions. However, its use is not appropriate in case of non-linear regressions (Bailey 

and Weir (1998) and Kok (2004)). Original data log transformation (log(𝛾̇) ; log(𝜏 − 𝜏0)) and 

power transformation (𝛾̇𝑛; 𝜏) are possible options to linearize HB equation with respect to its 

coefficients. They produce solutions significantly diverse despite of the fact of both having high 

𝑅2. Therefore, the calculated HB parameters will vary depending on which data sample region 

is better represented by the curve fitting. 
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For non-linear functions, the sum of square errors (Eq. 4) is many times applied as 

goodness of fit indicator (Kelessidis et al., 2006). If the standard deviation associated with each 

measurement is known, a more general formula, which is called the maximum likelihood 

objective (MLO) function, can be used (Farno et al., 2018): 

 

𝑀𝐿𝑂 = ∑
(𝜏𝑖 − 𝜏0 + 𝐾𝛾̇𝑖

𝑛)2

𝜎𝑖
2

𝑖

 Eq. 11 

 

Minimizing the equation above produces a non-linear solution that accounts for 

differences between low and high shear rate data accuracy. However, these standard deviations 

are not always known, and the simple SSE will be used to compare the curve fit of different 

solutions in this work. 

2.8 Existence of a Yield Stress 

The yield stress represents the idea of a stress below which no flow is observed. The 

problem with this definition is that the value of 𝜏0 will vary depending on experimental 

accuracy. If this parameter is obtained by extrapolation instead of direct measurement, a more 

accurate stress measurement may change its value. Barnes and Walters (1985) noticed this 

effect when new instruments that allowed accurate stress measurements at shear rates as low as 

10−6𝑠−1 appeared in the market. According to them “yield stress only defines what cannot be 

measured”. Therefore, 𝜏0 should be a mathematical curve-fitting constant and its value 

associated to the limited range of shear rates used to compute it. Additionally, predictions 

should be limited to shear rates within the original range used to fit the curve (Barnes, 1999). 

Authors such as Møller et al. (2009) defended the existence of a true yield stress; a clear 

distinction between thixotropic and simple yield stress fluids should be made though.  

The physical concept of yield stress is convenient, but its existence is questioned even 

in rheology books. According to Chhabra and Richardson (2008), “strictly speaking, it is 

virtually impossible to ascertain whether any real material has a true yield stress or not…”. This 

problem seems to be related to the assumption that flow and material are homogeneous, which 

allows them to be modeled as a continuum by a local constitutive law. Ovarlez et al. (2013) 

defend that this is not true to all materials. According to them, materials such as foams, 

concentrated emulsions, and Carbopol gels can be modeled by HBM, but only under well-

defined conditions.  
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In this work, 𝜏0 is interpreted mathematically; therefore, NLR will be taken as an ideal 

solution. Other approaches will be compared to this reference in terms of accuracy and 

computing time.  

2.9 Laminar Flow in Circular Tubes 

Given the following conditions: 

1. Circular pipe of inner diameter 𝑑; 

2. Fully developed laminar flow; 

3. Steady state; 

4. Incompressible time-independent fluid. 

According to Chhabra and Richardson (2008), shear stress distribution across the pipe 

cross-section is linear and calculated by: 

 

𝜏𝑟𝑧 = (
−∆𝑝

𝐿
)

𝑑

4
  Eq. 12 

 

Combining this equation to PLM, separating variables, and then integrating with respect 

to 𝑟 will lead to a pressure gradient: 

 

−∆𝑝

𝐿
=

4K𝑢̅𝑛 (6 +
2
𝑛)

𝑛

𝑑𝑛+1
 

Eq. 13 

 

Where 𝑢̅ is the average flow velocity. 

For yield-pseudoplastic fluids, a solid plug-like core will be formed in a region for 

which |𝜏𝑟𝑧| < 𝜏0 in the center of the pipe. The radius of this core is function of the yield stress, 

𝜏0, and the wall shear stress, 𝜏𝑤. For a HB fluid, the average flow velocity is given by: 

 

𝑢̅ =
nd

2
× (

𝜏0 

𝐾∅
)

−𝑛

× (1 − ∅)(1+
1
𝑛

) × [
(1 − ∅)2

3𝑛 + 1
+

2∅(1 − ∅)

2𝑛 + 1
+

∅2

𝑛 + 1
] Eq. 14 

 

Where ∅ =
𝜏0

𝜏𝑤𝑎𝑙𝑙.
. This equation is implicit in this latter parameter. Therefore, iterative 

calculations are required to compute 𝑢̅ and 𝜏𝑤𝑎𝑙𝑙 . After the wall shear stress is found, the 

pressure gradient is calculated by Eq. 12. 

Concentric annulus also is a geometry of interest for drilling operations. Hanks (1979) 

and Hanks and Larsen (1979) studied the flow of yield-pseudoplastic fluids and power-law 
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fluids, respectively, for such geometry; they designed charts to assist the design of transporting 

ducts. In more recent years, simplified explicit flow equations were proposed for both power-

law and Herschel-Bulkley fluids (David and Filip (1996); Swamee and Aggarwal (2011); and 

Gjerstad and Time (2015)). However, only flow in circular tubes and the equations presented 

in this section will be used in this present work.  

2.10 Error Propagation 

Given a multi-variable function 𝑍 = 𝑓(𝐴, 𝐵, 𝐶 … ), it is possible to obtain its error using 

a calculus approximation as follows (Hughes and Hase, 2010): 

 

𝛼𝑧
2 = (

∂Z

∂A
)

2

𝛼𝐴
2 + (

∂Z

∂B
)

2

𝛼𝐵
2 + (

∂Z

∂C
)

2

𝛼𝐶
2 + ⋯ Eq. 15 

 

Where 𝛼𝐴, 𝛼𝐵, and 𝛼𝐶 are the uncertainties related to variables A, B, and C respectively. 

Skjeggestad (1993) applied this principle to evaluate statistical error in rheological 

parameters from Bingham and Power-Law models. However, for rheological models, the 

calculus approximation only reflects how the variable’s spread propagates into their function. 

Therefore, the error is related to precision and not to accuracy, that is, it does not provide 

information on how well the model describes the experimental data. For the latter, a goodness 

of fit criterion should be used instead. 

Riisøen et al. (2019) (Appendix E) investigated how these two types of uncertainties 

impact modelled frictional pressure loss error. They used a fluid described by the dimensionless 

form of the PLM. Three analyses were presented, and their uncertainties were based on different 

aspects: first, experimental data standard deviation; second, confidence interval for regression 

coefficients; third, a combination of both.  

In reality, the sources of error during fluid characterization are vast; for instance, a well-

known is the wall slip effect (Fan and Holditch (1995) and Churchill (2011)). However, as long 

as the errors are random, they will be reflected on the experimental data standard deviation. 
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3 Methodology  

In this section, the materials and experimental procedures that were followed to obtain 

flow curves of polyanionic cellulose (PAC) solutions and OBMs are presented. Four recipes of 

each type of fluid were tested. Moreover, two novel strategies of rheological characterization 

are presented. It is also explained how these two approaches will be compared to the solution 

obtained by a NLR that is used as a benchmark. 

3.1 Materials  

Two ingredients were mixed to produce PAC solutions: deionized water and POLYPAC 

R from MI-SWACO. Four recipes, whose concentrations were 2 g/l, 4 g/l, 6 g/l, and 10 g/l, 

were prepared.  

Eight ingredients were mixed to produce OBMs: EDC 95/11, a base mineral oil; water; 

emulsifier; calcium chloride (𝐶𝑎𝐶𝑙2); calcium hydroxide (𝐶𝑎(𝑂𝐻)2); organic clay; versatrol, a 

filter loss reducing agent; and barite, a weight agent. A base recipe and three variations of it 

were prepared. The modified recipes represented changes in terms of oil/water ration, barite 

content, and organic clay content.  

 

3.2 Experimental Procedure 

To prepare each PAC solution, a high precision scale (precision of ±0,01g) was used to 

weight both ingredients before mixing. A Heidolph stirrer running at 1000 rpm was used, and 

PAC-R granules were slowly added to water. After pouring all granules, the solution was stirred 

for one hour more at same velocity (1000 rpm). The four solutions rested for one day to reduce 

the presence of trapped air bubbles. 

The solutions were tested using an Anton Paar MCR302 rheometer, which had a shear 

rate controlled (SRC) system. Shear stress measurements related to 31 shear rates equally 

Chemical

Mineral oil (EDC95/11) 206.0 [ml] 206.0 [ml] 206.0 [ml] 206.0 [ml]

Water 52.0 [ml] 92.2 [ml] 52.0 [ml] 52.0 [ml]

Emulsifier 10.0 [ml] 10.0 [ml] 10.0 [ml] 10.0 [ml]

Calcium chloride - CaCl₂ 10.0 [g] 18.5 [g] 10.0 [g] 10.0 [g]

Calcium hydroxide - Ca(OH)₂ 8.5 [g] 8.5 [g] 8.5 [g] 8.5 [g]

Organic clay 5.5 [g] 5.5 [g] 5.5 [g] 8.0 [g]

Filter loss reducing substance (Versatrol) 6.0 [g] 6.0 [g] 6.0 [g] 6.0 [g]

Barite 115.0 [g] 115.0 [g] 317.8 [g] 115.0 [g]

Recipe 1 Recipe 2 Recipe 3 Recipe 4

Table 1 – OBM recipes. 
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spaced in a logarithmic scale were recorded in each experiment. An upward shear rate ramp 

that ranged from 0.01 𝑠−1 up to 1200 𝑠−1 was used. The measurements were preceded by a 

conditioning that was divided into: a pre-shearing phase, in which the rheometer operated at a 

shear rate of 50 𝑠−1 for five minutes; and a resting phase, which lasted ten minutes. 

A second batch of PAC-R solution, whose concentration was 4 g/l, was made following 

the same procedure presented previously. Seven samples were taken from this batch, and the 

experimental procedure was repeated for each one of them. A mean shear stress and its standard 

deviation were calculated and associated to each one of the 31 experimental shear rates. 

To prepare each OBM recipe, a three speed Hamilton Beach mixer, running at the lowest 

speed, was used to combine the ingredients that were added one by one. The samples were aged 

in a hot roller oven; they were kept agitated by the rollers as the temperature remained between 

85 ºC to 95 ºC. After the aging process, the samples were cooled down to room temperature 

and tested in an OFITE Model 900 Viscometer. These measurements were performed at ten 

speeds, respecting a downward shear rate ramp: 600, 300, 200, 100, 60, 30, 20, 10, 6, and 3 

RPM. 

3.3 Analytical Model 

From basic combinatorial analysis, the number of possible combinations of a set of 𝑖 

different elements taken 𝑟 at a time is given by: 

 

𝐶𝑟
𝑖 =

𝑖!

𝑟! (𝑖 − 𝑟)!
 Eq. 16 

 

The approach of Saasen and Ytrehus (2018) (SYA) requires the choice of two input 

points taken from the experimental data sample. Therefore, the equation above can be rewritten 

as: 

 

C =
𝑖(𝑖 − 1)

2
 Eq. 17 

 

Where 𝑖 is the number of points in a given data sample. 

Each combination of input points will produce its own solution in terms of rheological 

characterization. The bigger the data sample is, the bigger the number of possible solutions 

becomes. As an example, 31 measurements were taken for the experiment with PAC-R fluid, 

thus there were 465 possible combinations of 𝑛 and 𝐾 pairs to be entered in the PLM. The best 
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Saasen and Ytrehus (BSY) solution is not self-evident but can be found by taking the minimum 

SSE among all solutions. However, computing all possible combinations of inputs to find the 

BSY has the disadvantage of spending computational power on solutions that will not be used 

afterwards. Therefore, a criterion to guide the choice of inputs is desirable and can be achieved 

by following the methodology presented next. 

Given a set of 𝑖 experimental data points, a matrix that gathers the SSE related to each 

possible solution can be constructed as shown in Figure 4. 

 

Where 𝑆𝑆𝐸𝑎,𝑏 is the SSE related to the solution that has experimental data points “𝑎” 

and “𝑏” as inputs to Saasen and Ytrehus’ approach (SYA). Each point refers to a pair (𝛾; 𝜏) 

measured experimentaly. Only the region above the main diagonal needs to be considered to 

find the BSY because 𝑆𝑆𝐸𝑎,𝑏 = 𝑆𝑆𝐸𝑏,𝑎 and “𝑎” must be different of “𝑏”. 

The original experimental data set can be grouped in “i-2” subsets. As an example, 

consider an experiment with PAC-R solution in which 31 measurements were taken. These can 

be grouped in 29 subsets: the first, from point 1 to 31; the second, from point 1 to 30; and so 

forth. Each subset will produce its own SSE matrix. The combinations presented in a given 

matrix can be filtered to highlight the region within which the minimum SSE is contained. For 

instance, if a cut-off of 1.5 times the minimum SSE is used, any SSE bigger than this value will 

be erased from its matrix. For the PAC-R solution example, the intersection among highlighted 

regions of all 29 filtered SSE matrices then can be investigated to find patterns on BSY’s 

location. Finally, a criterion to choose the inputs to SYA is derived. This new approach not only 

produces a solution that requires much less computational power but also maintains its accuracy 

Figure 4 – Example of SSE matrix structure for experiment with “i” data points 
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within the limits of the chosen SSE cut-off. Moreover, the new approach can even produce the 

same result as the BSY sometimes. 

3.3.1 Comparison Among Solutions 

Rheological characterizations obtained from the two approaches presented in the section 

3.3 were compared to the one computed by a NLR for different recipes of both PAC-R solution 

and OBM. These comparisons were made not only for the experimental data set but also for 

several subsets derived from it. A problem of laminar flow in circular tube was considered, and 

predictions were made of both pressure drop and velocity profile by each approach. For each 

recipe, the hydraulic calculations were made by taking the subset whose maximum shear rate 

was closer to 250 𝑠−1 but not smaller than it. 

The original SYA suggests a fixed formula to compute 𝜏0. Therefore, 𝜏0 remains the 

same regardless of the subset taken into consideration for a fluid described by HBM. This is 

different from what happens when non-linear regressions are performed. Thus, these 

approaches are intrinsically different; the former relates 𝜏0 to a physical interpretation whereas 

the latter to a mathematical one. An adaptation to compute 𝜏0 was made because this work has 

the NLR as benchmark. For the new approach, after computing 𝑛 and 𝐾, one iteration was 

allowed; a linear regression of ordered pairs of the form (𝐾𝛾̇𝑛; 𝜏) was performed. The final 𝜏0 

was then the linear coefficient of such regression. Flow behavior index was kept the same 

whereas consistency index was updated by multiplying its original value by the linear 

regression’s angular coefficient. This latter parameter acted as correction factor applied to the 

consistency index. 

 

𝜏 = 𝜏0 + 𝐾𝛾̇𝑛 Iteration 0 Eq. 18 

𝜏 = 𝑎 + (𝑏𝐾)𝛾̇𝑛 Iteration 1 Eq. 19 

 

Where 𝑎 and 𝑏 are, respectively, the linear and the angular coefficients obtained by 

linear regression. Analogously, the dimensionless shear rate equation can be rewritten as: 

 

𝑓(𝛾̇) = 𝜏 = 𝜏0 + 𝜏𝑠 (
𝛾̇

𝛾̇𝑠
)

𝑛

 Iteration 0 Eq. 20 

𝑔(𝛾̇) = 𝜏 = 𝑎 + (𝑏𝜏𝑠) (
𝛾̇

𝛾̇𝑠
)

𝑛

 Iteration 1 Eq. 21 

 

Or in simple terms: 
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𝑔(𝛾̇) = 𝜏 = 𝜏0
1 + 𝜏𝑠

1 (
𝛾̇

𝛾̇𝑠
)

𝑛

 Iteration 1 Eq. 22 

 

Where 𝑓(𝛾̇) and 𝑔(𝛾̇) are two different curve fittings. There is a subtle difference 

between Eq. 20 and Eq. 22. For the former, the surplus stress 𝜏𝑠 is the difference between a 

given shear stress 𝜏, which is measured at a shear rate 𝛾̇𝑠, and the yield stress 𝜏0. For the latter, 

the surplus stress 𝜏𝑠
1 is the difference between a given shear stress 𝜏, which is predicted at a 

shear rate 𝛾̇𝑠, and the yield stress 𝜏0
1. In other words, the shear stress 𝑓(𝛾̇𝑠) predicted by Eq. 23 

is the same as the shear stress that was measured at 𝛾̇𝑠 whereas the shear stress 𝑔(𝛾̇) predicted 

by Eq. 22. is different from it. Therefore, although the iterative solution improves the curve 

fitting accuracy, it does not match any of the experimental points.  

For BSY, after the linear regression, 𝜏0 was equaled to the linear coefficient and all 

calculations were performed again to compute new 𝑛 and 𝐾. Strictly speaking, this solution is 

no longer the best, that is, it does not have the lowest SSE possible for a SYA; however, it will 

be called BSY as a reference to the process used to compute it (SSE matrices). Naturally, no 

adaptation is necessary when PLM is considered. 

A final comparison was made among characterizations by the approaches presented in 

this work and the one by Saasen and Ytrehus (2018) for their original data. 

3.3.2 Error Propagation Applied to Dimensionless Form of PLM 

As described in section 2.7, for a power-law fluid, the pressure gradient during flow is 

given by: 

 

𝑑𝑃

𝑑𝐿
= 𝑓(𝐾, 𝑛, 𝑢̅, 𝑑) =

4𝐾𝑢̅𝑛 (6 +
2
𝑛

)
𝑛

𝑑𝑛+1
 

Eq. 24 

 

Where: 

 

𝑛 =
ln (

𝜏𝑥

𝜏𝑠
)

ln (
𝛾̇𝑥

𝛾̇𝑠
)

 Eq. 25 

𝐾 =
𝜏𝑠

𝛾̇𝑠
𝑛 Eq. 26 

 

Hence, Eq. 24 can be rewritten as: 
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𝑓(𝜏𝑥 , 𝛾̇𝑥, 𝜏𝑠, 𝛾̇𝑠, 𝑢̅, 𝑑) =
4 × 𝑢̅

ln(
𝜏𝑥
𝜏𝑠

)

ln(
𝛾̇𝑥
𝛾̇𝑠

)
× 𝜏𝑠

𝑑

ln(
𝜏𝑥
𝜏𝑠

)

ln(
𝛾̇𝑥
𝛾̇𝑠

)
+1

× 𝛾̇𝑠

ln(
𝜏𝑥
𝜏𝑠

)

ln(
𝛾̇𝑥
𝛾̇𝑠

)

× (6 +
2 × ln (

𝛾̇𝑥

𝛾̇𝑠
)

ln (
𝜏𝑥

𝜏𝑠
)

)

ln(
𝜏𝑥
𝜏𝑠

)

ln(
𝛾̇𝑥
𝛾̇𝑠

)

 Eq. 27 

 

The uncertainty associated to 𝑓 is then: 

 

𝜎𝑓
2 ≈ (

𝜕𝑓

𝜕𝜏𝑥
)

2

𝜎𝜏𝑥
2 + (

𝜕𝑓

𝜕𝜏𝑠
)

2

𝜎𝜏𝑠
2 Eq. 28 

 

By defining: 

 

𝐴 =
ln (

2
𝑛 + 6) + ln (

𝑢̅
𝑑𝛾̇𝑠

)

ln (
𝛾̇𝑥

𝛾̇𝑠
)

 Eq. 29 

𝐵 =  −
1

3 × ln (
𝜏𝑥

𝜏𝑠
) + ln (

𝛾̇𝑥

𝛾̇𝑠
)
 

Eq. 30 

 

Finally, one has: 

 

𝜕𝑓

𝜕𝜏𝑥
=

𝑓

𝜏𝑥
× (𝐴 + 𝐵) Eq. 31 

𝜕𝑓

𝜕𝜏𝑠
= −

𝑓

𝜏𝑠
× (𝐴 + 𝐵 − 1) Eq. 32 

 

From which: 

 

𝜎𝑓 ≈ |𝑓|√(
𝜎𝜏𝑥

𝜏𝑥
)

2

× (𝐴 + 𝐵)2 + (
𝜎𝜏𝑠

𝜏𝑠
)

2

× (𝐴 + 𝐵 − 1)2 Eq. 33 

 

The accuracy in the pressure drop prediction depends on the quality of the curve fitting, 

that is, how small SSE is. Therefore, Eq. 33 should be interpreted in terms of precision, that is, 

how much dispersion is associated to the pressure gradient prediction. In other words, it reflects 

the quality of the measurements and not of the fitting itself. Lastly, the analysis of error 

propagation was not extended to yield-pseudoplastic fluids because the pressure gradient is an 

implicit function and requires iterative calculations to be computed in their case.  
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4 Results and Discussion 

In this section, the MATLAB code main features are presented. Then, the tests involving 

four recipes of PAC-R solution and four recipes of OBM are discussed. The BSY and the new 

approach are compared to rheological characterization by non-linear regression. Moreover, the 

original data from Saasen and Ytrehus (2018) is also reanalyzed.  

4.1 MATLAB 

Two main files and seven auxiliary functions were written in MATLAB. All of them 

are presented in the Appendix D. These files enable a series of calculations, but some inputs 

are required. Thus, a short explanation is provided here. 

The file “Analysis_of_experiment.m” requires the following inputs: 

 

for z=1:29; 

% 1.1 Rheometer data 

 

gamma=xlsread('Example.xlsx','Experimental Data','B5:B14')'; % shear rate [1/s] 

tau=xlsread('Example.xlsx','Experimental Data','C5:C14')';  % shear stress [Pa] 

 

gamma=gamma(1:32-z); 

tau=tau(1:32-z); 

 

The variables “gamma” and “tau” are related to the experimental data. They represent 

the shear rates and shear stresses measured. The variable “z” is connected to the number of 

subsets to be created. As an example, 29 subsets were created to analyze experimental data 

from PAC solutions. For each subset, rheological characterization is performed considering 

three approaches. The results are presented in tables. If one wishes to investigate patterns related 

to the BSY solution, it is possible to export SSE matrices to excel by removing “%” from the 

section presented below. 

 

%xlswrite('Example.xlsx',all_goodness{z},txt,'F43'); 

%xlswrite('Example.xlsx',gamma',txt,'A7'); 

%xlswrite('Example.xlsx',tau',txt,'C7'); 

%xlswrite('Example.xlsx',gamma,txt,'F2'); 

%xlswrite('Example.xlsx',tau,txt,'F4'); 

 

In addition to curve fitting, the file “Fitting_for_HB_Model.m” runs hydraulic 

calculations that include velocity profiles and tubing performance curves. As the previous 
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function, it requires inputs for “gamma” and “tau” but also information related to the flow 

problem that one wishes to study. 

 

% 1.2 Information for flow related calculations (circular section) 

 

r= 0.0254*3.5; % pipe radius [m] 

L= 10;         % pipe length [m] 

 

q_a = 0 ;      % flow rate start interval [l/min] for tubing performance curve calculations 

q_b = 3500 ;   % flow rate end interval [l/min] for tubing performance curve calculations 

 

q_c = 0.01*(q_b-q_a)*[25 50 75 100]; % flow rates to plot velocity profiles - use integers 

from 1 to 100 

 

For both main functions, the non-linear approach searches solutions within a range that 

may be changed. The two last vectors below, [0;0;0] and [3;3;3], represents lower and upper 

bounds within which the HB constants are searched.  

 

hb_constants_nl = lsqcurvefit(@nonlinear_hb, [0;0;0], gamma, tau, [0;0;0],[3;3;3]); 

For instance, if a PLW is used, the first constant is known and the upper bound may be 

limited as follows. 

 

hb_constants_nl = lsqcurvefit(@nonlinear_hb, [0;0;0], gamma, tau, [0;0;0],[0;3;3]); 

The only auxiliary functions that require an input are the “best_arild_hb” and “raoni.m”. 

The initial yield stress guess must be updated manually in these functions respectively at:  

 

tau_0_guess=1.8; % adjust your initial guess. 

 

And 

tau_0_r=1.8; % adjust your initial guess. 

 

The suggestion for yield stress initial guess is to multiply the 3 rpm reading by 2 and 

then to subtract the 6 rpm reading. 
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4.2 Input Selection Criterion 

The Figure 5 pictures the idea behind the new approach. After applying the cut-off in a 

SSE matrix, it is possible to take a rectangular highlighted area, which has two dimensions 

(length and height) that define intervals from which input points can be chosen. The criterion 

used in the new approach is given by the intersection among intervals when all subsets are 

evaluated. For each subset, the intervals are described in terms of percentual values in respect 

to the subset’s maximum shear stress. 

 

By following this methodology, a criterion for choosing the two input points for SYA 

was derived: 𝜏𝑥, the first shear stress greater than 17% of the maximum shear stress; 𝜏, the first 

shear stress greater than 71% of the maximum shear stress; and, 𝛾̇𝑥 and 𝛾̇𝑠, their respective shear 

rates. These points are inputs for Eq. 9 and Eq. 10. 

For a better understanding of how a SSE matrix is formed and filtered, Figure 6 and 

Figure 7 are presented next. A cut-off of 1.5 times the minimum SSE was applied to the matrix 

in Figure 6 to compute the matrix in Figure 7. The new approach leads to the choice of points 

24 and 30 in this case, and SSE is equal to 0.76 𝑃𝑎2. The BSY is achieved when points 23 and 

29 are taken, and SSE becomes 0.62 𝑃𝑎2.

Figure 5 – Example of criteria being derived from intersection among intervals. 
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Figure 6 – PAC-R-4 SSE Matrix subset of points from 1 to 31. 

Gamma 0.010 0.015 0.022 0.032 0.048 0.070 0.104 0.153 0.226 0.334 0.493 0.728 1.08 1.59 2.35 3.46 5.12 7.55 11.2 16.5 24.3 35.9 53.1 78.3 116 171 252 373 550 813 1200

Tau 0.002 0.003 0.004 0.006 0.009 0.013 0.02 0.03 0.04 0.05 0.08 0.12 0.17 0.24 0.35 0.49 0.68 0.93 1.27 1.72 2.29 3.01 3.92 5.05 6.46 8.20 10.40 13.10 16.50 20.90 26.60

% of 

Tau_max 0.01% 0.01% 0.02% 0.02% 0.03% 0.05% 0.07% 0.10% 0.14% 0.20% 0.30% 0.44% 0.63% 0.91% 1.3% 1.8% 2.5% 3.5% 4.8% 6.5% 8.6% 11.3% 14.7% 19.0% 24.3% 30.8% 39.1% 49.2% 62.0% 78.6% 100.0%

Gamma Tau

% of

Tau_ma

x
# Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0.010 0.002 0.01% 1 2.E+07 3.E+06 3.E+05 1.E+05 1.E+05 6.E+04 5.E+04 4.E+04 3.E+04 3.E+04 3.E+04 3.E+04 3.E+04 2.E+04 2.E+04 2.E+04 1.E+04 1.E+04 7.E+03 5.E+03 4.E+03 2.E+03 2.E+03 9.E+02 5.E+02 2.E+02 1.E+02 5.E+01 4.E+01 6.E+01

0.015 0.003 0.01% 2 6.E+05 5.E+04 2.E+04 5.E+04 2.E+04 2.E+04 2.E+04 2.E+04 2.E+04 2.E+04 2.E+04 2.E+04 2.E+04 2.E+04 1.E+04 1.E+04 8.E+03 6.E+03 4.E+03 3.E+03 2.E+03 1.E+03 8.E+02 4.E+02 2.E+02 1.E+02 5.E+01 4.E+01 5.E+01

0.022 0.004 0.02% 3 3.E+03 3.E+03 2.E+04 1.E+04 1.E+04 1.E+04 1.E+04 1.E+04 2.E+04 2.E+04 2.E+04 1.E+04 1.E+04 1.E+04 9.E+03 7.E+03 5.E+03 4.E+03 3.E+03 2.E+03 1.E+03 7.E+02 4.E+02 2.E+02 9.E+01 4.E+01 3.E+01 5.E+01

0.032 0.006 0.02% 4 3.E+03 4.E+04 1.E+04 2.E+04 1.E+04 1.E+04 2.E+04 2.E+04 2.E+04 2.E+04 2.E+04 1.E+04 1.E+04 9.E+03 7.E+03 5.E+03 4.E+03 3.E+03 2.E+03 1.E+03 7.E+02 4.E+02 2.E+02 8.E+01 4.E+01 3.E+01 4.E+01

0.048 0.009 0.03% 5 3.E+05 3.E+04 3.E+04 1.E+04 1.E+04 2.E+04 2.E+04 2.E+04 2.E+04 2.E+04 1.E+04 1.E+04 1.E+04 7.E+03 6.E+03 4.E+03 3.E+03 2.E+03 1.E+03 7.E+02 4.E+02 2.E+02 8.E+01 4.E+01 3.E+01 4.E+01

0.070 0.013 0.05% 6 2.E+03 7.E+03 5.E+03 7.E+03 1.E+04 2.E+04 1.E+04 1.E+04 1.E+04 1.E+04 1.E+04 8.E+03 6.E+03 5.E+03 3.E+03 2.E+03 2.E+03 1.E+03 6.E+02 3.E+02 2.E+02 7.E+01 4.E+01 3.E+01 4.E+01

0.104 0.02 0.07% 7 2.E+04 8.E+03 1.E+04 2.E+04 2.E+04 2.E+04 2.E+04 2.E+04 1.E+04 1.E+04 9.E+03 6.E+03 5.E+03 4.E+03 2.E+03 2.E+03 1.E+03 6.E+02 3.E+02 2.E+02 7.E+01 3.E+01 3.E+01 4.E+01

0.153 0.03 0.10% 8 3.E+03 7.E+03 2.E+04 2.E+04 2.E+04 2.E+04 2.E+04 1.E+04 1.E+04 8.E+03 6.E+03 5.E+03 3.E+03 2.E+03 1.E+03 9.E+02 5.E+02 3.E+02 1.E+02 7.E+01 3.E+01 3.E+01 3.E+01

0.226 0.04 0.14% 9 1.E+04 3.E+04 3.E+04 2.E+04 2.E+04 2.E+04 1.E+04 1.E+04 9.E+03 6.E+03 5.E+03 3.E+03 2.E+03 1.E+03 9.E+02 5.E+02 3.E+02 1.E+02 6.E+01 3.E+01 2.E+01 3.E+01

0.334 0.05 0.20% 10 5.E+04 5.E+04 2.E+04 2.E+04 2.E+04 1.E+04 1.E+04 8.E+03 6.E+03 4.E+03 3.E+03 2.E+03 1.E+03 8.E+02 5.E+02 3.E+02 1.E+02 6.E+01 3.E+01 2.E+01 3.E+01

0.493 0.08 0.30% 11 4.E+04 2.E+04 2.E+04 1.E+04 1.E+04 9.E+03 7.E+03 5.E+03 4.E+03 3.E+03 2.E+03 1.E+03 7.E+02 4.E+02 2.E+02 1.E+02 5.E+01 2.E+01 2.E+01 3.E+01

0.728 0.12 0.44% 12 7.E+03 1.E+04 1.E+04 9.E+03 7.E+03 6.E+03 4.E+03 3.E+03 2.E+03 1.E+03 9.E+02 6.E+02 3.E+02 2.E+02 9.E+01 4.E+01 2.E+01 2.E+01 2.E+01

1.1 0.17 0.63% 13 2.E+04 1.E+04 1.E+04 7.E+03 5.E+03 4.E+03 3.E+03 2.E+03 1.E+03 8.E+02 5.E+02 3.E+02 2.E+02 8.E+01 3.E+01 2.E+01 1.E+01 2.E+01

1.6 0.24 0.91% 14 8.E+03 7.E+03 5.E+03 4.E+03 3.E+03 2.E+03 2.E+03 1.E+03 7.E+02 4.E+02 2.E+02 1.E+02 6.E+01 3.E+01 1.E+01 1.E+01 1.E+01

2.4 0.35 1.3% 15 6.E+03 4.E+03 3.E+03 2.E+03 2.E+03 1.E+03 9.E+02 6.E+02 3.E+02 2.E+02 1.E+02 5.E+01 2.E+01 1.E+01 9.E+00 1.E+01

3.5 0.49 1.8% 16 3.E+03 3.E+03 2.E+03 1.E+03 1.E+03 7.E+02 4.E+02 3.E+02 2.E+02 8.E+01 4.E+01 2.E+01 8.E+00 7.E+00 9.E+00

5.1 0.68 2.5% 17 2.E+03 1.E+03 1.E+03 9.E+02 6.E+02 3.E+02 2.E+02 1.E+02 6.E+01 3.E+01 1.E+01 6.E+00 5.E+00 6.E+00

7.6 0.93 3.5% 18 9.E+02 9.E+02 7.E+02 4.E+02 3.E+02 2.E+02 9.E+01 4.E+01 2.E+01 9.E+00 4.E+00 4.E+00 4.E+00

11.2 1.27 4.8% 19 9.E+02 6.E+02 3.E+02 2.E+02 1.E+02 7.E+01 3.E+01 2.E+01 6.E+00 3.E+00 2.E+00 3.E+00

16.5 1.72 6.5% 20 4.E+02 2.E+02 1.E+02 8.E+01 4.E+01 2.E+01 1.E+01 4.E+00 2.E+00 1.E+00 2.E+00

24.3 2.29 8.6% 21 1.E+02 8.E+01 5.E+01 3.E+01 1.E+01 6.E+00 2.E+00 9.E-01 9.E-01 1.E+00

35.9 3.01 11.3% 22 5.E+01 3.E+01 2.E+01 7.E+00 4.E+00 1.E+00 7.E-01 7.E-01 7.E-01

53.1 3.92 14.7% 23 2.E+01 9.E+00 4.E+00 2.E+00 8.E-01 6.E-01 7.E-01 6.E-01

78.3 5.05 19.0% 24 4.E+00 2.E+00 1.E+00 7.E-01 7.E-01 8.E-01 7.E-01

116 6.46 24.3% 25 1.E+00 1.E+00 8.E-01 9.E-01 9.E-01 8.E-01

171 8.20 30.8% 26 1.E+00 1.E+00 1.E+00 1.E+00 9.E-01

252 10.40 39.1% 27 2.E+00 1.E+00 1.E+00 1.E+00

373 13.10 49.2% 28 1.E+00 1.E+00 8.E-01

550 16.50 62.0% 29 8.E-01 6.E-01

813 20.90 78.6% 30 7.E-01

1200 26.60 100.0% 31
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Figure 7 – Filtered data from PAC-R-4 SSE Matrix for subset of points from 1 to 31. Only pairs whose SSE is smaller than 1.5 times the minimum SSE. 

Gamma_max1200 Gamma 0.010 0.015 0.022 0.032 0.048 0.070 0.104 0.153 0.226 0.334 0.493 0.728 1.08 1.59 2.35 3.46 5.12 7.55 11.2 16.5 24.3 35.9 53.1 78.3 116 171 252 373 550 813 1200

Minimum GoF0.62 Tau 0.002 0.003 0.004 0.006 0.009 0.013 0.02 0.03 0.04 0.05 0.08 0.12 0.17 0.24 0.35 0.49 0.68 0.93 1.27 1.72 2.29 3.01 3.92 5.05 6.46 8.20 10.40 13.10 16.50 20.90 26.60

% of 

Tau_max 0.01% 0.01% 0.02% 0.02% 0.03% 0.05% 0.07% 0.10% 0.14% 0.20% 0.30% 0.44% 0.63% 0.91% 1.3% 1.8% 2.5% 3.5% 4.8% 6.5% 8.6% 11.3% 14.7% 19.0% 24.3% 30.8% 39.1% 49.2% 62.0% 78.6% 100.0%

Gamma Tau

% of

Tau_ma

x
# Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0.010 0.002 0.01% 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0.015 0.003 0.01% 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0.022 0.004 0.02% 3 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0.032 0.006 0.02% 4 - - - - - - - - - - - - - - - - - - - - - - - - - - -

0.048 0.009 0.03% 5 - - - - - - - - - - - - - - - - - - - - - - - - - -

0.070 0.013 0.05% 6 - - - - - - - - - - - - - - - - - - - - - - - - -

0.104 0.02 0.07% 7 - - - - - - - - - - - - - - - - - - - - - - - -

0.153 0.03 0.10% 8 - - - - - - - - - - - - - - - - - - - - - - -

0.226 0.04 0.14% 9 - - - - - - - - - - - - - - - - - - - - - -

0.334 0.05 0.20% 10 - - - - - - - - - - - - - - - - - - - - -

0.493 0.08 0.30% 11 - - - - - - - - - - - - - - - - - - - -

0.728 0.12 0.44% 12 - - - - - - - - - - - - - - - - - - -

1.1 0.17 0.63% 13 - - - - - - - - - - - - - - - - - -

1.6 0.24 0.91% 14 - - - - - - - - - - - - - - - - -

2.4 0.35 1.3% 15 - - - - - - - - - - - - - - - -

3.5 0.49 1.8% 16 - - - - - - - - - - - - - - -

5.1 0.68 2.5% 17 - - - - - - - - - - - - - -

7.6 0.93 3.5% 18 - - - - - - - - - - - - -

11.2 1.27 4.8% 19 - - - - - - - - - - - -

16.5 1.72 6.5% 20 - - - - - - - - - - -

24.3 2.29 8.6% 21 - - - - - - - 0.94 0.91 -

35.9 3.01 11.3% 22 - - - - - - 0.67 0.69 0.70

53.1 3.92 14.7% 23 - - - - 0.82 0.62 0.66 0.63

78.3 5.05 19.0% 24 - - - 0.73 0.74 0.76 0.71

116 6.46 24.3% 25 - - 0.81 0.90 0.88 0.81

171 8.20 30.8% 26 - - - - 0.88

252 10.40 39.1% 27 - - - -

373 13.10 49.2% 28 - - 0.79

550 16.50 62.0% 29 0.81 0.65

813 20.90 78.6% 30 0.67

1200 26.60 100.0% 31
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4.3 PAC-R Solution 

Table 2 shows the experimental points measured for the PAC-R solutions tested in an 

Anton Paar MCR302 rheometer. 

 

These fluids did not seem to have a yield stress and were better represented by a PLM. 

Each sample had its experimental data points grouped in 29 subsets: the first, from measurement 

number 1 to 31; the second, from measurement number 1 to 30; and so forth. For each subset, 

PLM constants were calculated by NLR, BSY, and the new approach. Table 3 summarizes the 

rheological characterization based on two subsets formed from the experimental data shown in 

Table 2: [1-31], with all shear rates; [1-27], with shear rates up to approximately 250 𝑠−1. For 

PAC R - 2 PAC R - 4 PAC R - 6 PAC R - 10

Shear Stress Shear Stress Shear Stress Shear Stress

# [1/s] [Pa] [Pa] [Pa] [Pa]

1 0.0100 0.000632 0.001770 0.003940 0.018000

2 0.0148 0.00118 0.00287 0.00611 0.02790

3 0.0218 0.00186 0.00437 0.00916 0.04110

4 0.0322 0.00251 0.00617 0.01330 0.05970

5 0.0476 0.00330 0.00871 0.01920 0.08700

6 0.0702 0.00527 0.01320 0.02860 0.12700

7 0.104 0.00680 0.01850 0.04100 0.18200

8 0.153 0.00948 0.02670 0.05960 0.26100

9 0.226 0.0124 0.0376 0.0854 0.3720

10 0.334 0.0174 0.0542 0.1230 0.5290

11 0.493 0.0264 0.0801 0.1790 0.7460

12 0.728 0.0403 0.1180 0.2600 1.0400

13 1.08 0.0561 0.1680 0.3680 1.4300

14 1.59 0.0838 0.2430 0.5230 1.9600

15 2.35 0.120 0.345 0.731 2.630

16 3.46 0.172 0.486 1.010 3.500

17 5.12 0.244 0.677 1.380 4.590

18 7.55 0.343 0.933 1.870 5.940

19 11.2 0.479 1.270 2.500 7.600

20 16.5 0.661 1.720 3.300 9.610

21 24.3 0.903 2.290 4.290 12.000

22 35.9 1.22 3.01 5.53 14.90

23 53.1 1.63 3.92 7.04 18.20

24 78.3 2.16 5.05 8.88 22.10

25 116.0 2.85 6.46 11.10 26.70

26 171.0 3.73 8.20 13.80 32.10

27 252.0 4.86 10.40 17.10 38.30

28 373.0 6.35 13.10 21.00 45.40

29 550.0 8.31 16.50 25.90 53.80

30 813.0 11.00 20.90 31.90 63.70

31 1200.0 14.60 26.60 39.60 75.70

Meas. Pts. Shear Rate

Table 2 – Experimental points from PAC-R fluids. 
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the latter, the new approach returned the same coefficients as the BSY for all fluid 

concentrations tested. 

 

 

From Table 3, some facts are worth being mentioned: 

1. As excepted, a progressive deviation from Newtonian behavior is observed as 

PAC concentration increases.  

2. Although significantly simpler than a NLR, SYA can produce a curve fit of high 

quality. As an example, one can see how the results for PAC-R 2 are close when 

BSY and non-linear approach are compared. 

3. The flow behavior index decreases as the number of points in the subset 

increases, whereas the consistency index has the opposite behavior. Therefore, 

as these parameters will influence hydraulic calculations, it is crucial to limit the 

initial data set to the maximum shear rate that is expected in field conditions. 

4. Even though all combinations of input pairs were analyzed to compute BSY, 

this approach was still consistently faster than the non-linear solution. 

5. Naturally, when the new approach is used, the difference on computing time is 

the greatest. Its computing velocity sometimes can be as fast as 60 times the non-

linear one. A higher SSE is observed in turn; however, it is within the cut-off. 

Appendix A presents tables with the rheological characterization for the remaining 

subsets. The subset [1-27] was used to perform hydraulic calculations and compare the 

approaches. Percentual error in pressure drop prediction was calculated for all recipes in a range 

of flow rates from 0 to 3500 l/min. A 10-meter-long circular pipe with internal diameter of 7 

inches was assumed. These calculations took the non-linear approach as reference and compare 

the new approach to it. 

Table 3 – Curve fitting for [1-31] and [1-27] subsets for all PAC-R recipes. 

 

PAC-R-2 [1-31] 0.096 0.708 5.04E-02 0.979 0.097 0.707 5.58E-02 0.636 0.105 0.694 1.03E-01 0.020

PAC-R-4 [1-31] 0.336 0.617 6.17E-01 0.619 0.341 0.615 6.24E-01 0.412 0.358 0.607 7.57E-01 0.010

PAC-R-6 [1-31] 0.750 0.561 2.88E+00 0.600 0.770 0.557 3.01E+00 0.381 0.780 0.554 3.12E+00 0.010

PAC-R-10 [1-31] 2.697 0.473 2.91E+01 0.611 2.764 0.470 3.04E+01 0.377 2.764 0.470 3.04E+01 0.010

PAC-R-2 [1-27] 0.090 0.724 2.71E-02 0.060 0.089 0.727 2.83E-02 0.014 0.089 0.727 2.83E-02 0.003

PAC-R-4 [1-27] 0.276 0.659 2.44E-01 0.132 0.284 0.654 2.51E-01 0.013 0.284 0.654 2.51E-01 0.002

PAC-R-6 [1-27] 0.600 0.610 1.02E+00 0.146 0.594 0.612 1.03E+00 0.031 0.594 0.612 1.03E+00 0.003

PAC-R-10 [1-27] 2.139 0.527 9.18E+00 0.095 2.120 0.529 9.21E+00 0.013 2.120 0.529 9.21E+00 0.003

K 

[Pa.s
n
]

n 

[-]

SSE

[Pa
2
]

Elapsed

time

[s]

K 

[Pa.s
n
]

n 

[-]

SSE

[Pa
2
]

Elapsed

time

[s]

Fluid

Subset

points 

range

Non-linear BSY New Approach

K 

[Pa.s
n
]

n 

[-]

SSE

[Pa
2
]

Elapsed

time
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Figure 8 shows that the percentual error ranged from -1.2% to 0.3% for PAC-R 2. 

However, this error is related to a process that takes one-twentieth of the time to be done. 

Therefore, the aimed balance between accuracy and computing time was achieved. 

 

 

The overestimation of the flow behavior index, assumed 0.727 instead of 0.724, causes 

the pressure drop to be underestimated. This tendency is progressively reduced as the flow rate 

increases and approaches zero for flow rates around 1100 l/min. For flow rates higher than this, 

the pressure gradient is overestimated. 

Figure 9 – Percentual error on pressure drop prediction when the new approach is 

compared to the non-linear as function of flow rate (PAC-R 4). 

 

Figure 8 – Percentual error on pressure drop prediction when the new approach is 

compared to the non-linear as function of flow rate (PAC-R 2). 
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For PAC-R 4 the flow behavior index is underestimated; it is assumed as 0.654 instead 

of 0.659. As show in Figure 9, it causes the pressure drop to be overestimated. The percentual 

error ranges from 3.0% to 0.5%, decreasing progressively as flow rate increases. The elapsed 

time is only one sixty-sixth of the reference’s time though.  

 

 

  

Figure 10 – Percentual error on pressure drop prediction when the new approach is 

compared to the non-linear as function of flow rate (PAC-R 6). 

 

Figure 11 – Percentual error on pressure drop prediction when the new approach is 

compared to the non-linear as function of flow rate (PAC-R 10). 
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For PAC-R 6 and PAC-R 10 the flow indices were overestimated. As a consequence, 

the pressure drops are underestimated, respectively, in Figure 10 and Figure 11. The curves’ 

behavior seemed to follow the same pattern though, regardless of their concavity. 

A general trend in which the error decreases as the flow rate increases was observed for 

all PAC-R solutions tested. The pressure drop error, in absolute terms, remained in a range from 

0% to 3% approximately. However, the elapsed time to compute the new approach was much 

smaller than the non-linear one; the former was between 1.5% and 5.0% of the latter depending 

on the PAC-R solution analyzed. The errors were so small that it was hard to notice differences 

in the velocity profiles computed by the different approaches as shown in Figure 12 

 

 

Shear stress prediction, tubing performance curves, and these velocity profiles are 

presented in Appendix A.  

b)

c) 

a) 

d) 

Figure 12 – Velocity profiles. a) PAC-R 2. b) PAC-R 4. c) PAC-R 6. d) PAC-R 10. 
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4.4 OBMs 

In this section the rheological characterization of oil-based muds that respect the HBM 

are addressed. Four recipes were tested. Shear stress measurements related to 10 shear rates 

were recorded in a OFITE Model 900 Viscometer. A downward shear rate ramp which ranged 

from 1021.38 𝑠−1 to 5.11 𝑠−1was used. The samples were tested at 20 °C. The results are 

presented in the table below. 

 

Analogously to what was done for the PAC-R solutions, each sample had its 

experimental data points grouped in 8 subsets. To calculate the yield stress (YS) a first 

approximation was made by multiplying 5.11 𝑠−1 reading by 2 then subtracting the 10.22 𝑠−1. 

For recipe 4, 17.02 𝑠−1 reading was subtracted instead of 10.22 𝑠−1 because shear stresses were 

the same for the first and second reading. Next, the remaining parameters from HBM were 

calculated. Then, a linear regression was performed from which a final YS was obtained. 

Finally, consistency and flow indices were recalculated.  

The Table 5 and Table 6 show the results obtained by different approaches, respectively, 

when fixed YS and one iteration were used. Two subsets are showed in these tables: [1-10], 

with all shear rates; [1-8], with shear rates up to approximately 340 𝑠−1. 

 

Recipe 1 Recipe 2 Recipe 3 Recipe 4

Shear 

Stress

Shear 

Stress

Shear 

Stress

Shear 

Stress

# [1/s] [Pa] [Pa] [Pa] [Pa]

1 5.1 0.31 0.82 0.61 0.51

2 10.2 0.46 1.18 0.97 0.51

3 17.0 0.56 1.38 1.38 0.61

4 34.1 0.92 1.94 1.94 0.92

5 51.1 1.38 2.81 2.81 1.33

6 102.1 2.50 4.60 4.85 2.40

7 170.2 3.99 6.69 7.31 3.83

8 340.5 7.56 11.70 13.39 7.15

9 510.7 11.45 16.61 19.47 10.78

10 1021.4 21.77 31.22 37.71 23.15

Meas.

Pts.

Shear 

Rate

Table 4 – Experimental points from OBMs. 

1 [1-10] 0.147 0.028 0.961 5.35E-02 7.30E-01 0.153 0.028 0.958 5.67E-02 4.33E-01 0.153 0.027 0.965 6.17E-02 9.73E-03 75

2 [1-10] 0.727 0.052 0.920 1.72E-01 1.09E+00 0.460 0.064 0.892 4.33E-01 6.62E-01 0.460 0.064 0.891 4.42E-01 1.90E-02 57

3 [1-10] 0.588 0.048 0.961 1.64E-01 6.58E-01 0.256 0.059 0.932 5.45E-01 3.92E-01 0.256 0.059 0.932 5.45E-01 1.16E-02 57

4 [1-10] 0.147 0.028 0.961 5.35E-02 7.30E-01 0.153 0.028 0.958 5.67E-02 4.33E-01 0.153 0.027 0.965 6.17E-02 9.73E-03 75

1 [1-8] 0.166 0.027 0.960 5.92E-03 7.85E-02 0.153 0.029 0.954 6.23E-03 1.48E-02 0.153 0.029 0.948 7.41E-03 6.71E-04 117

2 [1-8] 0.519 0.079 0.850 4.14E-02 1.78E-01 0.460 0.086 0.836 4.66E-02 1.46E-02 0.460 0.092 0.825 6.29E-02 6.45E-04 276

3 [1-8] 0.384 0.071 0.894 3.54E-02 1.39E-01 0.256 0.082 0.872 5.92E-02 1.04E-02 0.256 0.086 0.863 6.82E-02 8.71E-04 159

4 [1-8] 0.301 0.021 0.989 2.55E-02 8.37E-02 0.409 0.018 1.013 5.47E-02 1.38E-02 0.409 0.015 1.050 5.59E-02 7.97E-04 105

Recipe

Subset

points 

range

Non-linear BSY

YS 

[Pa]

K 

[Pa.s
n
]

n 

[-]

SSE

[Pa
2
]

Elapsed
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[s]
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]
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Table 5 – OBM curve fitting for [1-10] and [1-8] subsets – fixed YS. 
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When compared to Table 5, Table 6 shows that allowing one iteration improves the 

solution for both BSY and new approach. All solutions became more accurate after performing 

one iteration, that is, SSE reduced for them. Most of the time, the BSY produced a better 

solution than the new approach as it was expected. However, the opposite is possible because 

the new approach solution is no longer within the BSY’s SSE Matrix after one iteration.  

Hydraulic calculations were done considering: circular pipe; 10-meter-long; internal 

diameter of 7 inches; and flow rate ranging from 0 to 3500 l/min. The characterization by subset 

[1-8] was used in these calculations. The pressure drop estimated by the new approach was 

compared to the one by non-linear regression. A general trend was observed for all recipes; 

error (in absolute terms) is maximum for flow rate equals to 0 l/min, and it decreases as the 

flow rate increases. The initial error is directly related to YS estimation. For the new approach, 

when one iteration is allowed, the error (in absolute terms) is smaller than 5% for flow rates 

greater than approximately 600 l/min.  

Figure 13 shows the absolute error on pressure drop prediction for recipe 1. The curves 

exhibit inflections because the errors were presented as absolute values. In relative terms, the 

errors started from negative values, that is, the pressure drop was initially underestimated. This 

was directly related to the underestimation of the YSs, which were assumed as 0.153 Pa (blue 

curve) and 0.146 Pa (red curve) instead of 0.166 Pa (non-linear reference). 

 

1 [1-10] 0.147 0.028 0.961 5.35E-02 8.02E-01 0.135 0.028 0.959 5.55E-02 5.08E-01 0.164 0.027 0.965 5.52E-02 1.20E-02 67

2 [1-10] 0.727 0.052 0.920 1.72E-01 6.43E-01 0.555 0.056 0.910 2.76E-01 4.36E-01 0.550 0.063 0.891 3.27E-01 1.21E-02 53

3 [1-10] 0.588 0.048 0.961 1.64E-01 8.31E-01 0.397 0.055 0.941 3.23E-01 4.25E-01 0.397 0.058 0.932 3.66E-01 1.16E-02 71

4 [1-10] 0.456 0.011 1.103 1.55E-01 6.47E-01 0.466 0.010 1.112 1.63E-01 4.26E-01 0.466 0.011 1.106 1.55E-01 1.26E-02 51

1 [1-8] 0.166 0.027 0.960 5.92E-03 8.60E-02 0.155 0.028 0.954 6.18E-03 1.14E-02 0.146 0.029 0.948 6.94E-03 6.94E-04 124

2 [1-8] 0.519 0.079 0.850 4.14E-02 1.00E-01 0.470 0.084 0.839 4.47E-02 8.37E-03 0.433 0.091 0.825 5.34E-02 5.95E-04 168

3 [1-8] 0.384 0.071 0.894 3.54E-02 2.01E-01 0.303 0.079 0.877 4.66E-02 1.44E-02 0.271 0.085 0.863 5.88E-02 8.89E-04 226

4 [1-8] 0.301 0.021 0.989 2.55E-02 8.03E-02 0.335 0.021 0.991 3.01E-02 8.63E-03 0.386 0.015 1.050 4.70E-02 8.21E-04 98

Recipe

Subset

points 

range

Non-linear BSY - 1 iteration

YS 

[Pa]

K 

[Pa.s
n
]

n 

[-]

SSE

[Pa
2
]

Elapsed

time

[s]

New Approach - 1 iteration

YS 

[Pa]

K 

[Pa.s
n
]

n 

[-]

SSE

[Pa
2
]

Elapsed

time

[s]

YS 

[Pa]

K 

[Pa.s
n
]

n 

[-]

SSE

[Pa
2
]

Elapsed

time

[s]

Faster

[X times]

Table 6 – OBM curve fitting for [1-10] and [1-8] subsets – 1 iteration allowed. 
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For flow rates greater than 500 l/min, the absolute error was smaller than 2% for both 

curves. For flow rates greater than approximately 850 l/min, allowing one iteration produced 

better results than a fixed YS. This is related to the fact that the former had a lower SSE than 

the latter. The flow rate for which the iterative solution becomes a better solution than the non-

iterative depends on the initial error assessing the YS and the flow behavior index. The iterative 

solution took only approximately 0.8% of the non-linear’s time to be computed. Table 7 shows 

the characterization of recipe 1 for all subsets. 

 

 

  

Figure 13 – Percentual absolute error on pressure drop prediction when the new 

approach is compared to the non-linear as function of flow rate (OBM recipe 1). 

Table 7 – OBM recipe 1 curve fitting for all subsets – 1 iteration allowed. 

10 [1-10] 0.147 0.028 0.961 5.35E-02 8.02E-01 0.135 0.028 0.959 5.55E-02 5.08E-01 0.164 0.027 0.965 5.52E-02 1.20E-02 67

9 [1-9] 0.215 0.022 0.999 2.38E-02 1.90E-01 0.183 0.022 0.997 3.05E-02 3.49E-02 0.165 0.026 0.975 3.29E-02 1.96E-03 97

8 [1-8] 0.166 0.027 0.960 5.92E-03 8.60E-02 0.155 0.028 0.954 6.18E-03 1.14E-02 0.146 0.029 0.948 6.94E-03 6.94E-04 124

7 [1-7] 0.187 0.024 0.984 4.98E-03 1.11E-01 0.159 0.028 0.959 5.85E-03 9.64E-03 0.203 0.022 1.000 5.33E-03 3.89E-04 285

6 [1-6] 0.207 0.021 1.019 4.27E-03 1.21E-01 0.177 0.022 1.004 5.62E-03 7.51E-03 0.103 0.040 0.884 1.17E-02 3.93E-03 31

5 [1-5] 0.265 0.010 1.206 2.69E-03 6.26E-02 0.193 0.018 1.063 4.85E-03 7.04E-03 0.125 0.041 0.861 7.78E-03 1.08E-03 58

4 [1-4] 0.172 0.035 0.864 1.09E-03 6.15E-02 0.165 0.034 0.883 1.31E-03 6.25E-03 0.123 0.054 0.761 1.22E-03 2.42E-04 254

3 [1-3] 0.000 0.143 0.489 4.14E-04 4.87E-02 0.168 0.034 0.869 1.53E-03 7.58E-03 0.052 0.105 0.563 5.08E-04 1.07E-03 45
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Figure 14 shows a behavior similar to the one observed in recipe 1. Again, in relative 

terms, the errors started from negative values, that is, the pressure drop was initially 

underestimated. This was directly related to the underestimation of the YSs, which were 

assumed as 0.460 Pa (blue curve) and 0.433 Pa (red curve) instead of 0.519 Pa (non-linear 

reference). 

For flow rates greater than 500 l/min, the absolute error was smaller than 3% for both 

curves. For flow rates greater than approximately 750 l/min, allowing one iteration produces 

better results than a fixed YS. This was related to the fact that the former had a lower SSE than 

the latter. The iterative solution took only approximately 0.6% of the non-linear’s time to be 

computed. Table 8 shows the characterization of recipe 2 for all subsets 

  

Figure 14 – Percentual absolute error on pressure drop prediction when the new 

approach is compared to the non-linear as function of flow rate (OBM recipe 2). 

10 [1-10] 0.727 0.052 0.920 1.72E-01 6.43E-01 0.555 0.056 0.910 2.76E-01 4.36E-01 0.550 0.063 0.891 3.27E-01 1.21E-02 53

9 [1-9] 0.573 0.070 0.872 5.65E-02 1.34E-01 0.551 0.070 0.870 5.97E-02 3.13E-02 0.466 0.082 0.846 8.36E-02 1.83E-03 73

8 [1-8] 0.519 0.079 0.850 4.14E-02 1.00E-01 0.470 0.084 0.839 4.47E-02 8.37E-03 0.433 0.091 0.825 5.34E-02 5.95E-04 168

7 [1-7] 0.520 0.078 0.851 4.14E-02 8.32E-02 0.476 0.084 0.837 4.38E-02 8.96E-03 0.323 0.121 0.769 6.96E-02 6.32E-04 132

6 [1-6] 0.610 0.056 0.921 3.23E-02 8.70E-02 0.483 0.080 0.850 3.97E-02 7.17E-03 0.339 0.123 0.762 6.54E-02 2.90E-03 30

5 [1-5] 0.738 0.026 1.107 2.73E-02 7.19E-02 0.532 0.066 0.902 4.13E-02 9.69E-03 0.390 0.126 0.739 4.60E-02 3.20E-04 224

4 [1-4] 0.028 0.384 0.454 3.83E-03 3.69E-02 0.458 0.132 0.687 6.60E-03 6.71E-03 0.124 0.320 0.492 3.90E-03 3.38E-04 109

3 [1-3] 0.000 0.424 0.422 3.23E-03 4.29E-02 0.499 0.080 0.845 1.09E-02 6.89E-03 0.146 0.312 0.492 3.78E-03 2.94E-03 15

Number 

of 

points

Subset

points 
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SSE
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YS 
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K 
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]

n 
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SSE
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2
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time

[s]

New Approach - 1 iteration

Faster

[X 

times]

Table 8 – OBM recipe 2 curve fitting for all subsets – 1 iteration allowed. 
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For recipe 3, as shown in Figure 15, the initial errors were greater than the ones from 

recipe 1 and 2; however, for flow rates greater than 500 l/min, the error became lower than 5%. 

The initial higher error was a consequence of the YS estimations, which were also less accurate. 

These were assumed as 0.256 Pa (blue curve) and 0.271 Pa (red curve) instead of 0.384 Pa 

(non-linear reference). The closer to the reference the estimation is, the lower the initial error 

becomes.  

For flow rates greater than approximately 1250 l/min, both solutions returned 

approximately the same result. Although being higher percentually, the errors observed for 

lower flow rates are less relevant because they are associated to low pressure drops. The 

iterative solution took only approximately 0.5% of the non-linear’s time to be computed. Table 

9 shows the characterization of recipe 3 for all subsets 

Figure 15 – Percentual absolute error on pressure drop prediction when the new approach is 

compared to the non-linear as function of flow rate (OBM recipe 3). 

10 [1-10] 0.588 0.048 0.961 1.64E-01 8.31E-01 0.397 0.055 0.941 3.23E-01 4.25E-01 0.397 0.058 0.932 3.66E-01 1.16E-02 71

9 [1-9] 0.452 0.061 0.920 6.27E-02 1.41E-01 0.357 0.062 0.919 1.02E-01 2.40E-02 0.312 0.075 0.888 1.17E-01 1.85E-03 76

8 [1-8] 0.384 0.071 0.894 3.54E-02 2.01E-01 0.303 0.079 0.877 4.66E-02 1.44E-02 0.271 0.085 0.863 5.88E-02 8.89E-04 226

7 [1-7] 0.324 0.082 0.864 2.99E-02 1.43E-01 0.272 0.091 0.847 3.17E-02 1.39E-02 0.151 0.118 0.797 5.30E-02 4.34E-04 329

6 [1-6] 0.359 0.074 0.888 2.86E-02 1.18E-01 0.288 0.087 0.856 3.10E-02 8.26E-03 0.210 0.109 0.808 3.87E-02 3.32E-03 35

5 [1-5] 0.271 0.103 0.811 2.73E-02 1.22E-01 0.243 0.094 0.842 3.43E-02 1.46E-02 0.243 0.112 0.791 2.74E-02 1.83E-03 67

4 [1-4] 0.000 0.254 0.581 6.52E-03 5.33E-02 0.206 0.158 0.680 1.32E-02 1.23E-02 0.398 0.071 0.884 2.39E-02 3.16E-04 169

3 [1-3] 0.075 0.162 0.736 2.27E-07 3.02E-02 0.266 0.072 0.968 6.74E-04 6.89E-03 0.216 0.095 0.884 1.86E-04 1.97E-04 153
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Table 9 – OBM recipe 3 curve fitting for all subsets – 1 iteration allowed. 
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For recipe 4, as shown in Figure 16, the initial errors were greater than the ones from 

recipe 1 and 2 and closer to the ones from recipe 3; however, for flow rates greater than 

approximately 600 l/min, the error became lower than 5% (red curve). The initial higher error 

was a consequence of the YS estimations, which were also less accurate. These were assumed 

as 0.409 Pa (blue curve) and 0.386 Pa (red curve) instead of 0.301 Pa (non-linear reference). 

The iterative solution took only approximately 1.0% of the non-linear’s time to be computed. 

Table 10 shows the characterization of recipe 4 for all subsets 

 

 

The complete characterization when no iteration was performed; shear stress predictions 

calculated by subset [1-10] characterization; tubing performance curves and flow profiles for 

Figure 16 – Percentual absolute error on pressure drop prediction when the new approach is 

compared to the non-linear as function of flow rate (OBM recipe 4). 

10 [1-10] 0.456 0.011 1.103 1.55E-01 6.47E-01 0.466 0.010 1.112 1.63E-01 4.26E-01 0.466 0.011 1.106 1.55E-01 1.26E-02 51

9 [1-9] 0.328 0.019 1.014 3.17E-02 1.51E-01 0.397 0.015 1.047 4.79E-02 2.73E-02 0.349 0.017 1.025 3.34E-02 1.74E-03 87

8 [1-8] 0.301 0.021 0.989 2.55E-02 8.03E-02 0.335 0.021 0.991 3.01E-02 8.63E-03 0.386 0.015 1.050 4.70E-02 8.21E-04 98

7 [1-7] 0.370 0.013 1.092 1.11E-02 8.80E-02 0.370 0.014 1.067 1.31E-02 5.53E-03 0.432 0.008 1.182 1.91E-02 3.32E-04 265

6 [1-6] 0.411 0.008 1.200 6.65E-03 1.05E-01 0.427 0.006 1.263 8.70E-03 7.49E-03 0.446 0.005 1.290 8.66E-03 4.85E-03 22

5 [1-5] 0.474 0.001 1.659 9.03E-04 9.96E-02 0.431 0.003 1.453 2.44E-03 4.81E-03 0.433 0.004 1.365 2.87E-03 2.00E-04 499

4 [1-4] 0.488 0.001 1.917 6.49E-04 1.38E-01 0.441 0.003 1.472 1.81E-03 7.43E-03 0.442 0.004 1.336 1.91E-03 2.61E-04 528

3 [1-3] 0.498 0.000 3.000 2.33E-04 1.44E-01 0.391 0.052 0.512 2.60E-03 5.22E-03 0.545 0.000 0.000 6.96E-03 3.41E-03 42

Faster

[X 

times]

New Approach - 1 iteration
Number 

of 

points

Subset

points 

range

Non-linear

YS 

[Pa]

K 

[Pa.s
n
]

YS 

[Pa]

Elapsed

time

[s]

K 

[Pa.s
n
]

n 

[-]

SSE

[Pa
2
]

BSY - 1 iteration

n 

[-]

SSE

[Pa
2
]

Elapsed

time

[s]

YS 

[Pa]

K 

[Pa.s
n
]

n 

[-]

SSE

[Pa
2
]

Elapsed

time

[s]

Table 10 – OBM recipe 4 curve fitting for all subsets – 1 iteration allowed. 
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subset [1-8] characterization; and percentual errors on pressure drop predictions are presented 

in Appendix B for all recipes of OBM. 

Figure 17 shows that the small error for flow rates greater than 600 l/min causes the 

velocity profiles to be almost coincident for all approaches when one iteration is allowed. 

Therefore, the balance between accuracy and computing time was achieved for the 

characterization of OBM too. 

 

 

 

  

Figure 17 – Velocity profiles.OBM a) Recipe 1. b) Recipe 2. c) Recipe 3. d) Recipe 4. 

 

d) 

b) 

c) 

a) 



 37 

4.5 Saasen and Ytrehus Experiments 

Data from three experiments by Saasen and Ytrehus (2018) are reproduced below. 

 

In their original work, two rheological characterizations were made for each experiment 

using the data from Table 11: the first, for high shear rates; the second, for shear rates lower 

than 170.3 𝑠−1. The former and the latter, respectively, were compared to characterizations 

from subsets [1-8] and [1-5] in this present work. 

 

 

 

Table 12, Table 13 and Table 14 show that the original SYA is less accurate than the 

BSY for all experiments. Even though both approaches took the same reference points for the 

1st 2nd 3rd

# [1/s] experiment experiment experiment

1 5.11 5.62 6.13 4.09

2 10.22 6.64 7.15 5.62

3 51.10 11.20 13.30 9.20

4 102.20 15.30 17.90 12.30

5 170.30 19.90 23.50 17.90

6 340.70 30.70 34.70 23.00

7 511.00 40.90 46.00 28.60

8 1022.00 68.50 71.50 42.40

Experimental Shear Stress [Pa]Meas.

Pts.

Shear 

Rate

Table 11 – Saasen and Ytrehus original data. 

Non-linear regression [1-8] 5.216 0.224 0.814 0.764 - - - - 0.674 -

Original SYA [1-8] 4.600 0.254 0.798 1.468 170.3 19.9 1022.0 68.5 - -

BSY (1 iteration) [1-8] 4.923 0.237 0.807 0.959 170.3 19.9 1022.0 68.5 0.446 1.5

New Aproach (1 iteration) [1-8] 4.522 0.292 0.776 1.988 102.2 15.3 1022.0 68.5 0.012 54.1

Faster than 

non-linear

[X times]

Solution

Subset

points 

range

YS 

[Pa]

K 

[Pa.sn]

n 

[-]

SSE

[Pa2]

Elapsed

time

[s]

𝛾̇𝑠 𝛾̇𝑥𝜏 𝜏𝑥

Table 12 – Comparison among approaches for 1st experiment – high shear rates. 

Non-linear regression [1-8] 4.748 0.493 0.708 1.030 - - - - 0.59 -

Original SYA [1-8] 5.110 0.464 0.716 1.208 170.3 23.5 1022.0 71.5 - -

BSY (1 iteration) [1-8] 4.678 0.498 0.707 1.037 170.3 23.5 1022.0 71.5 0.432 1.4

New Aproach (1 iteration) [1-8] 4.071 0.598 0.681 1.867 51.1 13.3 1022.0 71.5 0.012 48.8

Faster than 

non-linear

[X times]

Solution

Subset

points 

range

YS 

[Pa]

K 

[Pa.sn]

n 

[-]

SSE

[Pa2]

Elapsed

time

[s]

𝛾̇𝑠 𝛾̇𝑥𝜏 𝜏𝑥

Table 13 – Comparison among approaches for 2nd experiment – high shear rates. 

Non-linear regression [1-8] 2.841 0.598 0.607 3.535 - - - - 0.630 -

Original SYA [1-8] 2.560 0.926 0.546 13.34 170.3 17.9 1022.0 43.4 - -

BSY (1 iteration) [1-8] 2.820 0.562 0.618 3.738 51.1 9.2 1022.0 43.4 0.443 1.4

New Aproach (1 iteration) [1-8] 2.820 0.602 0.606 3.536 51.1 9.2 1022.0 43.4 0.013 50.3

Faster than 

non-linear

[X times]

Solution

Subset

points 

range

YS 

[Pa]

K 

[Pa.sn]

n 

[-]

SSE

[Pa2]

Elapsed

time

[s]

𝛾̇𝑠 𝛾̇𝑥𝜏 𝜏𝑥

Table 14 – Comparison among approaches for 3rd experiment – high shear rates. 
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first and second experiments, BSY produced a lower SSE because of the iteration that updated 

its YSs. Naturally, the non-linear solution was always the most accurate; however, BSY 

produced results close to it and took about 70% of the computing time needed for the non-linear 

solution. 

The authors’ experience played a positive role in the selection of reference points for 

the first and second experiments, and the best points were chosen. Thus, the new SYA produced 

better results than the new approach for these experiments. For the third experiment, the SYA 

did not select adequate reference points, and the new approach was superior than it. Even 

though the SYA was superior to the new approach in two events, the new approach seemed to 

produce results that were more consistent, that is, its errors were never much bigger than the 

benchmark’s. In fact, for the third experiment, the new approach was even better than the BSY. 

It is possible because the iteration only updated the YS in the new approach whereas it updated 

all parameters for the BSY; thus, the new approach was not a solution within the BSY SSE 

matrix. In general, the new approach took only about 2% of the computing time required for 

the non-linear solution. 

 

 

Non-linear regression [1-5] 4.172 0.506 0.669 0.011 - - - - 9.12E-02 -

SYA Original [1-5] 4.600 0.423 0.698 0.102 51.1 11.2 170.3 19.9 - -

BSY (1 iteration) [1-5] 4.524 0.411 0.705 0.052 10.2 6.6 170.3 19.9 5.67E-03 28.9

New Aproach (1 iteration) [1-5] 4.548 0.383 0.720 0.067 10.2 6.6 102.2 15.3 3.70E-04 442.3

Faster than 

non-linear

[X times]

Solution

Subset

points 

range

YS 

[Pa]

K 

[Pa.sn]

n 

[-]

SSE

[Pa2]

Elapsed

time

[s]

𝛾̇𝑠 𝛾̇𝑥𝜏 𝜏𝑥

Table 15 – Comparison among approaches for 1st experiment – low shear rates. 

Non-linear regression [1-5] 3.880 0.794 0.624 0.097 - - - - 7.56E-02 -

SYA Original [1-5] 5.110 0.582 0.672 1.133 51.1 13.3 170.3 23.5 - -

BSY (1 iteration) [1-5] 4.537 0.560 0.685 0.241 102.2 17.9 170.3 23.5 7.83E-03 10.1

New Aproach (1 iteration) [1-5] 4.794 0.474 0.717 0.386 10.2 7.2 102.2 17.9 3.70E-04 213.5

Elapsed

time

[s]

Faster than 

non-linear

[X times]

Solution

Subset

points 

range

YS 

[Pa]

K 

[Pa.sn]

n 

[-]

SSE

[Pa2]
𝛾̇𝑠 𝛾̇𝑥𝜏 𝜏𝑥

Table 16 – Comparison among approaches for 2nd experiment – low shear rates. 

Non-linear regression [1-5] 3.841 0.184 0.841 0.916 - - - - 1.15E-01 -

SYA Original [1-5] 2.560 0.430 0.696 1.861 51.1 9.2 170.3 17.9 - -

BSY (1 iteration) [1-5] 3.055 0.300 0.760 1.383 5.1 4.1 170.3 17.9 5.33E-03 15.2

New Aproach (1 iteration) [1-5] 2.072 0.790 0.573 2.087 10.2 5.6 170.3 17.9 2.71E-04 298.5

Faster than 

non-linear

[X times]

Solution

Subset

points 

range

YS 

[Pa]

K 

[Pa.sn]

n 

[-]

SSE

[Pa2]

Elapsed

time

[s]

𝛾̇𝑠 𝛾̇𝑥𝜏 𝜏𝑥

Table 17 – Comparison among approaches for 3rd experiment – low shear rates. 
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Table 15, Table 17 and Table 16 show that the original SYA was always less accurate 

than BSY for all experiments. The new approach was more accurate than the SYA for the first 

and second experiments, which indicated the advantage of allowing one iteration. The BYS 

spent at most 10% of the non-linear solution’s computing time. Therefore, it should be favored 

in experiments with a small number of data points for which few combinations are possible. As 

the number of points increase, computing all combinations takes more time and then the new 

approach becomes more attractive.  

4.6 Dimensionless PLM – Uncertainty Evaluation 

Seven samples were taken from a batch of PAC-R fluid whose concentration was 4 g/l. 

They were tested as the other PAC-R solutions, and average shear stresses and standard 

deviations were calculated. The results are shown below. 

1 2 3 4 5 6 7

1 0.0100 0.00571 0.00581 0.00578 0.00577 0.00586 0.00579 0.00577 0.00578 0.00005

2 0.0148 0.00643 0.00649 0.00649 0.00643 0.00660 0.00643 0.00650 0.00648 0.00006

3 0.0218 0.00750 0.00752 0.00749 0.00745 0.00755 0.00744 0.00745 0.00749 0.00004

4 0.0322 0.0091 0.0092 0.0091 0.0090 0.0092 0.0090 0.0090 0.0091 0.0001

5 0.0476 0.0115 0.0114 0.0114 0.0113 0.0114 0.0113 0.0112 0.0114 0.0001

6 0.0702 0.0149 0.0149 0.0147 0.0145 0.0147 0.0145 0.0144 0.0147 0.0002

7 0.104 0.0199 0.0197 0.0196 0.0193 0.0195 0.0192 0.0190 0.0195 0.0003

8 0.153 0.0272 0.0268 0.0267 0.0261 0.0265 0.0261 0.0259 0.0265 0.0005

9 0.226 0.0376 0.0369 0.0368 0.0360 0.0365 0.0359 0.0356 0.0365 0.0007

10 0.334 0.0527 0.0516 0.0516 0.0502 0.0510 0.0501 0.0497 0.0510 0.0011

11 0.493 0.0750 0.0734 0.0732 0.0712 0.0723 0.0711 0.0705 0.0724 0.0016

12 0.728 0.106 0.104 0.103 0.101 0.102 0.101 0.100 0.102 0.002

13 1.08 0.153 0.149 0.149 0.145 0.147 0.145 0.144 0.147 0.003

14 1.59 0.228 0.223 0.223 0.218 0.220 0.217 0.215 0.221 0.004

15 2.35 0.323 0.317 0.316 0.309 0.313 0.309 0.306 0.313 0.006

16 3.46 0.460 0.452 0.452 0.442 0.447 0.442 0.438 0.448 0.008

17 5.12 0.642 0.631 0.631 0.618 0.625 0.618 0.613 0.625 0.010

18 7.55 0.891 0.877 0.876 0.860 0.869 0.860 0.854 0.870 0.013

19 11.2 1.22 1.20 1.20 1.18 1.19 1.18 1.17 1.19 0.02

20 16.5 1.66 1.63 1.63 1.60 1.62 1.60 1.59 1.62 0.02

21 24.3 2.22 2.19 2.19 2.15 2.17 2.16 2.14 2.17 0.03

22 35.9 2.94 2.90 2.90 2.86 2.88 2.86 2.84 2.88 0.03

23 53.1 3.85 3.80 3.80 3.75 3.78 3.76 3.74 3.78 0.04

24 78.4 4.99 4.93 4.94 4.87 4.91 4.88 4.85 4.91 0.05

25 116.0 6.40 6.34 6.35 6.27 6.32 6.28 6.25 6.32 0.05

26 171.0 8.16 8.08 8.10 8.00 8.07 8.02 7.98 8.06 0.06

27 252.0 10.3 10.2 10.3 10.1 10.2 10.2 10.1 10.2 0.08

28 373.0 13.0 12.9 13.0 12.8 12.9 12.8 12.8 12.9 0.09

29 550.0 16.5 16.3 16.4 16.2 16.3 16.2 16.2 16.3 0.12

30 813.0 20.8 20.6 20.7 20.5 20.7 20.6 20.5 20.6 0.11

31 1200.0 26.5 26.3 26.4 26.1 26.4 26.2 26.1 26.3 0.16

Meas. 

Pts. #

Shear Rate 

[1/s]

Shear Stress [Pa]

Average
Stand.

Deviation
Test

Table 18 – Seven measurements for the second batch of PAC-R-4 solution 
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In section 4.2, it was shown that the BSY approach produced results close to a NLR. 

The equations from section 3.6 were used to evaluate if the pressure drop computed by the latter 

were within the dispersion associated to the pressure drop calculated by the former. Pressure 

drops were calculated for both approaches. Next, the NLR was taken as a true value and the 

percentual absolute error from the BSY calculation was computed. Then, the error propagation 

formulas were used to predict which dispersion was associated to the BSY pressure drop 

calculation. The predicted error and the actual error were plotted for comparison. The results 

for subset [1-31] are presented in Figure 18. 

 

Figure 18 shows a positive result. The error propagation formulas applied to the BSY 

characterization returned an error that is bigger than the actual one. Thus, these formulas could 

be used to associate an error to BSY, and the non-linear solution would be within the predicted 

error margin. When applied to PLM, BSY was not only a solution faster than NLR, but it had 

also a dispersion that covered the pressure drop computed by non-linear solution. Other subsets 

such as [1-30], [1-29], [1-28], [1-27] and [1-26] were tested in the same manner and confirmed 

this behavior. The complete rheological characterization with all subsets is presented in 

Appendix C. 

  

Figure 18 – Error comparison for PAC-R-4, subset [1-31]. 
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5 Conclusion 

This study presented a methodology, namely the creation of SSE matrices, to select 

inputs for dimensionless shear rates in Herschel-Bulkley and Power-Law models. This 

methodology was implemented in a MATLAB program that also enables hydraulic calculations 

and rheological characterization. Using this tool, two approaches were derived: the BSY and 

the new approach. A variation of these two in which one iterative calculation is allowed was 

also presented. This modification was meant to compensate for the extra degree of freedom 

introduced by the yield in characterizations using HBM. 

Non-linear regression and the two approaches presented in this work represent different 

balances between accuracy and computing time. In one extreme, there is the non-linear 

regression that is the most accurate solution but the slowest. In the other extreme, there is the 

new approach that is the fastest but least accurate. In the middle, the BSY. For the proposed 

approaches the decrease in accuracy is not as significant as the increase in computing speed. 

Although the new approach was derived as a single criterion, intermediate solutions are 

also possible. The idea behind the new approach can be used to reduce the number of 

combinations from a SSE matrix, and then the BSY can be applied to this reduced SSE matrix. 

Therefore, a mixing of the two approaches can produce different balances between accuracy 

and computing time. 

When the new approach was used to characterize PAC-R solutions, the error from 

hydraulic calculations were inferior to 3% for flow rates from 0 to 3500 l/min; the solution 

computing time, in the worst case, was only about 5% of the non-linear’s though. For OBM, 

the error from hydraulic calculations were inferior to 5% for flow rates greater than 

approximately 600; the solution computing time, in the worst case, was only about 1% of the 

non-linear’s.  

The accuracy of the BSY is even better than the new approach’s. In fact, its solution 

was so close to the non-linear’s that the error propagation theory was applied with success to 

it. In other words, the hydraulic calculations by non-linear regression were within the dispersion 

that the BSY solution was predicted to have. 

Regardless of each approach is used, the application of the iterative calculation proposed 

for HBM is a powerful tool. In fact, Saasen and Ytrehus would have produced curve fittings 

with lower SSE if they had applied the iterative calculation in their original study.  

Finally, the criterion presented to select inputs for the new approach is not universal. 

Therefore, it may lose quality depending on the fluid studied and how the shear measurements 
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are distributed. The BSY is a more reliable approach when the quality of the fit is crucial. 

However, following the methodology that was presented in this work should allow one to derive 

their own criterion to select points from a SSE matrix. These criteria can then be organized by 

family of fluids.  
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Appendix A – PAC-R Solution 

 

 

  

Table 19 – Non-linear, BSY and new approach curve fitting from PAC-R 2 g/l experimental data 

31 [1-31] 0.096 0.708 5.04E-02 0.979 0.097 0.707 5.58E-02 0.636 0.105 0.694 1.03E-01 0.020

30 [1-30] 0.099 0.704 4.45E-02 0.188 0.098 0.705 4.49E-02 0.049 0.106 0.691 7.09E-02 0.003

29 [1-29] 0.099 0.704 4.45E-02 0.131 0.098 0.705 4.50E-02 0.030 0.102 0.698 4.77E-02 0.002

28 [1-28] 0.095 0.711 3.80E-02 0.072 0.096 0.709 3.86E-02 0.020 0.096 0.709 3.86E-02 0.001

27 [1-27] 0.090 0.724 2.71E-02 0.060 0.089 0.727 2.83E-02 0.014 0.089 0.727 2.83E-02 0.003

26 [1-26] 0.084 0.740 1.73E-02 0.037 0.086 0.735 1.89E-02 0.012 0.081 0.749 1.93E-02 0.001

25 [1-25] 0.078 0.759 1.04E-02 0.038 0.078 0.760 1.15E-02 0.020 0.078 0.760 1.15E-02 0.001

24 [1-24] 0.073 0.780 5.66E-03 0.054 0.072 0.787 6.47E-03 0.028 0.072 0.787 6.47E-03 0.002

23 [1-23] 0.068 0.803 2.87E-03 0.042 0.069 0.803 3.63E-03 0.010 0.066 0.814 3.80E-03 0.001

22 [1-22] 0.063 0.829 1.19E-03 0.038 0.066 0.814 1.53E-03 0.013 0.062 0.840 1.71E-03 0.003

21 [1-21] 0.060 0.852 4.76E-04 0.036 0.062 0.840 5.91E-04 0.019 0.059 0.862 6.54E-04 0.001

20 [1-20] 0.058 0.872 2.15E-04 0.088 0.059 0.862 2.63E-04 0.013 0.056 0.886 3.24E-04 0.001

19 [1-19] 0.056 0.892 9.88E-05 0.033 0.056 0.891 9.91E-05 0.015 0.055 0.905 1.67E-04 0.001

18 [1-18] 0.055 0.913 3.76E-05 0.033 0.054 0.917 4.20E-05 0.012 0.055 0.914 5.12E-05 0.001

17 [1-17] 0.054 0.930 1.74E-05 0.026 0.054 0.928 1.97E-05 0.012 0.052 0.945 3.71E-05 0.001

16 [1-16] 0.053 0.947 9.22E-06 0.064 0.053 0.961 1.31E-05 0.015 0.054 0.931 1.37E-05 0.001

15 [1-15] 0.053 0.955 8.31E-06 0.026 0.053 0.961 9.01E-06 0.010 0.052 0.970 1.11E-05 0.001

14 [1-14] 0.053 0.961 8.04E-06 0.025 0.054 0.964 8.63E-06 0.011 0.053 1.007 1.54E-05 0.002

13 [1-13] 0.052 0.938 6.29E-06 0.022 0.052 0.910 7.75E-06 0.007 0.055 1.008 2.29E-05 0.001

12 [1-12] 0.053 0.953 5.94E-06 0.032 0.055 0.969 7.02E-06 0.008 0.054 0.928 9.61E-06 0.001

11 [1-11] 0.048 0.876 2.18E-06 0.030 0.048 0.880 2.18E-06 0.011 0.047 0.827 6.29E-06 0.001

10 [1-10] 0.042 0.814 5.40E-07 0.029 0.043 0.819 5.43E-07 0.007 0.044 0.850 1.07E-06 0.001

9 [1-9] 0.043 0.816 5.38E-07 0.031 0.041 0.811 6.55E-07 0.011 0.047 0.853 9.72E-07 0.001

8 [1-8] 0.046 0.855 4.97E-07 0.029 0.047 0.853 2.98E-07 0.009 0.044 0.830 3.59E-07 0.001

7 [1-7] 0.049 0.871 3.20E-07 0.040 0.047 0.850 3.06E-07 0.013 0.068 0.961 9.52E-07 0.001

6 [1-6] 0.053 0.900 2.79E-07 0.030 0.068 0.961 1.61E-07 0.010 0.068 0.961 1.61E-07 0.001

5 [1-5] 0.004 0.216 2.59E-06 0.024 0.048 0.880 1.11E-07 0.010 0.071 0.971 1.86E-07 0.003

4 [1-4] 0.004 0.238 1.21E-06 0.021 0.071 0.971 5.04E-08 0.009 0.167 1.175 1.99E-07 0.001

3 [1-3] 0.002 0.057 6.96E-07 0.039 0.372 1.385 8.50E-09 0.012 0.167 1.175 1.26E-08 0.001
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Table 20 – Shear stress prediction for PAC-R 2 g/l upwards shear rate ramp by different approaches 

Experimental

Shear Stress Shear Stress Δ (abs) Shear Stress Δ (abs) Shear Stress Δ (abs)

[1/s] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa]

0.0100 0.00063 0.00370 0.00307 0.00373 0.00310 0.00432 0.00369

0.0148 0.00118 0.00488 0.00370 0.00492 0.00374 0.00567 0.00449

0.0218 0.00186 0.00642 0.00456 0.00647 0.00461 0.00742 0.00556

0.0322 0.00251 0.00847 0.00596 0.00853 0.00602 0.00973 0.00722

0.0476 0.00330 0.01116 0.00786 0.01125 0.00795 0.01275 0.00945

0.0702 0.0053 0.0147 0.0094 0.0148 0.0095 0.0167 0.0114

0.104 0.0068 0.0194 0.0126 0.0196 0.0128 0.0219 0.0151

0.153 0.0095 0.0255 0.0160 0.0257 0.0162 0.0287 0.0192

0.226 0.0124 0.0336 0.0212 0.0339 0.0215 0.0376 0.0252

0.334 0.0174 0.0443 0.0269 0.0446 0.0272 0.0493 0.0319

0.493 0.0264 0.0584 0.0320 0.0588 0.0324 0.0645 0.0381

0.728 0.040 0.077 0.037 0.077 0.037 0.085 0.044

1.080 0.056 0.102 0.046 0.102 0.046 0.111 0.055

1.590 0.084 0.134 0.050 0.135 0.051 0.145 0.062

2.350 0.120 0.176 0.056 0.177 0.057 0.191 0.071

3.46 0.17 0.23 0.06 0.23 0.06 0.25 0.08

5.12 0.24 0.31 0.06 0.31 0.06 0.33 0.08

7.55 0.34 0.40 0.06 0.40 0.06 0.43 0.09

11.2 0.48 0.53 0.05 0.54 0.06 0.56 0.08

16.5 0.66 0.70 0.04 0.70 0.04 0.74 0.08

24.3 0.90 0.92 0.02 0.93 0.02 0.96 0.06

35.9 1.22 1.21 0.01 1.22 0.00 1.26 0.04

53.1 1.63 1.60 0.03 1.61 0.02 1.66 0.03

78.3 2.16 2.11 0.05 2.12 0.04 2.17 0.01

116.0 2.85 2.79 0.06 2.80 0.05 2.85 0.00

171.0 3.73 3.67 0.06 3.68 0.05 3.73 0.00

252.0 4.86 4.82 0.04 4.84 0.02 4.88 0.02

373.0 6.35 6.37 0.02 6.39 0.04 6.41 0.06

550.0 8.31 8.38 0.07 8.41 0.10 8.39 0.08

813.0 11.00 11.05 0.05 11.09 0.09 11.00 0.00

1200.0 14.60 14.56 0.04 14.60 0.00 14.41 0.19

Shear 

Rate

Non-linear BSY New Approach
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Figure 19 – Hydraulic predictions for PAC-R 2 g/l. a) tubing performance curve. b) velocity profile. 

a) b) 
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Table 21 – Non-linear, BSY and new approach curve fitting from PAC-R 4 g/l experimental data 
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Table 22 – Shear stress prediction for PAC-R 4 g/l upwards shear rate ramp by different approaches 

Experimental

Shear Stress Shear Stress Δ (abs) Shear Stress Δ (abs) Shear Stress Δ (abs)

# [1/s] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa]

1 0.0100 0.00 0.02 0.02 0.02 0.02 0.02 0.02

2 0.0148 0.00 0.02 0.02 0.03 0.02 0.03 0.02

3 0.0218 0.00 0.03 0.03 0.03 0.03 0.04 0.03

4 0.0322 0.01 0.04 0.03 0.04 0.04 0.04 0.04

5 0.0476 0.01 0.05 0.04 0.05 0.04 0.06 0.05

6 0.0702 0.01 0.07 0.05 0.07 0.05 0.07 0.06

7 0.104 0.02 0.08 0.06 0.08 0.07 0.09 0.07

8 0.153 0.03 0.11 0.08 0.11 0.08 0.11 0.09

9 0.226 0.04 0.13 0.10 0.14 0.10 0.15 0.11

10 0.334 0.05 0.17 0.12 0.17 0.12 0.18 0.13

11 0.493 0.08 0.22 0.14 0.22 0.14 0.23 0.15

12 0.728 0.12 0.28 0.16 0.28 0.16 0.30 0.18

13 1.08 0.17 0.35 0.18 0.36 0.19 0.38 0.21

14 1.59 0.24 0.45 0.20 0.45 0.21 0.47 0.23

15 2.35 0.35 0.57 0.22 0.58 0.23 0.60 0.26

16 3.46 0.49 0.72 0.24 0.73 0.25 0.76 0.27

17 5.12 0.68 0.92 0.24 0.93 0.25 0.96 0.29

18 7.55 0.93 1.17 0.24 1.18 0.25 1.22 0.29

19 11.2 1.27 1.49 0.22 1.51 0.24 1.55 0.28

20 16.5 1.72 1.89 0.17 1.91 0.19 1.96 0.24

21 24.3 2.29 2.41 0.12 2.42 0.13 2.48 0.19

22 35.9 3.01 3.06 0.05 3.08 0.07 3.15 0.14

23 53.1 3.92 3.90 0.02 3.92 0.00 3.99 0.07

24 78.3 5.05 4.95 0.10 4.98 0.07 5.05 0.00

25 116.0 6.46 6.31 0.15 6.34 0.12 6.41 0.05

26 171.0 8.20 8.02 0.18 8.05 0.15 8.11 0.09

27 252.0 10.40 10.19 0.21 10.21 0.19 10.27 0.13

28 373.0 13.10 12.98 0.12 13.00 0.10 13.02 0.08

29 550.0 16.50 16.49 0.01 16.50 0.00 16.49 0.01

30 813.0 20.90 20.99 0.09 20.98 0.08 20.90 0.00

31 1200.0 26.60 26.70 0.10 26.66 0.06 26.47 0.13

Meas.

Pts.

Shear 

Rate

Non-linear BSY New Approach
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Figure 20 – Hydraulic predictions for PAC-R 4 g/l. a) tubing performance curve. b) velocity profile. 

 

a) b) 
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Table 23 – Non-linear, BSY and new approach curve fitting from PAC-R 6 g/l experimental data 

 

31 [1-31] 0.750 0.561 2.88E+00 0.600 0.770 0.557 3.01E+00 0.381 0.780 0.554 3.12E+00 0.010

30 [1-30] 0.727 0.567 2.63E+00 0.153 0.729 0.566 2.64E+00 0.041 0.729 0.566 2.64E+00 0.002

29 [1-29] 0.689 0.578 2.09E+00 0.072 0.671 0.582 2.14E+00 0.019 0.718 0.570 2.17E+00 0.002

28 [1-28] 0.648 0.591 1.57E+00 0.120 0.651 0.591 1.59E+00 0.019 0.651 0.591 1.59E+00 0.001

27 [1-27] 0.600 0.610 1.02E+00 0.146 0.594 0.612 1.03E+00 0.031 0.594 0.612 1.03E+00 0.003

26 [1-26] 0.560 0.628 7.00E-01 0.065 0.577 0.622 7.21E-01 0.013 0.536 0.638 7.34E-01 0.001

25 [1-25] 0.520 0.649 4.41E-01 0.039 0.518 0.652 4.61E-01 0.011 0.518 0.652 4.61E-01 0.001

24 [1-24] 0.480 0.674 2.46E-01 0.042 0.473 0.680 2.59E-01 0.012 0.473 0.680 2.59E-01 0.001

23 [1-23] 0.448 0.699 1.37E-01 0.045 0.458 0.695 1.54E-01 0.010 0.431 0.713 1.59E-01 0.001

22 [1-22] 0.418 0.727 6.85E-02 0.037 0.420 0.728 7.64E-02 0.013 0.402 0.742 8.26E-02 0.001

21 [1-21] 0.394 0.753 3.37E-02 0.031 0.394 0.758 3.98E-02 0.009 0.378 0.773 4.56E-02 0.001

20 [1-20] 0.376 0.781 1.56E-02 0.035 0.373 0.787 1.83E-02 0.010 0.373 0.787 1.83E-02 0.001

19 [1-19] 0.362 0.806 7.49E-03 0.029 0.361 0.801 9.62E-03 0.010 0.358 0.818 1.05E-02 0.001

18 [1-18] 0.351 0.833 2.97E-03 0.035 0.356 0.830 3.59E-03 0.010 0.345 0.849 4.14E-03 0.001

17 [1-17] 0.344 0.857 1.37E-03 0.027 0.345 0.849 1.71E-03 0.009 0.343 0.871 2.23E-03 0.001

16 [1-16] 0.341 0.882 4.50E-04 0.049 0.343 0.871 5.73E-04 0.014 0.339 0.901 8.65E-04 0.001

15 [1-15] 0.340 0.903 1.54E-04 0.032 0.339 0.901 1.98E-04 0.012 0.342 0.916 3.34E-04 0.001

14 [1-14] 0.342 0.922 3.98E-05 0.030 0.343 0.919 4.28E-05 0.011 0.340 0.928 6.07E-05 0.001

13 [1-13] 0.345 0.933 2.42E-05 0.039 0.343 0.936 2.98E-05 0.012 0.342 0.934 3.54E-05 0.001

12 [1-12] 0.351 0.951 1.89E-06 0.026 0.352 0.952 2.02E-06 0.010 0.351 0.944 5.20E-06 0.001

11 [1-11] 0.349 0.948 1.49E-06 0.034 0.350 0.949 1.55E-06 0.020 0.350 0.947 1.61E-06 0.001

10 [1-10] 0.347 0.944 1.29E-06 0.028 0.348 0.945 1.37E-06 0.007 0.343 0.935 1.88E-06 0.001

9 [1-9] 0.353 0.952 9.02E-07 0.031 0.355 0.956 1.03E-06 0.007 0.355 0.958 1.58E-06 0.001

8 [1-8] 0.365 0.964 4.05E-07 0.027 0.363 0.962 4.12E-07 0.007 0.363 0.962 4.12E-07 0.001

7 [1-7] 0.366 0.965 3.97E-07 0.035 0.360 0.960 4.52E-07 0.007 0.359 0.959 4.60E-07 0.001

6 [1-6] 0.384 0.982 2.13E-07 0.032 0.398 0.991 1.52E-07 0.007 0.398 0.991 1.52E-07 0.001

5 [1-5] 0.340 0.950 4.11E-07 0.058 0.380 0.980 1.46E-07 0.008 0.380 0.980 1.46E-07 0.002

4 [1-4] 0.298 0.919 6.69E-07 0.049 0.414 1.001 6.00E-08 0.009 0.414 1.001 6.00E-08 0.001

3 [1-3] 0.008 0.062 1.22E-05 0.023 0.58 1.08 7.56E-09 0.009 0.500 1.046 1.33E-08 0.001

n 
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Elapsed

time
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Table 24 – Shear stress prediction for PAC-R 6 g/l upwards shear rate ramp by different approaches 

Experimental

Shear Stress Shear Stress Δ (abs) Shear Stress Δ (abs) Shear Stress Δ (abs)

# [1/s] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa]

1 0.0100 0.00394 0.05671 0.05277 0.05914 0.05520 0.06091 0.05697

2 0.0148 0.00611 0.07066 0.06455 0.07358 0.06747 0.07568 0.06957

3 0.0218 0.00916 0.08779 0.07863 0.09130 0.08214 0.09379 0.08463

4 0.0322 0.01330 0.10925 0.09595 0.11347 0.10017 0.11640 0.10310

5 0.0476 0.01920 0.13601 0.11681 0.14108 0.12188 0.14453 0.12533

6 0.070 0.029 0.169 0.141 0.175 0.147 0.179 0.151

7 0.104 0.041 0.211 0.170 0.218 0.177 0.223 0.182

8 0.153 0.060 0.262 0.202 0.270 0.211 0.276 0.216

9 0.226 0.085 0.326 0.240 0.336 0.251 0.342 0.257

10 0.334 0.123 0.405 0.282 0.418 0.295 0.425 0.302

11 0.493 0.179 0.504 0.325 0.519 0.340 0.527 0.348

12 0.728 0.260 0.628 0.368 0.645 0.385 0.655 0.395

13 1.08 0.37 0.78 0.41 0.80 0.44 0.81 0.45

14 1.59 0.52 0.97 0.45 1.00 0.47 1.01 0.49

15 2.35 0.73 1.21 0.48 1.24 0.51 1.25 0.52

16 3.46 1.01 1.50 0.49 1.54 0.53 1.55 0.54

17 5.12 1.38 1.87 0.49 1.91 0.53 1.93 0.55

18 7.55 1.87 2.33 0.46 2.37 0.50 2.39 0.52

19 11.2 2.50 2.91 0.41 2.96 0.46 2.97 0.47

20 16.5 3.30 3.61 0.31 3.67 0.37 3.69 0.39

21 24.3 4.29 4.49 0.20 4.55 0.26 4.57 0.28

22 35.9 5.53 5.58 0.05 5.66 0.13 5.67 0.14

23 53.1 7.04 6.95 0.09 7.04 0.00 7.04 0.00

24 78.3 8.88 8.64 0.24 8.74 0.14 8.73 0.15

25 116.0 11.10 10.77 0.33 10.88 0.22 10.85 0.25

26 171.0 13.80 13.39 0.41 13.51 0.29 13.45 0.35

27 252.0 17.10 16.64 0.46 16.77 0.33 16.68 0.42

28 373.0 21.00 20.74 0.26 20.86 0.14 20.72 0.28

29 550.0 25.90 25.78 0.12 25.90 0.00 25.69 0.21

30 813.0 31.90 32.10 0.20 32.20 0.30 31.90 0.00

31 1200.0 39.60 39.93 0.33 40.00 0.40 39.58 0.02

Meas.

Pts.

Shear 

Rate

Non-linear BSY New Approach
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Figure 21 – Hydraulic predictions for PAC-R 6 g/l. a) tubing performance curve. b) velocity profile. 

a) 
b) 
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Table 25 – Non-linear, BSY and new approach curve fitting from PAC-R 10 g/l experimental data 

31 [1-31] 2.697 0.473 2.91E+01 0.611 2.764 0.470 3.04E+01 0.377 2.764 0.470 3.04E+01 0.010

30 [1-30] 2.575 0.483 2.42E+01 0.154 2.587 0.481 2.46E+01 0.039 2.536 0.487 2.63E+01 0.002

29 [1-29] 2.432 0.495 1.85E+01 0.070 2.379 0.498 1.90E+01 0.022 2.319 0.507 2.32E+01 0.002

28 [1-28] 2.287 0.510 1.35E+01 0.067 2.319 0.507 1.36E+01 0.013 2.319 0.507 1.36E+01 0.001

27 [1-27] 2.139 0.527 9.18E+00 0.095 2.120 0.529 9.21E+00 0.013 2.120 0.529 9.21E+00 0.003

26 [1-26] 2.011 0.544 6.37E+00 0.044 1.953 0.550 6.51E+00 0.012 1.953 0.550 6.51E+00 0.001

25 [1-25] 1.892 0.563 4.36E+00 0.055 1.908 0.562 4.38E+00 0.023 1.791 0.576 4.67E+00 0.001

24 [1-24] 1.775 0.585 2.75E+00 0.034 1.754 0.589 2.77E+00 0.010 1.754 0.589 2.77E+00 0.001

23 [1-23] 1.671 0.609 1.66E+00 0.032 1.710 0.605 1.76E+00 0.010 1.623 0.619 1.77E+00 0.001

22 [1-22] 1.575 0.635 9.10E-01 0.072 1.597 0.632 9.38E-01 0.013 1.510 0.650 1.00E+00 0.001

21 [1-21] 1.502 0.659 5.32E-01 0.032 1.490 0.665 5.61E-01 0.010 1.490 0.665 5.61E-01 0.001

20 [1-20] 1.440 0.685 2.93E-01 0.038 1.421 0.694 3.15E-01 0.011 1.421 0.694 3.15E-01 0.001

19 [1-19] 1.391 0.712 1.58E-01 0.030 1.409 0.712 1.81E-01 0.010 1.352 0.732 2.02E-01 0.001

18 [1-18] 1.352 0.742 7.36E-02 0.034 1.350 0.749 8.53E-02 0.009 1.324 0.761 9.57E-02 0.001

17 [1-17] 1.328 0.770 3.40E-02 0.024 1.348 0.769 4.31E-02 0.010 1.332 0.779 4.37E-02 0.001

16 [1-16] 1.317 0.798 1.39E-02 0.027 1.320 0.807 1.69E-02 0.008 1.320 0.807 1.69E-02 0.001

15 [1-15] 1.319 0.823 6.25E-03 0.031 1.320 0.807 8.17E-03 0.010 1.328 0.839 1.07E-02 0.001

14 [1-14] 1.333 0.849 2.09E-03 0.047 1.340 0.847 2.29E-03 0.011 1.338 0.861 2.66E-03 0.001

13 [1-13] 1.352 0.867 1.13E-03 0.030 1.338 0.861 1.43E-03 0.010 1.378 0.886 2.38E-03 0.001

12 [1-12] 1.389 0.892 2.76E-04 0.030 1.378 0.886 3.39E-04 0.010 1.416 0.907 5.92E-04 0.001

11 [1-11] 1.425 0.909 8.29E-05 0.052 1.416 0.907 9.93E-05 0.012 1.418 0.908 1.03E-04 0.001

10 [1-10] 1.459 0.922 3.47E-05 0.051 1.445 0.915 4.07E-05 0.011 1.442 0.915 4.29E-05 0.002

9 [1-9] 1.496 0.933 1.74E-05 0.045 1.489 0.933 2.12E-05 0.010 1.489 0.933 2.12E-05 0.001

8 [1-8] 1.545 0.946 7.93E-06 0.062 1.543 0.944 8.33E-06 0.016 1.543 0.947 9.31E-06 0.001

7 [1-7] 1.590 0.956 5.32E-06 0.044 1.600 0.957 5.62E-06 0.007 1.571 0.952 6.37E-06 0.001

6 [1-6] 1.688 0.974 1.33E-06 0.042 1.687 0.974 1.33E-06 0.007 1.686 0.974 1.33E-06 0.003

5 [1-5] 1.718 0.979 1.22E-06 0.041 1.686 0.974 1.33E-06 0.007 1.686 0.974 1.33E-06 0.002

4 [1-4] 1.800 0.991 8.74E-07 0.072 1.723 0.979 1.14E-06 0.018 1.723 0.979 1.14E-06 0.001

3 [1-3] 1.836 0.995 7.36E-07 0.074 2.367 1.059 4.00E-07 0.010 1.887 1.000 7.22E-07 0.001
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Table 26 – Shear stress prediction for PAC-R 10 g/l upwards shear rate ramp by different approaches 

Experimental

Shear Stress Shear Stress Δ (abs) Shear Stress Δ (abs) Shear Stress Δ (abs)

# [1/s] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa]

1 0.0100 0.018 0.305 0.287 0.317 0.299 0.317 0.299

2 0.0148 0.028 0.367 0.340 0.381 0.353 0.381 0.353

3 0.0218 0.041 0.441 0.400 0.457 0.416 0.457 0.416

4 0.0322 0.060 0.531 0.471 0.549 0.489 0.549 0.489

5 0.0476 0.087 0.639 0.552 0.660 0.573 0.660 0.573

6 0.0702 0.127 0.767 0.640 0.792 0.665 0.792 0.665

7 0.104 0.182 0.924 0.742 0.953 0.771 0.953 0.771

8 0.153 0.261 1.110 0.849 1.143 0.882 1.143 0.882

9 0.226 0.372 1.334 0.962 1.373 1.001 1.373 1.001

10 0.334 0.529 1.605 1.076 1.650 1.121 1.650 1.121

11 0.493 0.75 1.93 1.18 1.98 1.24 1.98 1.24

12 0.728 1.04 2.32 1.28 2.38 1.34 2.38 1.34

13 1.08 1.43 2.80 1.37 2.87 1.44 2.87 1.44

14 1.59 1.96 3.36 1.40 3.44 1.48 3.44 1.48

15 2.35 2.63 4.04 1.41 4.13 1.50 4.13 1.50

16 3.46 3.50 4.85 1.35 4.96 1.46 4.96 1.46

17 5.12 4.59 5.84 1.25 5.96 1.37 5.96 1.37

18 7.55 5.94 7.02 1.08 7.16 1.22 7.16 1.22

19 11.2 7.60 8.46 0.86 8.61 1.01 8.61 1.01

20 16.5 9.61 10.16 0.55 10.34 0.73 10.34 0.73

21 24.3 12.00 12.21 0.21 12.40 0.40 12.40 0.40

22 35.9 14.90 14.68 0.22 14.90 0.00 14.90 0.00

23 53.1 18.20 17.67 0.53 17.91 0.29 17.91 0.29

24 78.3 22.10 21.23 0.87 21.50 0.60 21.50 0.60

25 116.0 26.70 25.57 1.13 25.87 0.83 25.87 0.83

26 171.0 32.10 30.73 1.37 31.05 1.05 31.05 1.05

27 252.0 38.30 36.91 1.39 37.27 1.03 37.27 1.03

28 373.0 45.40 44.44 0.96 44.82 0.58 44.82 0.58

29 550.0 53.80 53.40 0.40 53.80 0.00 53.80 0.00

30 813.0 63.70 64.25 0.55 64.66 0.96 64.66 0.96

31 1200.0 75.70 77.25 1.55 77.66 1.96 77.66 1.96

Meas.

Pts.

Shear 

Rate

Non-linear BSY New Approach
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Figure 22 – Hydraulic predictions for PAC-R 10 g/l. a) tubing performance curve. b) velocity profile. 

 

a) b) 
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Appendix B – OBM 

 

 

 

 

 

 

 

 

 

10 [1-10] 0.147 0.028 0.961 0.054 0.730 0.153 0.028 0.958 0.057 51.07 1.38 1021.38 21.77 0.433

9 [1-9] 0.215 0.022 0.999 0.024 0.229 0.153 0.024 0.984 0.038 170.23 3.99 510.69 11.45 0.031

8 [1-8] 0.166 0.027 0.960 0.006 0.078 0.153 0.029 0.954 0.006 102.14 2.50 340.46 7.56 0.015

7 [1-7] 0.187 0.024 0.984 0.005 0.114 0.153 0.028 0.957 0.006 102.14 2.50 170.23 3.99 0.014

6 [1-6] 0.207 0.021 1.019 0.004 0.111 0.153 0.026 0.976 0.007 17.02 0.56 102.14 2.50 0.012

5 [1-5] 0.265 0.010 1.206 0.003 0.066 0.153 0.024 1.000 0.007 17.02 0.56 51.07 1.38 0.007

4 [1-4] 0.172 0.035 0.864 0.001 0.143 0.153 0.038 0.849 0.001 5.11 0.31 34.05 0.92 0.011

3 [1-3] 0.000 0.143 0.489 0.000 0.048 0.153 0.041 0.815 0.001 5.11 0.31 17.02 0.56 0.008
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𝛾̇𝑠 𝛾̇𝑥𝜏 𝜏𝑥

Table 27 – Non-linear and BSY curve fitting from OBM recipe 1 (no iteration). 

10 [1-10] 0.147 0.028 0.961 5.35E-02 7.30E-01 0.153 0.028 0.958 5.67E-02 4.33E-01 0.153 0.027 0.965 6.17E-02 9.73E-03 75

9 [1-9] 0.215 0.022 0.999 2.38E-02 2.29E-01 0.153 0.024 0.984 3.84E-02 3.12E-02 0.153 0.026 0.975 4.59E-02 1.68E-03 136

8 [1-8] 0.166 0.027 0.960 5.92E-03 7.85E-02 0.153 0.029 0.954 6.23E-03 1.48E-02 0.153 0.029 0.948 7.41E-03 6.71E-04 117

7 [1-7] 0.187 0.024 0.984 4.98E-03 1.14E-01 0.153 0.028 0.957 6.08E-03 1.39E-02 0.153 0.023 1.000 1.65E-02 4.02E-04 285

6 [1-6] 0.207 0.021 1.019 4.27E-03 1.11E-01 0.153 0.026 0.976 6.56E-03 1.20E-02 0.153 0.039 0.884 2.29E-02 1.96E-03 57

5 [1-5] 0.265 0.010 1.206 2.69E-03 6.57E-02 0.153 0.024 1.000 7.32E-03 6.96E-03 0.153 0.041 0.861 1.45E-02 2.63E-03 25

4 [1-4] 0.172 0.035 0.864 1.09E-03 1.43E-01 0.153 0.038 0.849 1.23E-03 1.09E-02 0.153 0.052 0.761 2.66E-03 4.23E-04 338

3 [1-3] 0.000 0.143 0.489 4.14E-04 4.79E-02 0.153 0.041 0.815 1.37E-03 8.14E-03 0.153 0.083 0.563 2.95E-03 2.65E-03 18
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Table 28 – Non-linear, BSY and new approach curve fitting from OBM recipe 1 (no iteration). 

Experimental

Shear Stress Shear Stress Δ (abs) Shear Stress Δ (abs) Shear Stress Δ (abs) Shear Stress Δ (abs) Shear Stress Δ (abs)

# [1/s] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa]

1 5.1 0.31 0.28 0.03 0.29 0.02 0.27 0.04 0.28 0.02 0.29 0.01

2 10.2 0.46 0.41 0.05 0.42 0.04 0.40 0.06 0.41 0.05 0.42 0.04

3 17.0 0.56 0.57 0.01 0.58 0.02 0.56 0.00 0.57 0.01 0.58 0.02

4 34.1 0.92 0.97 0.05 0.99 0.07 0.97 0.05 0.96 0.04 0.98 0.06

5 51.1 1.38 1.36 0.01 1.38 0.00 1.36 0.02 1.35 0.03 1.37 0.01

6 102.1 2.50 2.52 0.01 2.54 0.03 2.51 0.01 2.49 0.01 2.51 0.01

7 170.2 3.99 4.02 0.03 4.04 0.05 4.02 0.03 3.99 0.00 4.00 0.02

8 340.5 7.56 7.68 0.12 7.70 0.14 7.68 0.12 7.64 0.07 7.66 0.10

9 510.7 11.45 11.27 0.17 11.28 0.16 11.27 0.18 11.22 0.22 11.26 0.19

10 1021.4 21.77 21.81 0.04 21.77 0.00 21.77 0.00 21.77 0.00 21.83 0.06

New Approach
New Approach

(1 iteration)
Meas.

Pts.

Shear 

Rate

Non-linear BSY
BSY 

(1 iteration)

Table 29 – Shear stress prediction for OBM recipe 1 by different approaches. 
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Figure 23 – Hydraulic predictions for OBM recipe 1 (1 iteration). a) tubing performance curve. b) velocity profile. 

b) a) 
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Table 30 – Non-linear and BSY curve fitting from OBM recipe 2 (no iteration). 

10 [1-10] 0.727 0.052 0.920 0.172 1.092 0.460 0.064 0.892 0.433 34.05 1.94 1021.38 31.22 0.662

9 [1-9] 0.573 0.070 0.872 0.057 0.235 0.460 0.073 0.866 0.099 170.23 6.69 510.69 16.61 0.052

8 [1-8] 0.519 0.079 0.850 0.041 0.178 0.460 0.086 0.836 0.047 17.02 1.38 340.46 11.70 0.015

7 [1-7] 0.520 0.078 0.851 0.041 0.310 0.460 0.087 0.831 0.044 17.02 1.38 170.23 6.69 0.014

6 [1-6] 0.610 0.056 0.921 0.032 0.223 0.460 0.085 0.839 0.042 17.02 1.38 102.14 4.60 0.016

5 [1-5] 0.738 0.026 1.107 0.027 0.168 0.460 0.082 0.854 0.048 17.02 1.38 51.07 2.81 0.019

4 [1-4] 0.027 0.384 0.454 0.004 0.083 0.460 0.131 0.688 0.007 17.02 1.38 34.05 1.94 0.019

3 [1-3] 0.000 0.424 0.422 0.003 0.098 0.460 0.099 0.785 0.010 5.11 0.82 17.02 1.38 0.018
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Table 31 – Non-linear, BSY and new approach curve fitting from OBM recipe 2 (no iteration). 

10 [1-10] 0.727 0.052 0.920 0.172 1.092 0.460 0.064 0.892 0.433 0.662 0.460 0.064 0.891 0.442 0.019

9 [1-9] 0.573 0.070 0.872 0.057 0.235 0.460 0.073 0.866 0.099 0.052 0.460 0.083 0.846 0.110 0.002

8 [1-8] 0.519 0.079 0.850 0.041 0.178 0.460 0.086 0.836 0.047 0.015 0.460 0.092 0.825 0.063 0.001

7 [1-7] 0.520 0.078 0.851 0.041 0.310 0.460 0.087 0.831 0.044 0.014 0.460 0.120 0.769 0.148 0.001

6 [1-6] 0.610 0.056 0.921 0.032 0.223 0.460 0.085 0.839 0.042 0.016 0.460 0.122 0.762 0.127 0.008

5 [1-5] 0.738 0.026 1.107 0.027 0.168 0.460 0.082 0.854 0.048 0.019 0.460 0.129 0.739 0.088 0.000

4 [1-4] 0.027 0.384 0.454 0.004 0.083 0.460 0.131 0.688 0.007 0.019 0.460 0.228 0.492 0.058 0.000

3 [1-3] 0.000 0.424 0.422 0.003 0.098 0.460 0.099 0.785 0.010 0.018 0.460 0.228 0.492 0.023 0.008
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Table 32 – Shear stress prediction for OBM recipe 2 by different approaches. 

Experimental

Shear Stress Shear Stress Δ (abs) Shear Stress Δ (abs) Shear Stress Δ (abs) Shear Stress Δ (abs) Shear Stress Δ (abs)

# [1/s] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa]

1 5.1 0.82 0.96 0.14 0.73 0.08 0.80 0.02 0.73 0.08 0.82 0.00

2 10.2 1.18 1.17 0.01 0.97 0.21 1.02 0.16 0.97 0.21 1.05 0.12

3 17.0 1.38 1.43 0.05 1.26 0.12 1.29 0.09 1.26 0.12 1.34 0.04

4 34.1 1.94 2.06 0.11 1.94 0.00 1.94 0.00 1.95 0.00 2.02 0.08

5 51.1 2.81 2.66 0.15 2.59 0.22 2.56 0.25 2.59 0.22 2.66 0.15

6 102.1 4.60 4.38 0.22 4.41 0.19 4.32 0.27 4.41 0.18 4.46 0.14

7 170.2 6.69 6.57 0.12 6.68 0.01 6.56 0.14 6.69 0.00 6.71 0.02

8 340.5 11.70 11.79 0.09 12.01 0.31 11.83 0.13 12.02 0.32 11.98 0.28

9 510.7 16.61 16.80 0.19 17.04 0.43 16.87 0.26 17.05 0.44 16.95 0.34

10 1021.4 31.22 31.14 0.08 31.22 0.00 31.22 0.00 31.22 0.00 30.96 0.26

New Approach
New Approach

(1 iteration)
Meas.

Pts.

Shear 

Rate

Non-linear BSY
BSY 

(1 iteration)
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Figure 24 – Hydraulic predictions for OBM recipe 2 (1 iteration). a) tubing performance curve. b) velocity profile. 

a) b) 
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Table 33 – Non-linear and BSY curve fitting from OBM recipe 3 (no iteration). 

 

Table 34 – Non-linear, BSY and new approach curve fitting from OBM recipe 3 (no iteration). 

 

Table 35 – Shear stress prediction for OBM recipe 3 by different approaches 

 

10 [1-10] 0.588 0.048 0.961 1.64E-01 0.658 0.256 0.059 0.932 5.45E-01 170.23 7.31 1021.38 37.71 0.392

9 [1-9] 0.452 0.061 0.920 6.27E-02 0.134 0.256 0.071 0.899 1.51E-01 34.05 1.94 510.69 19.47 0.029

8 [1-8] 0.384 0.071 0.894 3.54E-02 0.139 0.256 0.082 0.872 5.92E-02 102.14 4.85 340.46 13.39 0.010

7 [1-7] 0.324 0.082 0.864 2.99E-02 0.142 0.256 0.093 0.843 3.30E-02 51.07 2.81 170.23 7.31 0.009

6 [1-6] 0.359 0.074 0.888 2.86E-02 0.087 0.256 0.091 0.848 3.36E-02 51.07 2.81 102.14 4.85 0.008

5 [1-5] 0.271 0.103 0.811 2.73E-02 0.043 0.256 0.114 0.791 3.41E-02 10.21 0.97 51.07 2.81 0.010

4 [1-4] 0.000 0.254 0.581 6.52E-03 0.036 0.256 0.137 0.712 1.53E-02 10.21 0.97 34.05 1.94 0.007

3 [1-3] 0.075 0.162 0.736 2.27E-07 0.031 0.256 0.076 0.952 5.84E-04 5.11 0.61 17.02 1.38 0.007
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10 [1-10] 0.588 0.048 0.961 1.64E-01 6.58E-01 0.256 0.059 0.932 5.45E-01 3.92E-01 0.256 0.059 0.932 5.45E-01 1.16E-02

9 [1-9] 0.452 0.061 0.920 6.27E-02 1.34E-01 0.256 0.071 0.899 1.51E-01 2.89E-02 0.256 0.075 0.888 1.67E-01 1.72E-03

8 [1-8] 0.384 0.071 0.894 3.54E-02 1.39E-01 0.256 0.082 0.872 5.92E-02 1.04E-02 0.256 0.086 0.863 6.82E-02 8.71E-04

7 [1-7] 0.324 0.082 0.864 2.99E-02 1.42E-01 0.256 0.093 0.843 3.30E-02 9.13E-03 0.256 0.117 0.797 1.08E-01 3.28E-04

6 [1-6] 0.359 0.074 0.888 2.86E-02 8.73E-02 0.256 0.091 0.848 3.36E-02 8.15E-03 0.256 0.109 0.808 5.25E-02 1.55E-03

5 [1-5] 0.271 0.103 0.811 2.73E-02 4.27E-02 0.256 0.114 0.791 3.41E-02 9.67E-03 0.256 0.114 0.791 3.41E-02 9.99E-04

4 [1-4] 0.000 0.254 0.581 6.52E-03 3.63E-02 0.256 0.137 0.712 1.53E-02 7.22E-03 0.256 0.092 0.884 1.53E-01 1.53E-04

3 [1-3] 0.075 0.162 0.736 2.27E-07 3.05E-02 0.256 0.076 0.952 5.84E-04 7.08E-03 0.256 0.092 0.884 9.09E-04 1.13E-04
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[s]

Number 
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points

Subset

points 
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Non-linear

YS 
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[Pa.s
n
]

YS 

[Pa]

Elapsed

time

[s]
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[Pa.s
n
]

n 

[-]

SSE

[Pa
2
]

Experimental

Shear Stress Shear Stress Δ (abs) Shear Stress Δ (abs) Shear Stress Δ (abs) Shear Stress Δ (abs) Shear Stress Δ (abs)

# [1/s] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa]

1 5.1 0.61 0.82 0.20 0.52 0.09 0.65 0.04 0.52 0.09 0.66 0.05

2 10.2 0.97 1.03 0.06 0.77 0.20 0.89 0.08 0.77 0.20 0.90 0.07

3 17.0 1.38 1.31 0.07 1.08 0.30 1.19 0.19 1.08 0.30 1.21 0.17

4 34.1 1.94 2.00 0.06 1.83 0.11 1.92 0.03 1.83 0.11 1.95 0.01

5 51.1 2.81 2.67 0.14 2.55 0.26 2.62 0.19 2.55 0.26 2.67 0.14

6 102.1 4.85 4.64 0.21 4.64 0.22 4.67 0.18 4.64 0.22 4.73 0.13

7 170.2 7.31 7.22 0.09 7.31 0.00 7.31 0.00 7.31 0.00 7.37 0.06

8 340.5 13.39 13.49 0.10 13.71 0.32 13.67 0.28 13.71 0.32 13.70 0.31

9 510.7 19.47 19.63 0.16 19.89 0.42 19.83 0.36 19.89 0.42 19.81 0.34

10 1021.4 37.71 37.64 0.07 37.71 0.00 37.71 0.00 37.71 0.00 37.44 0.28

New Approach
New Approach

(1 iteration)
Meas.

Pts.

Shear 

Rate

Non-linear BSY
BSY 

(1 iteration)
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Figure 25 – Hydraulic predictions for OBM recipe 3 (1 iteration). a) tubing performance curve. b) velocity profile. 

 

b) a) 
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Table 36 – Non-linear and BSY curve fitting from OBM recipe 4 (no iteration). 

10 [1-10] 0.456 0.011 1.103 1.55E-01 6.54E-01 0.409 0.011 1.106 1.79E-01 340.46 7.15 1021.38 23.15 3.85E-01

9 [1-9] 0.328 0.019 1.014 3.17E-02 1.53E-01 0.409 0.015 1.052 5.33E-02 51.07 1.33 510.69 10.78 3.80E-02

8 [1-8] 0.301 0.021 0.989 2.55E-02 8.37E-02 0.409 0.018 1.013 5.47E-02 102.14 2.40 340.46 7.15 1.38E-02

7 [1-7] 0.370 0.013 1.092 1.11E-02 9.47E-02 0.409 0.013 1.092 1.67E-02 51.07 1.33 170.23 3.83 9.86E-03

6 [1-6] 0.411 0.008 1.200 6.65E-03 8.93E-02 0.409 0.006 1.239 8.85E-03 34.05 0.92 102.14 2.40 8.24E-03

5 [1-5] 0.475 0.001 1.659 9.03E-04 1.04E-01 0.409 0.004 1.356 4.19E-03 10.21 0.51 17.02 0.61 5.13E-03

4 [1-4] 0.488 0.001 1.905 6.49E-04 1.48E-01 0.409 0.005 1.321 3.67E-03 17.02 0.61 34.05 0.92 7.20E-03

3 [1-3] 0.496 0.000 2.622 3.60E-04 1.45E-01 0.409 0.040 0.576 2.51E-03 5.11 0.51 17.02 0.61 5.79E-03
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n
]

n 

[-]

SSE

[Pa
2
]

Elapsed

time

[s]

YS 

[Pa]

YS 
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K 

[Pa.s
n
]

n 

[-]

SSE

[Pa
2
]

Elapsed

time

[s]

𝛾̇𝑠 𝛾̇𝑥𝜏 𝜏𝑥

Table 37 – Non-linear, BSY and new approach curve fitting from OBM recipe 4 (no iteration) 

10 [1-10] 0.456 0.011 1.103 1.55E-01 6.54E-01 0.409 0.011 1.106 1.79E-01 3.85E-01 0.409 0.011 1.106 1.79E-01 9.60E-03

9 [1-9] 0.328 0.019 1.014 3.17E-02 1.53E-01 0.409 0.015 1.052 5.33E-02 3.80E-02 0.409 0.017 1.025 5.58E-02 1.87E-03

8 [1-8] 0.301 0.021 0.989 2.55E-02 8.37E-02 0.409 0.018 1.013 5.47E-02 1.38E-02 0.409 0.015 1.050 5.59E-02 7.97E-04

7 [1-7] 0.370 0.013 1.092 1.11E-02 9.47E-02 0.409 0.013 1.092 1.67E-02 9.86E-03 0.409 0.008 1.182 2.68E-02 1.93E-04

6 [1-6] 0.411 0.008 1.200 6.65E-03 8.93E-02 0.409 0.006 1.239 8.85E-03 8.24E-03 0.409 0.005 1.290 1.54E-02 3.15E-03

5 [1-5] 0.475 0.001 1.659 9.03E-04 1.04E-01 0.409 0.004 1.356 4.19E-03 5.13E-03 0.409 0.004 1.365 4.22E-03 1.65E-04

4 [1-4] 0.488 0.001 1.905 6.49E-04 1.48E-01 0.409 0.005 1.321 3.67E-03 7.20E-03 0.409 0.005 1.336 3.81E-03 1.50E-04

3 [1-3] 0.496 0.000 2.622 3.60E-04 1.45E-01 0.409 0.040 0.576 2.51E-03 5.79E-03 0.409 0.102 0.000 1.04E-02 2.00E-03

New ApproachBSY

n 

[-]

SSE

[Pa
2
]
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time

[s]

YS 
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K 
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]
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]

Elapsed

time

[s]

Number 

of 

points

Subset

points 

range

Non-linear
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n 

[-]
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[Pa
2
]

Table 38 – Shear stress prediction for OBM recipe 4 by different approaches 

 
Experimental

Shear Stress Shear Stress Δ (abs) Shear Stress Δ (abs) Shear Stress Δ (abs) Shear Stress Δ (abs) Shear Stress Δ (abs)

# [1/s] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa] [Pa]

1 5.1 0.51 0.52 0.01 0.47 0.04 0.53 0.02 0.47 0.04 0.53 0.02

2 10.2 0.51 0.60 0.09 0.55 0.04 0.60 0.09 0.55 0.04 0.61 0.09

3 17.0 0.61 0.70 0.09 0.65 0.04 0.71 0.09 0.65 0.04 0.71 0.10

4 34.1 0.92 0.99 0.07 0.94 0.02 0.98 0.06 0.94 0.02 0.99 0.07

5 51.1 1.33 1.29 0.04 1.24 0.09 1.28 0.05 1.24 0.09 1.29 0.04

6 102.1 2.40 2.24 0.16 2.19 0.21 2.22 0.18 2.19 0.21 2.24 0.16

7 170.2 3.83 3.59 0.24 3.54 0.29 3.56 0.27 3.54 0.29 3.58 0.25

8 340.5 7.15 7.19 0.04 7.15 0.00 7.15 0.00 7.15 0.00 7.18 0.02

9 510.7 10.78 10.99 0.21 10.97 0.19 10.96 0.18 10.97 0.19 10.98 0.20

10 1021.4 23.15 23.08 0.07 23.15 0.00 23.15 0.00 23.15 0.00 23.10 0.05

New Approach
New Approach

(1 iteration)
Meas.

Pts.

Shear 

Rate

Non-linear BSY
BSY 

(1 iteration)
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Figure 26 – Hydraulic predictions for OBM recipe 4 (1 iteration). a) tubing performance curve. b) velocity profile. 

a) b) 
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Figure 27 – Percentual error on pressure drop prediction when the new approach is 

compared to the non-linear as function of flow rate (OBM recipe 1). 

Figure 28 – Percentual error on pressure drop prediction when the new approach is 

compared to the non-linear as function of flow rate (OBM recipe 2). 
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Figure 29 – Percentual error on pressure drop prediction when the new approach is 

compared to the non-linear as function of flow rate (OBM recipe 3). 

 

Figure 30 – Percentual error on pressure drop prediction when the new approach is 

compared to the non-linear as function of flow rate (OBM recipe 4). 
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Appendix C – PAC-R 4 (Second Batch) 

 

 

  

31 [1-31] 0.318 0.623 6.96E-01 8.88E-01 0.316 0.625 7.24E-01 5.47E-01 0.338 0.613 8.20E-01 1.74E-02

30 [1-30] 0.311 0.628 6.53E-01 1.72E-01 0.316 0.625 6.60E-01 4.91E-02 0.316 0.625 6.60E-01 2.37E-03

29 [1-29] 0.295 0.638 5.28E-01 1.71E-01 0.292 0.640 5.30E-01 5.05E-02 0.292 0.640 5.30E-01 1.87E-03

28 [1-28] 0.277 0.652 3.96E-01 9.25E-02 0.283 0.648 4.08E-01 1.62E-02 0.283 0.648 4.08E-01 1.29E-03

27 [1-27] 0.255 0.670 2.52E-01 1.34E-01 0.255 0.671 2.61E-01 1.59E-02 0.255 0.671 2.61E-01 3.53E-03

26 [1-26] 0.235 0.691 1.52E-01 5.90E-02 0.229 0.698 1.60E-01 1.44E-02 0.229 0.698 1.60E-01 8.95E-04

25 [1-25] 0.216 0.714 8.80E-02 5.33E-02 0.220 0.713 9.81E-02 1.17E-02 0.205 0.728 1.05E-01 4.08E-03

24 [1-24] 0.199 0.739 4.50E-02 4.45E-02 0.198 0.742 4.98E-02 1.63E-02 0.189 0.754 5.40E-02 8.84E-04

23 [1-23] 0.185 0.764 2.29E-02 4.84E-02 0.188 0.756 2.55E-02 1.49E-02 0.184 0.769 2.71E-02 8.45E-04

22 [1-22] 0.172 0.791 1.04E-02 4.43E-02 0.164 0.807 1.28E-02 1.40E-02 0.169 0.800 1.36E-02 9.15E-04

21 [1-21] 0.162 0.817 4.50E-03 1.50E-01 0.166 0.811 5.22E-03 4.09E-02 0.161 0.823 5.49E-03 6.47E-03

20 [1-20] 0.155 0.840 2.21E-03 5.69E-02 0.151 0.851 2.45E-03 1.25E-02 0.151 0.855 3.03E-03 9.40E-04

19 [1-19] 0.150 0.862 1.08E-03 5.18E-02 0.147 0.869 1.18E-03 1.36E-02 0.147 0.881 1.97E-03 1.09E-03

18 [1-18] 0.145 0.889 3.73E-04 3.12E-02 0.147 0.881 4.36E-04 1.07E-02 0.146 0.891 4.76E-04 1.01E-03

17 [1-17] 0.143 0.909 1.95E-04 6.02E-02 0.144 0.901 2.22E-04 2.33E-02 0.137 0.954 8.39E-04 1.72E-03

16 [1-16] 0.141 0.928 1.14E-04 4.31E-02 0.141 0.929 1.14E-04 1.15E-02 0.138 0.947 1.67E-04 1.03E-03

15 [1-15] 0.141 0.928 1.14E-04 3.88E-02 0.141 0.931 1.15E-04 1.03E-02 0.141 0.938 1.19E-04 3.28E-03

14 [1-14] 0.141 0.922 1.13E-04 5.04E-02 0.143 0.939 1.33E-04 1.95E-02 0.143 0.939 1.33E-04 1.19E-03

13 [1-13] 0.136 0.868 4.48E-05 2.97E-02 0.138 0.879 4.88E-05 8.30E-03 0.138 0.879 4.88E-05 1.03E-03

12 [1-12] 0.132 0.836 3.22E-05 3.18E-02 0.132 0.844 3.35E-05 8.00E-03 0.134 0.853 3.52E-05 9.26E-04

11 [1-11] 0.125 0.801 2.40E-05 3.40E-02 0.122 0.799 2.68E-05 1.34E-02 0.129 0.819 2.73E-05 1.51E-03

10 [1-10] 0.113 0.751 1.48E-05 3.44E-02 0.111 0.749 1.61E-05 1.32E-02 0.105 0.713 1.87E-05 8.48E-04

9 [1-9] 0.100 0.699 8.88E-06 3.46E-02 0.096 0.685 9.80E-06 1.24E-02 0.082 0.602 2.04E-05 3.44E-03

8 [1-8] 0.085 0.640 4.85E-06 3.65E-02 0.084 0.649 5.97E-06 1.06E-02 0.070 0.564 9.03E-06 1.88E-03

7 [1-7] 0.069 0.576 2.14E-06 6.05E-02 0.067 0.575 2.63E-06 1.49E-02 0.059 0.524 3.33E-06 3.33E-03

6 [1-6] 0.056 0.517 8.78E-07 4.86E-02 0.059 0.524 1.24E-06 1.28E-02 0.049 0.480 1.32E-06 7.77E-04

5 [1-5] 0.040 0.432 4.48E-07 6.00E-02 0.049 0.480 3.76E-07 1.05E-02 0.041 0.436 4.65E-07 2.89E-03

4 [1-4] 0.011 0.103 3.45E-06 3.31E-02 0.041 0.436 1.38E-07 1.05E-02 0.031 0.372 2.28E-07 1.77E-03

3 [1-3] 0.010 0.089 7.94E-07 2.30E-02 0.03 0.33 1.08E-08 7.91E-03 0.022 0.290 5.44E-08 1.03E-03

n 

[-]

SSE

[Pa2]
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time

[s]
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points
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[Pa.sn]
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Table 39 – Non-linear, BSY and new approach curve fitting from PAC-R 4 g/l (average from second batch). 



 69 

Appendix D – MATLAB Code 

D.1 Main File - Fitting_for_HB_Model.m 

%% 

% UNIVERSITETET I STAVANGER 

% PETMAS - MASTER THESIS 

% RAONI NOVAIS CARVALHO BRASILEIRO 

% 

%              FITTING FOR HERSCHEL-BULKLEY MODEL 

% 

% This program computes the constants from HB model from three different approaches: 

% a. Nonlinear least-squares solver; 

% b. BSY, the best combination of gamma_c and gamma_x from Arild aproach (minimising chi²); 

% c. New Approach. 

  

close all; 

clear all; 

clc; 

  

%% 1. INPUTS 

  

% 1.1 Rheometer data 

  

gamma=xlsread('OBM - Havard_02b(teste).xlsx','Experimental Data','B5:B14')' ;  % shear rate [1/s] vector input 

(line vector) 

tau= xlsread('OBM - Havard_02b(teste).xlsx','Experimental Data','C5:C14')' ;   % shear stress [Pa] vector input 

(line vector) 

  

gammas=linspace(0,gamma(length(gamma)),101);   % discretization of x-axis for plotting 

  

% 1.2 Information for flow related calculations (circular section) 

  

r= 0.0254*3.5; % pipe radius [m] 

L= 10;         % pipe length [m] 

  

q_a = 0 ;      % flow rate start interval [l/min] for tubing performance curve calculations 

q_b = 3500 ;   % flow rate end interval [l/min] for tubing performance curve calculations 

  

q_c = 0.01*(q_b-q_a)*[25 50 75 100]; % flow rates to plot velocity profiles - use integers from 1 to 100 

  

%% 2. NONLINEAR FITTING  

  

hb_constants_nl = lsqcurvefit(@nonlinear_hb, [0;0;0], gamma, tau, [0;0;0],[3;3;3]);   

  

tau_0_nl = hb_constants_nl(1);    

K_nl = hb_constants_nl(2);     

n_nl = hb_constants_nl(3);        

  

R2_nl=coefficient_determination(tau,gamma,tau_0_nl,K_nl,n_nl);  

SSE_nl=SSE(tau_0_nl,K_nl,n_nl,tau,gamma);                    

  

tau_nl=nonlinear_hb( hb_constants_nl, gammas );  

  

%% 3. BSY FITTING 

  

[tau_0_ba, K_ba, n_ba, R2_ba, results_best_arild]= best_arild_hb(tau,gamma);  

SSE_ba=SSE(tau_0_ba,K_ba,n_ba,tau,gamma);       
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tau_ba=tau_0_ba+K_ba*gammas.^n_ba;  

  

%% 4. NEW APPROACH 

  

[tau_0_r,K_r,n_r,gamma_c,tau_c,gamma_x,tau_x,sp_1,sp_2]=raoni(tau,gamma); 

R2_r=coefficient_determination(tau,gamma,tau_0_r,K_r,n_r); 

SSE_r=SSE(tau_0_r,K_r,n_r,tau,gamma); 

tau_r=tau_0_r+K_r*gammas.^n_r ; 

  

%% 5. PRESSURE DROP AND VELOCITY PROFILES  

  

% 5.1 Tubing performance curve 

  

[dp_nl,q,tau_w_nl,phi_nl]= pressure_drop(tau_0_nl,K_nl,n_nl,r,L,q_a,q_b); 

[dp_r,q,tau_w_r,phi_r]= pressure_drop(tau_0_r,K_r,n_r,r,L,q_a,q_b); 

[dp_ba,q,tau_w_ba,phi_ba]= pressure_drop(tau_0_ba,K_ba,n_ba,r,L,q_a,q_b); 

  

format bank;  

results_pressure_drop=table(60000*q',dp_nl', tau_w_nl', dp_r', tau_w_r', dp_ba', tau_w_ba'); 

results_pressure_drop.Properties.VariableNames = {'Q' 'DP_NL' 'WS_NL' 'DP_R' 'WS_R' 'DP_BA' 'WS_BA'}; 

  

% 5.2 Velocity profiles 

  

[v_plug_nl,r_plug_nl,v_nl,radius_nl]= velocity_profile(tau_0_nl,K_nl,n_nl,r,L,q_a,q_b,q_c,phi_nl); 

[v_plug_r,r_plug_r,v_r,radius_r]= velocity_profile(tau_0_r,K_r,n_r,r,L,q_a,q_b,q_c,phi_r); 

[v_plug_ba,r_plug_ba,v_ba,radius_ba]= velocity_profile(tau_0_ba,K_ba,n_ba,r,L,q_a,q_b,q_c,phi_ba); 

  

format bank;  

results_velocity_profile=table(radius_nl', v_nl', radius_r', v_r', radius_ba', v_ba'); 

results_velocity_profile.Properties.VariableNames = {'r_NL' 'V_NL' 'r_R' 'V_R' 'r_BA' 'V_BA'};  

  

%% 6. FITTING COMPARISON 

  

format bank;  

results_coefficients=table({'Nonlinear' 'New_Approach' 'BSY'}',[tau_0_nl tau_0_r tau_0_ba]', [K_nl K_r K_ba]', 

[n_nl n_r n_ba]',[SSE_nl SSE_r SSE_ba]', [R2_nl R2_r R2_ba]'); 

results_coefficients.Properties.VariableNames = {'Method' 'Yield_Stress' 'K' 'n' 'SSE' 'R2'}; 

results_shear_stresses=table(tau', tau_0_nl+K_nl*gamma.^n_nl', tau_0_r+K_r*gamma.^n_r', 

tau_0_ba+K_ba*gamma.^n_ba'); 

results_shear_stresses.Properties.VariableNames = {'Experimental' 'Nonlinear' 'New_Approach' 'BSY'}; 

  

%% 7. PLOTS 

  

% Tables 

results_pressure_drop 

results_coefficients 

  

%% 

figure(1)   % Data fitting 

  

plot(gamma,tau,'o'); 

title('Shear stress x Shear Rate'); 

xlabel('Shear rate (1/s)'); 

ylabel('Shear stress (Pa)'); 

grid on; 

hold on; 

  

plot(gammas,tau_nl); 

plot(gammas,tau_r); 

plot(gammas,tau_ba); 
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Legends{1}=['Rheometer data']; 

Legends{2}=['Nonlinear']; 

Legends{3}=['New Approach']; 

Legends{4}=['BSY']; 

  

legend(Legends); 

legend('Location', 'southeast'); 

  

hold off 

  

%% 

figure(2) % Fitting agreement 

  

plot(tau,tau,'k'); 

title('Fitting agreement'); 

xlabel('Shear stress measured (Pa)'); 

ylabel('Shear stress calculated (Pa)'); 

grid on; 

hold on; 

  

plot(tau,1.05*tau,'-.k');     % +5% error line 

plot(tau,0.95*tau,'--k');     % -5% error line 

  

plot(tau,tau_0_nl+K_nl*gamma.^n_nl,'o'); 

plot(tau,tau_0_r+K_r*gamma.^n_r,'o'); 

plot(tau,tau_0_ba+K_ba*gamma.^n_ba,'o'); 

  

Legends_2{1}=['0% error']; 

Legends_2{2}=['+5% error']; 

Legends_2{3}=['-5% error']; 

Legends_2{4}=['Nonlinear']; 

Legends_2{5}=['New Aproach']; 

Legends_2{6}=['BYS']; 

  

legend(Legends_2); 

legend('Location', 'southeast'); 

  

hold off 

  

%% 

figure(3) % Pressure Drop 

plot(60000*q,dp_nl); 

title('Tubing performance curve'); 

xlabel('Flow rate (l/mim)'); 

ylabel('Pressure drop (Pa)'); 

grid on; 

hold on; 

  

plot(60000*q,dp_r); 

plot(60000*q,dp_ba); 

  

Legends_3{1}=['Nonlinear']; 

Legends_3{2}=['New Approach']; 

Legends_3{3}=['BSY']; 

  

legend(Legends_3); 

legend('Location', 'southeast'); 
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hold off 

  

%% 

figure(4) % Velocity Profiles 

  

for k=1:length(q_c);  

hold on 

title('Velocity Profile (for some flow rates)'); 

xlabel('Velocity [m²/s]'); 

ylabel('Radial position [m]');  

ylim([-r r])  %y-axis limits 

  

txt_position=[max(v_nl(k,:)), max(v_r(k,:)),max(v_ba(k,:))]; % Flow rate label position 

txt = ['Q (l/min)=' num2str(q_c(k))]; % Flow rates (from q_c) label  

text(0.99*min(txt_position),0,txt,'HorizontalAlignment','right'); 

  

plot(v_nl(k,:),radius_nl(k,:),'-k');  % Nonlinear velocity profile 

plot(v_r(k,:),radius_r(k,:),'-.k');   % New approach velocity profile 

plot(v_ba(k,:),radius_ba(k,:),'--k'); % BYS velocity profile 

  

legend('Nonlinear','New Approach','Best Arild') 

  

end 

  

hold off 

D.1.2 Function - coefficient_determination.m 

function CD = coefficient_determination(tau,gamma,tau_0,K,n) 

% Given measured shear stresses and shear rates, and three constants, this 

% function returns the coefficient of determination from a linear form of  

% the HB model. 

% 

%   tau        = tau_0 + K*(gamma^n) 

%    Y          = b(1) + b(2)* x 

%   [Y]         = [X]*[b] 

% 

% COEFFICIENT OF DETERMINATION 

  

x=(gamma.^n)';               % x values (column vector) 

Y = tau';                    % y measured values (column vector) 

X=[ones(length(x),1) x];     % matrix form of x values 

b=[tau_0;K] ;                % constants b(1) and b(2) 

  

Y_cal = X*b;                 % y calculated values (from our constants) 

  

CD = 1 - sum((Y - Y_cal).^2)/sum((Y - mean(Y)).^2);  % coefficient fo determination 

  

end 

D.1.3 Function - SSE.m 

function [SSE]=SSE(tau_0,K,n,tau,gamma); 

  

%This function computes SSE that will be used to compare the 

%goodness of the fitting models. 

  

tau_f=tau_0+K*gamma.^n;       % tau from fitted model 
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SSE=  sum((tau-tau_f).^2.);   % sum squared error for the fitting proposed 

  

end 

D.1.4 Function - best_arild_hb.m 

function [tau_0_ba, K_ba, n_ba, R2_ba, results_best_arild,goodness]= best_arild_hb(tau,gamma); 

  

% Given measured shear stresses and shear rates, this function compute 

% HB constans using the approach proposed by Saasen and Ytrehus. For each tau_0 guessed, 

% all combinations of gamma_c and gamma_x are tested and the one that 

% produces the minimum Chi² is considered the best one.  

  

%% 

tau_0_guess=1.8; % adjust your initial guess.  

  

for iteration=1:2; 

  

  for h=1:length(tau_0_guess); 

  

    for i=1:length(gamma); 

      t_c=tau(i); 

      g_c=gamma(i); 

      tau_s=t_c-tau_0_guess(h); 

       

      for j=1:length(gamma); 

        t_x=tau(j); 

        g_x=gamma(j); 

        ratio=(t_x-tau_0_guess(h))/tau_s; % when assuming yield stres = 2*tau_3-tau_6 it is possible to have 

negative values in this ratio   

         

          if ratio>0; 

              

            if j>i;   % avoid gamma_c=gamma_x and elements below principal diagonal (symmetry)  

              ratio=(t_x-tau_0_guess(h))/tau_s ;               

              flowindex=log((t_x-tau_0_guess(h))/tau_s)/log(g_x/g_c); 

              taus=tau_0_guess(h)+tau_s*(gamma/g_c).^flowindex; 

              goodness(i,j,h)=sum((tau-taus).^2);     

            else 

              goodness(i,j,h)=NaN;  

            end 

                

          else 

            goodness(i,j,h)=NaN;     

          end 

            

      end 

  

    end 

  

minimum(h)=min(min(goodness(:,:,h)));   % find the smallest chi2 for the tau_0_guess 

[x,y]=find(goodness(:,:,h)==minimum(h)); 

  

x=x(1);   % take only the first value in case of solutions that are equally good 

y=y(1);   % take only the first value in case of solutions that are equally good 

  

p1(h)=x;  % keep the position of best tau_c and gamma_c 

p2(h)=y;  % keep the position of best tau_x and gamma_x 
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tau_c(h)=tau(x);     % best tau_c   for tau_0_guess=tau_0s(h) 

gamma_c(h)=gamma(x); % best gamma_x for tau_0_guess=tau_0s(h) 

  

tau_s=tau_c(h)-tau_0_guess(h); % surplus shear stress for best case 

  

tau_x(h)=tau(y);     % best tau_x   for tau_0_guess=tau_0s(h) 

gamma_x(h)=gamma(y); % best gamma_x for tau_0_guess=tau_0s(h)   

  

n(h)=log((tau_x(h)-tau_0_guess(h))/tau_s)/log(gamma_x(h)/gamma_c(h));  % best flow index for 

tau_0_guess=tau_0s(h) 

  

K(h)=tau_s/gamma_c(h)^n(h);                                % best consistency index 

  

R2(h)=coefficient_determination(tau,gamma,tau_0_guess(h),K(h),n(h));  

  

  end 

  

%% Results 

  

goodness_ba=min(minimum); 

[z]=find(minimum==goodness_ba); 

  

tau_0_ba=tau_0_guess(z); 

K_ba=K(z); 

n_ba=n(z); 

R2_ba=R2(z); 

goodness=goodness(:,:,z); 

  

% Improving yield stress guess 

  

  if iteration==1 

     

    w=(K_ba*gamma.^n_ba)';     % x values (column vector) 

    W = [ones(length(w),1) w]; % matrix form of x values 

    Y = tau'; 

  

    b = W\Y; 

    tau_0_guess=b(1);  % yield stress vector (all guesses) 

  

  end 

   

end 

  

format bank; 

results_best_arild=table(tau_0_guess',K',n',R2', gamma_c', tau_c', gamma_x', tau_x',p1', p2'); 

results_best_arild.Properties.VariableNames = {'Yield_Stress_Guessed' 'K' 'n' 'R2' 'gamma_c' 'tau_c' 'gamma_x' 

'tau_x' 'Position_c' 'Position_x'}; 

  

end 

D.1.5 Function - raoni.m 

function [tau_0_r,K_r,n_r,gamma_c,tau_c,gamma_x,tau_x,sp_1,sp_2]= raoni(tau,gamma); 

  

% Given measured shear stresses and shear rates, this function compute HB constans using the new approach 

% proposed. 
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tau_0_r=1.8; % adjust your initial guess.  

  

tau_ref_1=0.17*max(tau);  % reference to choose tau_c and gamma_c 

tau_ref_2=0.71*max(tau);  % reference to choose tau_x and gamma_x 

  

for i=1:length(tau); 

    if tau(i)>tau_ref_1 

        aux1(i)=tau(i);  

    else 

        aux1(i)=NaN; 

    end 

end 

  

for j=1:length(tau); 

    if tau(j)>tau_ref_2 

        aux2(j)=tau(j);  

    else 

        aux2(j)=NaN; 

    end 

end 

  

sp_1=find(tau==min(aux1));     % find position of gamma_c in the gamma vector 

sp_2=find(tau==min(aux2));     % find position of gamma_x in the gamma vector 

  

% Control for dimension bigger than one  

  

if length(sp_2)>1 

    sp_2=sp_2(1); 

end 

  

if length(sp_1)>1 

    sp_1=sp_1(1); 

end 

  

if sp_1==1 

    sp_1=sp_1+1; 

end 

  

if sp_2==sp_1  % avoid same position 

    sp_2=sp_1+1; 

end 

  

gamma_c=gamma(sp_1); 

gamma_x=gamma(sp_2); 

tau_c=tau(sp_1); 

tau_x=tau(sp_2); 

  

tau_s=tau_c-tau_0_r;            % surplus shear stress 

  

n_r=log((tau_x-tau_0_r)/tau_s)/log(gamma_x/gamma_c);    

K_r=tau_s/gamma_c^n_r; 

  

% Improving yield stress guess 

  

w=(K_r*gamma.^n_r)';       % x values (column vector) 

W = [ones(length(w),1) w]; % matrix form of x values 

Y = tau'; 

  

b = W\Y; 

tau_0_r=b(1);  
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K_r=K_r*b(2);  

  

end 

D.1.6 Function – pressure_drop.m 

function [dp,q,tau_wall,phi]= pressure_drop(tau_0,K,n,r,L,q_a,q_b); 

  

% This function computes the pressure drop from a laminar flow in a 

% circular section. The fluid rheology must obey either the Power-Law Model or the Herschel-Bulkley. 

  

q=linspace(q_a/60000,q_b/60000,101);   % discretization of flow rate range for plotting and conversion from 

l/min to m³/s 

  

if tau_0==0  % Fluid modelled as Power-Law 

     

    for i=1:length(q); 

    v_a= q(i)/(pi*r^2);      % average flow velocity [m²/s] 

    dp(i)=(2*K*L/r)*(v_a/(r*(n/(3*n+1))))^n;  

    tau_wall(i)=dp(i)*r/(2*L);  

    phi(i)=0; 

    end 

  

else   % Fluid modelled as HB 

  

    for i=1:length(q); 

  

    v_a= q(i)/(pi*r^2);      % average flow velocity [m²/s] 

  

    root=NaN;                % root to be found by fzero function 

    root_guess=1 ;           % guessed root 

  

        while isnan(root)==1 

     

        fun=@(root) -v_a+n*r*(tau_0/(K*root))^(1/n)*(1-root)^((n+1)/n)*((1-root)^(2)/(3*n+1)+  (2*root*(1-

root))/(2*n+1)+root^2/(n+1) );    

        options = optimset('Display','off');          % not show error msg for root not a number 

        root=fzero(fun,root_guess,options);           % root "phi" found from equation of v_average(phi)  

  

            if isnan(root)==1;     % if root found is not a number, then update guess 

            root_guess=root_guess-0.01;        % guess updated 

            else                    % if root is found, then update guess 

            phi(i)=root;                      % stored root  

            root_guess=1;                     % update initial guess 

            tau_wall(i)=tau_0/root;           % shear stress at wall [Pa] 

            dp(i)=tau_wall(i)*2*L/r ;         % stored pressure drop [Pa] 

            end 

         

        end 

  

    end 

  

end 

end 

D.1.7 Function – velocity_profile.m 

function [v_plug,r_plug,v,radius]= velocity_profile(tau_0,K,n,r,L,q_a,q_b,q_c,phi); 
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% This function computes profile velocities in a laminar flow whithin a 

% circular pipe. The fluid rheology must obey either the Power-Law Model or the Herschel-Bulkley. 

  

if tau_0==0 % Modelled as Power-Law 

     

    for i=1:length(q_c); 

         

    r_aux= [linspace(-r,0,101) linspace(0,r,101)]; % radius discretization for plotting   

         

        for j=1:length(r_aux); 

         v(i,j)=(q_c(i)/(60000*pi*r^2))*((3*n+1)/(n+1))*(1-(abs(r_aux(j))/r)^((n+1)/n));   

         radius(i,j)=r_aux(j);   

         v_plug=NaN; 

         r_plug=NaN; 

        end    

    end      

     

else        % Modelled as HB 

     

    q_c=100*q_c/(q_b-q_a);    

     

    for i=1:length(q_c); 

     

    root=phi(q_c(i)+1);         % recover "phis" equivalents to the flow rates desired (from pressure calculations) 

    tau_wall=tau_0/root;        % shear stress at wall [Pa] 

  

    v_plug(i)= (n*r/(n+1))*(tau_wall/K)^(1/n)*(1-root)^((n+1)/n);    % plug velocity [m²/s] 

    r_plug(i)=r*root;                                                % plug radius [m] 

  

    r_aux= [linspace(-r,-r_plug(i),101) linspace(-r_plug(i),r_plug(i),101) linspace(r_plug(i),r,101)]; % radius 

discretization for plotting 

  

        for j=1:length(r_aux); 

     

            if abs(r_aux(j))>r_plug(i); 

            v(i,j)=(n*r/(n+1))*(tau_wall/K)^(1/n)*((1-root)^((n+1)/n)-(abs(r_aux(j))/r-root)^((n+1)/n)); 

            radius(i,j)=r_aux(j);     % radius discretization for plotting considering different flow rates ("phis") 

  

            else 

            v(i,j)=v_plug(i);        

            radius(i,j)=r_aux(j); 

            end 

     

        end 

  

    end 

end 

  

end 
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D.2 Main File – Analysis_of_experiment.m 

%% 

% UNIVERSITETET I STAVANGER 

% PETMAS - MASTER THESIS 

% RAONI NOVAIS CARVALHO BRASILEIRO 

% 

%              ANALYSIS OF EXPERIMENTS 

  

close all; 

clear all; 

clc; 

  

%% 1. INPUTS 

  

for z=1:8; 

% 1.1 Rheometer data 

  

gamma=xlsread('Example.xlsx','Experimental Data','B5:B14')'; % shear rate [1/s] 

tau=xlsread('Example.xlsx','Experimental Data','C5:C14')';  % shear stress [Pa] 

  

gamma=gamma(1:11-z); 

tau=tau(1:11-z); 

  

gammas=linspace(0,gamma(length(gamma)),101);   % discretization of x-axis for plotting 

  

%% 2. NONLINEAR FITTING  

  

tic; 

hb_constants_nl = lsqcurvefit(@nonlinear_hb, [0;0;0], gamma, tau, [0;0;0],[3;3;3]);   

spent_nl(z)=toc; 

  

tau_0_nl = hb_constants_nl(1);    

K_nl = hb_constants_nl(2);        

n_nl = hb_constants_nl(3);        

  

R2_nl=coefficient_determination(tau,gamma,tau_0_nl,K_nl,n_nl);   

     

tau_nl=nonlinear_hb( hb_constants_nl, gammas );   

SSE_nl=sum((tau-(tau_0_nl+K_nl*gamma.^n_nl)).^2); 

  

%% 3. BSY FITTING 

tic; 

[tau_0_ba, K_ba, n_ba, R2_ba,results_best_arild,goodness]= best_arild_hb(tau,gamma); 

spent_ba(z)=toc; 

  

all_goodness(z)={goodness}; % SSE matrix for each subset 

  

tau_ba=tau_0_ba+K_ba*gammas.^n_ba; 

SSE_ba=sum((tau-(tau_0_ba+K_ba*gamma.^n_ba)).^2); 

  

%% 4. NEW APPROACH FITTING 

  

tic; 

[tau_0_r,K_r,n_r,gamma_c,tau_c,gamma_x,tau_x,sp_1,sp_2]=raoni(tau,gamma); 

spent_r(z)=toc; 
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R2_r=coefficient_determination(tau,gamma,tau_0_r,K_r,n_r); 

SSE_r=sum((tau-(tau_0_r+K_r*gamma.^n_r)).^2); 

  

%% 5. FITTINGS 

  

NL(z,:)=[11-z, tau_0_nl, K_nl, n_nl, SSE_nl, R2_nl];  

BSY(z,:)=[11-z, tau_0_ba, K_ba, n_ba, SSE_ba, R2_ba, 

results_best_arild{1,5},results_best_arild{1,6},results_best_arild{1,7},results_best_arild{1,8},results_best_arild

{1,9},results_best_arild{1,10}];  

NEW(z,:)=[11-z, tau_0_r,K_r,n_r,SSE_r,R2_r,gamma_c,tau_c,gamma_x,tau_x,sp_1,sp_2];  

  

txt = ['1-' num2str(32-z)]; 

  

%% REMOVE THE % TO EXPORT VALUES TO EXCEL 

  

%xlswrite('Example.xlsx',all_goodness{z},txt,'F43'); 

%xlswrite('Example.xlsx',gamma',txt,'A7'); 

%xlswrite('Example.xlsx',tau',txt,'C7'); 

%xlswrite('Example.xlsx',gamma,txt,'F2'); 

%xlswrite('Example.xlsx',tau,txt,'F4'); 

end 

  

%% 6. OUTPUTS 

  

timespent=[spent_nl' spent_ba' spent_r']; % time spent to compute solutions 

  

% Results for each subset.  

results_nonlinear = array2table(NL,'VariableNames',{'Measurement_1_to' 'Yield_Stress' 'K' 'n' 'SSE' 'R2'}) 

results_new_approach = array2table(NEW,'VariableNames',{'Measurement_1_to' 'Yield_Stress' 'K' 'n' 'SSE' 'R2' 

'gamma_c' 'tau_c' 'gamma_x' 'tau_x' 'Position_1' 'Position_2'}) 

results_BSY = array2table(BSY,'VariableNames',{'Measurement_1_to' 'Yield_Stress' 'K' 'n' 'SSE' 'R2' 'gamma_c' 

'tau_c' 'gamma_x' 'tau_x' 'Position_1' 'Position_2'}) 
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Appendix E – SPE Conference Paper 

  


