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Abstract
The objective was to assess the performance and robustness of a novel strategy for automatic control of heart rate (HR) during
cycle ergometry. Control design used a linear plant model and direct shaping of the closed-loop input-sensitivity function to
achieve an appropriate response to disturbances attributable to broad-spectrum heart rate variability (HRV). The controller
was evaluated in 73 feedback control experiments involving 49 participants. Performance and stability robustness were
analysed using a separately identified family of 73 plant models. The controller gave highly accurate and stable HR tracking
performance with mean root-mean-square tracking error between 2.5 beats/min (bpm) and 3.1 bpm, and with low average
control signal power. Although plant parameters varied over a very wide range, key closed-loop transfer functions remained
invariant to plant uncertainty in important frequency bands, while infinite gain margins and large phase margins (> 62◦) were
preserved across the whole plant model family. Highly accurate, stable and robust HR control can be achieved using LTI
controllers of remarkably simple structure. The results highlight that HR control design must focus on disturbances caused
by HRV. The input-sensitivity approach evaluated in this work provides a transparent method of addressing this challenge.

Keywords Heart rate control · Heart rate dynamics · Heart rate variability · System identification · Physiological control ·
Cycle ergometers

Glossary of terms
BMI: Body mass index
bpm: Beats/min
HR: Heart rate
HR∗: Target heart rate
HRmax: Maximal heart rate
HRmid: Mid-level heart rate
HRnom: Nominal (simulated) heart rate
HRMI: Heart rate monitor interface
HRV: Heart rate variability
k: Steady-state gain
LTI: Linear, time-invariant
P∇u: Average control signal power
PC: Personal computer
PI: Proportional-integral
PID: Proportional-integral-derivative
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RMS: Root-mean-square
RMSE: RMS tracking error
RPE: Rating of perceived exertion
rpm: Revolutions per minute
τ : Time constant
USB: Universal serial bus
v: Speed
WR: Work rate

1 Introduction

Well-established guidelines exist for the definition of
cardiopulmonary exercise testing protocols and for the
prescription of training regimes. Specific testing and
prescription guidelines are available for healthy individuals
and for patients across a diversity of health conditions
[1]; the most common exercise modalities are treadmill
walking/running and cycle ergometry, while exercise
intensity can be characterised using such variables as heart
rate (HR), oxygen uptake or a subjective rating of perceived
exertion, RPE [2].

HR is a quantitative variable that can be easily measured,
and several approaches have been investigated for automatic
control of HR during both treadmill and cycle ergometer
exercise ([3–5] and [6–8], respectively). These feedback
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systems facilitate tracking of arbitrary HR profiles by
automatically and continuously adjusting a manipulated
variable, which for treadmills can be speed or slope, or both,
and which for cycling is usually work rate.

Since cycle ergometers provide a stable-seated position,
they are the preferred modality for exercise testing and
prescription in cardiac rehabilitation; HR controllers have
long been investigated in this context [6, 9, 10], but also,
subsequently, for healthy persons [7, 8, 11].

A most elegant treatment of HR control for cycle
ergometers was provided by Kawada et al. [6]. In that work,
a single linear transfer function model of HR response to
changes in work rate was obtained as an average from open-
loop system identification experiments with 10 individual
participants (8 men, 2 women). The model was then
used in simulation to tune the two free parameters of a
linear proportional-integral (PI) controller. The single time-
invariant PI controller thus obtained was then tested in HR
control experiments with 55 healthy participants (45 men,
10 women) and with 12 patients with cardiac disease (10
men, 2 women). In the healthy participants (n = 55),
the mean root-mean-square tracking error (RMSE) for a
constant HR target of 60 % of maximal HR (HRmax)
was 2.5 beats/min (bpm); when the HR target was 75 %
of HRmax, mean RMSE was 3.8 bpm. For the cardiac
patients (n = 12) exercising at a constant target HR of
20 bpm above resting HR, mean RMSE was 3.0 bpm.
This work, which reported HR control data from 122
individual HR control tests with 67 participants in the
two experimental cohorts, thus provides strong empirical
evidence that a single linear, time-invariant (LTI) controller
of very simple structure can provide accurate and robust
HR control.

A variety of nonlinear approaches to HR modelling
and control for both treadmills and cycle ergometers
have been proposed. Nonlinear models have been used
to represent the different gains and time constants that
exist for positive and negative step changes in speed
[12]; asymmetry has also been observed and modelled
during moderate-intensity treadmill running [13]. For the
purpose of control design, a nonlinear state-space model,
where the control signal appears in quadratic form, was
employed and combined with linear-quadratic and H-
infinity optimisation [14]; the same model structure was
used, but with a nonlinearity-cancellation strategy, for HR
control using a treadmill [4] or cycle ergometer [7]. A
related approach using a Hammerstein model structure and
a compensator with cancellation of the nonlinear model
term was combined with model-predictive control [15].
Other approaches include linear H-infinity control with
static nonlinearity compensation [16] and a nonlinear neural
network approach [17]. A limitation common to most of
these reports is that quantitative measures of controller

performance (i.e. RMSE and control signal intensity) were
not employed and that very small numbers of participants
were included in experimental evaluations, thus making it
difficult to objectively gauge their utility.

A recent study of HR control during cycle ergometry
combined an LTI proportional-integral-derivative (PID)
controller with an auditory biofeedback signal [8]. Despite
the human-in-the-loop nature of this approach, quite
accurate tracking was achieved with mean RMSE on the
range 3.7 bpm to 5.0 bpm (various experiments with 24
healthy male participants).

In concordance with some of the above observations,
a growing body of evidence has emerged from treadmill
studies that points towards heart rate variability (HRV, [18])
as the principal challenge in the design of HR control
systems, in contradistinction to parametric and/or structural
sources of plant uncertainty. From a control-theoretical
perspective, HRV presents as a broad-spectrum disturbance
signal [19]; care must therefore be taken to ensure that the
control signal is not unduly excited at frequencies that might
disturb the exercising subject. In short, the said studies have
demonstrated that simple approximate linear models, [20],
can be employed to design LTI controllers that give highly
accurate, stable and robust HR control performance, e.g. [5,
21] (20 to 30 participants, mean RMSE below 3 bpm).

To directly address the HRV disturbance, a HR control
approach was developed that allows the frequency-domain
characteristics of the closed-loop input-sensitivity function,
which is the transfer function from the HRV disturbance
to the control signal, to be appropriately shaped [5]; for
treadmill exercise, HR control was accurate (mean RMSE
of 3.0 bpm, n = 30) and the control signal was smooth and
stable (average power of changes in the control signal was
low). Using this design approach as a foundation, and based
on the observation that HR dynamics are not significantly
different between treadmills and cycle ergometers, [22], a
common control strategy was derived and experimentally
tested with these two exercise modalities; it was found to
give accurate tracking (mean RMSE of 3.1 bpm vs. 2.8 bpm,
cycle ergometer vs. treadmill; n = 25) and low control
signal intensity [11].

The primary contribution of the present work is, for the
first time, the application of the input-sensitivity-shaping
approach for feedback control of HR to cycle ergometer
exercise and the systematic analysis of its performance
and robustness in a large experimental test series. A
secondary contribution is a comparison with alternative
linear and nonlinear controllers based upon data available
in the literature. A single LTI feedback compensator was
calculated using a linear first-order plant model. The
aim of the work was to assess controller performance in
several experimental scenarios using quantitative measures
of tracking accuracy and control signal intensity (a total
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of 73 feedback control experiments involving 49 individual
participants were performed), and to analyse performance
and stability robustness properties of the compensator
using a large family of empirically derived plant models
(73 individual plant models were used for the robustness
analysis).

2Methods

2.1 Control design

The HR control system includes the plant (the nominal
plant is denoted Po and off-nominal plants as P ), a
feedback compensator Cfb and a reference prefilter Cpf

(Fig. 1). The signals which are present in the generic control
structure are interpreted as follows: the controlled variable
(plant output) y represents HR; the control signal (plant
input) u is the target work rate (WR) that is computed
continuously by the compensator; r is the target HR (HR∗);
the output disturbance d represents physiological heart rate
variability and other sources of uncertainty; n is a notional
measurement noise signal; z is the HR measurement; and r ′
and e′ are intermediate signals.

The nominal plant Po that was used for controller
calculation is the strictly proper transfer function as follows:

u → y: Po(s) = Bo(s)

Ao(s)
= k

τs + 1
= 0.392

65.6s + 1
, (1)

where the specific values for steady-state gain (k =
0.392 bpm/W) and time constant (τ = 65.6 s) are averages
taken over 25 individual participants from a previous system
identification study [22].

The lumped linear plant model, Eq. (1), is theoretically
valid for small-signal deviations around a nominal operating
point; under this approximating condition, the HRV
disturbance term d acts as an additive output disturbance
independent of the control signal u. Furthermore, it is
recognised that different levels of exercise intensity, as
characterised by HR, will lead to different levels of HRV
[19].

The feedback compensator Cfb is a transfer function that
is required to be strictly proper and includes an integrator as
follows:

e′ → u: Cfb(s) = G(s)

H(s)
= G(s)

sH ′(s)
; ng < nh, (2)

where ng and nh are the degrees of polynomials G and H ,
respectively.

The reason for the strictly proper constraint on Cfb is that
the resulting input-sensitivity function Uo, Eq. (6) below, is
also strictly proper as follows: as a consequence, both Cfb

and Uo are low pass systems (i.e. limω→∞ |Cfb(jω)| = 0
and limω→∞ |Uo(jω)| = 0), thus making the feedback
loop, and, in particular, the control signal u, insensitive to
high-frequency noise and disturbances.

The compensator was structured in such a way that the
closed-loop input-sensitivity function is of first order with a
given bandwidth p. This is achieved as documented in [5]
using the following:

Cfb(s) =
p
k
(s + 1

τ
)

s(s + p + 1
τ
)

(3)

wherefore Cfb depends only on the design parameter p,
and on the given plant gain k and time constant τ . The
input-sensitivity bandwidth was chosen to be 0.01 Hz, thus
p = 0.0628 rad/s and, with k = 0.392 and τ = 65.6,

Cfb(s) = 0.160s + 0.00244

s(s + 0.0781)
. (4)

The reference prefilter Cpf was calculated to make the
overall closed-loop transfer function from reference r to
output y equal to a standard second-order system with
critical damping and specified rise time ([5, 11]; here, the
rise time was set to either 120 s [control tests with cohort A,
see Section 2.4] or 150 s [cohort B]).

Using the above structures and parameters for Po and
Cfb, the nominal loop gain Lo is obtained as follows:

Lo(s) = Cfb(s)Po(s) = p(s + 1
τ
)

s(s + p + 1
τ
)(τ s + 1)

= 0.0628s + 0.000957

s(65.6s2 + 6.12s + 0.0781)
, (5)

Fig. 1 Control structure. y is the
controlled variable (heart rate
[HR]), u is the control signal
(target work rate [WR]) and r is
the target heart rate (HR∗). The
disturbance d includes
physiological heart rate
variability, and n is a notional
measurement noise signal
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which gives an infinite gain margin and a phase margin of
81.2◦ (Nyquist plot, Fig. 8).

Similarly, the nominal closed-loop input sensitivity
(Uo), sensitivity (So) and complementary sensitivity (To)
functions are as follows:

d, r ′, n → u: Uo(s)= Cfb(s)

1 + Lo(s)
=

p
k

s + p
= 0.160

s + 0.0628
,

(6)

d → y: So(s) = 1

1 + Lo(s)
= s(s + p + 1

τ
)

(s + p)(s + 1
τ
)

= s(s + 0.0781)

s2 + 0.0781s + 0.000957
, (7)

and

r ′, n → y: To(s) = Lo(s)

1 + Lo(s)
=

p
τ

(s + p)(s + 1
τ
)

= 0.000957

s2 + 0.0781s + 0.000957
. (8)

The magnitudes of the nominal frequency responses are
displayed in a Bode plot (Fig. 2).

From Eq. 6, it is seen that the effect of the HR disturbance
term d on the controller output signal u is governed by the
input-sensitivity function Uo, which effectively acts as a
filter for d. Thus, explicit shaping of the frequency response
of Uo obviates the need for any separate filtering of the HR
signal.

10-4 10-3 10-2 10-1 100

frequency/Hz

-100

-80

-60

-40

-20

-30

20

m
ag

ni
tu

de
/d

B

Bode Magnitude Plot
ULF VLF LF HF

Fig. 2 Nominal frequency responses: input sensitivity |Uo|, sensitivity
|So| and complementary sensitivity |To|. The red dots mark the − 3 dB
bandwidths. The frequency bands used for analysis of heart rate
variability are delineated by dashed vertical lines (ULF, ultra low
frequency; VLF, very low frequency; LF, low frequency; HF, high
frequency; [18])

2.2 Materials

All tests were carried out with a commercial cycle
ergometer (LC7 by Monark Exercise AB, Sweden; Fig. 3),
connected via USB serial link to a PC and controlled in
real time using Simulink (The Mathworks, Inc., USA). The
control signal u, computed as the output of the compensator
transfer function Cfb, is a target work rate that is sent to the
cycle ergometer; the cycle has an on-board microcontroller
and firmware with a feedback controller that continuously
adjusts the flywheel load in order to meet the target work
rate.

HR was recorded using a chest belt (T34, Polar Electro
Oy, Finland) that communicated wirelessly with a receiver
module (Heart Rate Monitor Interface [HRMI], Sparkfun
Electronics, USA) connected via USB to the PC. The HR
signal was interfaced to the Simulink model using a sample
rate of 1 Hz. The feedback controller ran at a rate of 0.2 Hz
(sample interval of 5 s); at each controller sample instant,
the current HR value was taken as the mean of the latest five
discrete HR samples.

The choice of controller sample interval of 5 s was based
on formal guidelines for closed-loop control systems: it is
recommended that the controller sampling rate should be 10
to 30 times the closed-loop bandwidth [23, page 110]. Since
the chosen bandwidth for the closed-loop input-sensitivity
function is 0.01 Hz, the appropriate range for sampling
frequency is 0.1 Hz to 0.3 Hz. Here, the sampling rate was
chosen to be exactly in the middle of this range, viz. 0.2 Hz,
corresponding to a sample interval of 5 s. Since the raw HR
signal was available at a rate of 1 Hz, it was resampled to the
appropriate controller sampling rate of 0.2 Hz as described
above. The dynamic effect of this resampling is considered
to be negligible, given that the plant time constant of 65.6 s
is an order of magnitude higher than the controller sample
interval of 5 s. Furthermore, the sampling rate of 0.2 Hz
is more than a decade above the chosen closed-loop input-
sensitivity bandwidth of 0.01 Hz; this choice of sampling
rate will therefore lead to no appreciable effects of the HR
resampling on the closed-loop system.

Fig. 3 Computer-controlled cycle ergometer (Monark LC7)
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2.3 Outcomemeasures

To obtain a quantitative measure of the accuracy of HR
tracking, the RMSE between the nominal and measured
HR values (HRnom and HR, respectively) was computed as
follows:

RMSE =
√
√
√
√

1

N

N
∑

i=1

(HRnom(i) − HR(i))2, (9)

which has the same units as HR itself, viz. bpm. Here, i

are the discrete time indices for the 5-s controller sampling
interval. HRnom was obtained by simulation of the nominal
closed-loop reference response.

Control signal intensity was numerically quantified using
the average power of sample-to-sample changes in the
control signal u. This average control signal power outcome,
denoted P∇u, is defined as follows:

P∇u = 1

N − 1

N
∑

i=2

(u(i) − u(i − 1))2. (10)

Since the control signal is the target work rate, the units of
P∇u are W2.

For tests involving a square-wave HR target profile,
RMSE and P∇u were calculated over an evaluation period
from 300 to 1800 s; when the target HR was constant, the
evaluation period was from 400 to 1200 s.

2.4 Experimental procedures

System identification and feedback control experiments
were carried out with two separate sets of participants,
referred to in the sequel as cohorts A and B:

• Participant cohort A comprised 25 males (n = 25)
with age on the range 22 years to 32 years, body
mass from 62 to 114 kg, height from 1.65 to 1.93 m
and body mass index (BMI) from 19.9 to 34.0 kg/m2.
This cohort previously participated in separate studies
of system identification [22] and feedback control
[11] using both a cycle ergometer and a treadmill.
As noted above (Section 2.1), the nominal plant
parameters k and τ in Eq. 1 that were used for
controller calculation are average values obtained in the
identification experiments with cohort A [22].

• Participant cohort B had 24 males (n = 24) aged from
22 to 36 years, mass from 62 to 113 kg, height from
1.72 to 2.00 m and BMI from 18.8 to 32.5 kg/m2.
Two system identification series were conducted with
cohort B: the first series (denoted B1) used the same
experimental protocol applied to cohort A, [22], with a
constant cycling cadence of 70 rpm; in the second series

(B2), participants were allowed to cycle at their own
preferred cadence, which was allowed to vary. During
these tests, ratings of perceived exertion (RPE) were
recorded four times at intervals of five minutes using
the Borg RPE scale [2].

The 73 plant models so identified (results in Section 3.2)
were used to analyse performance and stability robustness
of the feedback compensator Cfb (Section 3.3).

Three sets of feedback control experiments were carried
out, one with cohort A and two with cohort B:

• Cohort A (n = 25): a square-wave target HR profile
was employed with a period of 10 min and variations of
± 10 bpm around an individual, moderate-to-vigorous
intensity HR level denoted HRmid and calculated as
described below. Participants maintained a constant
cadence of 70 rpm by monitoring a visual display.

• Cohort B (n = 24): the target HR was constant and
equal to HRmid; cadence was constant at 70 rpm.

• Cohort B (n = 24): target HR was again constant at
HRmid, but participants were able to self-select their
preferred cadence.

For cohort B, the order of presentation of the two
test conditions (constant or freely chosen cadence)
was counterbalanced by changing the test order for
consecutive participants.

Thus, a total of 73 feedback control tests involving 49
individual participants were conducted using the single
feedback compensator Cfb, Eq. 4.

The mid-level, moderate-to-vigorous intensity HRmid
used to design the target HR profiles was calculated
individually for each participant as follows. The boundary
between exercise intensities perceived to be moderate and
vigorous occurs at 76.5 % of maximal HR [1], and maximal
HR can be estimated as HRmax (bpm) = 220 − age
(years) [24]. Furthermore, it has been documented that,
for similar levels of perceived exercise intensity, HR on a
cycle ergometer is approximately 20 bpm lower than on
a treadmill [25]. Thus, the mid-level HR target was set to
HRmid (bpm) = 0.765 × (220 − age) − 20.

3 Results

3.1 Feedback control

For participant cohort A (n = 25, cadence = 70 rpm), tested
using a square-wave HR target profile, RMSE was 3.10 bpm
± 0.68 bpm (mean ± standard deviation) with a range of
1.99 bpm to 4.29 bpm. The average control signal power
P∇u was 10.34 W2 ± 1.73 W2 (range 7.84 W2 to 14.07 W2).
Original data records for the individual cohort A tests with
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the minimum, median and maximum values of RMSE and
of P∇u are shown in Fig. 4.

For participant cohort B (n = 24), cycling at a constant
cadence of 70 rpm and tested with a constant HR target,
RMSE was 2.46 bpm ± 0.59 bpm (range 1.39 bpm to
3.80 bpm) and P∇u was 2.40 W2 ± 1.17 W2 (range
0.76 W2 to 5.93 W2). For participant cohort B (n = 24),
cycling under the alternative condition of freely chosen
cadence and, again, with a constant HR target, RMSE was
2.57 bpm ± 0.57 bpm (range 1.58 bpm to 3.40 bpm)
and P∇u was 2.39 W2 ± 1.02 W2 (range 0.69 W2 to
4.45 W2). Original data records for the individual cohort
B tests with the minimum, median and maximum values
of RMSE and of P∇u are shown in Fig. 5 (note: minima,
medians and maxima were obtained over all cohort B tests,
i.e. including both the 70 rpm and the freely chosen cadence
conditions).

The mean values of RMSE and P∇u for the two cohort
B conditions were found not to be significantly different:
for RMSE, the p value was p = 0.45, and for P∇u,
p = 0.96 (cadence of 70 rpm vs. freely chosen cadence,
paired-samples two-sided t tests, significance level α =
0.05).

3.2 Parametric plant model uncertainty

To facilitate analysis of performance and stability robust-
ness properties of the feedback compensator Cfb in Eq. 4
(Section 3.3, below), a family of plant models of the form
Eq. 1 was obtained in separate system identification studies.
Three sets of models are considered here as follows:

1. Participant cohort A (n = 25; full study details are
given in [22]): using a sample of 25 healthy males, the
steady-state gain and time constant were estimated for
exercise on the cycle ergometer to be k = 0.392 bpm/W
± 0.120 bpm/W (mean ± standard deviation; range
0.180 bpm/W to 0.796 bpm/W) and τ = 68.7 s ±
21.5 s (range 38.1 s to 120.2 s), respectively. In this
study, participants were required to maintain a constant
pedalling cadence of 70 rpm.

(The nominal plant gain k = 0.392 bpm/W in Eq. 1
was taken as the mean value from this identification
study. The nominal plant time constant τ = 65.6 s
in Eq. 1 is the mean obtained across the 25 cycle
ergometer values and 25 separate measurements with
the same participants exercising on a treadmill, where
τ = 62.5 s ± 18.5 s [range 34.3 to 110.1], see [22]).

2. Participant cohort B (n = 24): models for a
separate sample of 24 healthy males were identified
on the cycle ergometer using the same experimental
protocol detailed in [22], with cadence = 70 rpm; this
identification series is denoted B1. This resulted in the

estimates k = 0.372 bpm/W ± 0.094 bpm/W (range
0.227 bpm/W to 0.565 bpm/W) and τ = 71.8 s ± 21.7 s
(range 43.0 s to 133.2 s).

3. Participant cohort B (n = 24): this identification
series, denoted B2, used the same cohort as in
B1, but participants were allowed to freely choose
their pedalling cadence. The outcomes were k =
0.364 bpm/W ± 0.074 bpm/W (range 0.197 bpm/W to
0.518 bpm/W) and τ = 65.7 s ± 24.2 s (range 26.5 s to
125.6 s).

Dispersion of k and τ for the cycle ergometer for the three
sets of models is displayed together with values for the
nominal model in Fig. 6.

The mean values of k and τ obtained from identification
series A, B1 and B2 are deemed consistent because sta-
tistical testing revealed no significant differences between
different pairs of conditions: τ , B1 vs. B2 (p = 0.30); k,
B1 vs. B2 (p = 0.65); τ , A vs. B1 (p = 0.62); k, A vs. B1
(p = 0.53); τ , A vs. B2 (p = 0.65); k, A vs. B2 (p = 0.33).
For the B1 vs. B2 comparisons, paired-samples two-sided t
tests were conducted; for A vs. B1/B2, independent-samples
two-sided t tests were used.

For the series B1 and B2, there was no significant
difference in mean RPE: 13.3 ± 1.4 vs. 13.1 ± 1.7, B1 vs.
B2, p = 0.089 (paired-sample two-sided t test).

There was a positive linear correlation between k and τ

(r = 0.43, p = 0.00017; Fig. 6).

3.3 Robustness analysis

Performance and stability robustness properties of the
feedback compensator Cfb in Eq. 4 were analysed using the
family of 73 plant models obtained empirically as described
above.

Performance robustness was investigated by computing
the closed-loop input-sensitivity, sensitivity and comple-
mentary sensitivity functions U , S and T (Eqs. 6–8) using
the single feedback compensator Cfb, Eq. 4, and the 73 plant
models. The 73 magnitude plots |U |, |S| and |T | are dis-
played along with the nominal sensitivity functions (Bode
magnitude plots, Fig. 7).

For investigation of stability robustness, the loop gain L

(Eq. 5) was computed using the single Cfb transfer function
together with the nominal plant Po and the 73 identified
plant models (Nyquist plots, Fig. 8). The nominal gain
margin is infinite and the nominal phase margin is 81.2◦.
The gain margin remains infinite across all 73 instances of
L; the minimum phase margin is 62.2◦, which occurs for
the model with k = 0.80 and τ = 120.2 (which lies at the
upper-right corner of the k-τ plane, i.e. high values of both k

and τ [Fig. 6]); the maximum phase margin is 99.9◦, which
occurs for the model with k = 0.35 and τ = 29.7 (close to
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Fig. 4 Participant cohort A: individual HR control tests with the mini-
mum, median and maximum values of RMSE (parts a, c and e) and of
P∇u (parts b, d and e). “A20” refers to cohort A, participant number 20,

etc. The red bars depict the outcome-evaluation interval from 300 to
1800 s. (Parts a, c and e adapted from [11] to express P∇u in absolute
terms (units of W2), instead of after normalisation [units of bpm2])
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Fig. 5 Participant cohort B: individual HR control tests with the minimum, median and maximum values of RMSE (parts a, c and e) and of P∇u

(parts b, d and e). “B15” refers to cohort B, participant number 15, etc. The red bars depict the outcome-evaluation interval from 400 to 1200 s
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Fig. 6 Dispersion of k and τ for 73 individual models from three
system identification test series (Section 3.2). Ident. A: participant
cohort A (n = 25, cadence 70 rpm). Ident. B1: participant cohort B
(n = 24) with cadence 70 rpm. Ident. B2: participant cohort B (n =
24) with self-selected cadence. The star depicts the nominal model
used for controller calculation (k = 0.392, τ = 65.6; Section 2.1). The
dashed line is a linear fit (r = 0.43, p = 0.00017)

the lower-left corner of the k-τ plane, i.e. low values of both
k and τ [Fig. 6]).

4 Discussion

The single linear compensator was found to give highly
accurate HR tracking performance in both experimental
cohorts and under the different experimental conditions:
mean RMSE was on the range 2.5 bpm to 3.1 bpm. Due to
the dynamic nature of square-wave reference tracking, mean
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Fig. 8 Stability robustness: Nyquist plots of nominal loop gain Lo =
CfbPo and of L = CfbP for the 73 instances of P (identified plant
models). Gain margin is infinite for all models. Nominal phase margin
is 81.2◦; minimal and maximal phase margins are 62.2◦ and 99.9◦,
respectively

RMSE for this condition (3.1 bpm) was higher than for the
two constant target regulation series (2.5 bpm and 2.6 bpm).

The input-sensitivity-shaping control design approach
gives a simple, closed-form analytical procedure that allows
the closed-loop bandwidth to be set in consideration of
the broad-spectrum HRV disturbance. In the present set of
experiments, this gave a stable and smooth control signal
whose changes had low average power P∇u (mean of 2.4 W2

for constant HR regulation and 10.3 W2 for square-wave
tracking).

Although the HR response was represented using the
approximation of a simple linear model of the form y =

Fig. 7 Performance robustness: sensitivity function magnitudes computed using the single feedback compensator Cfb together with the nominal
plant Po and the 73 identified plant models. The red dots mark the nominal − 3 dB bandwidths
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Po(s)u + d (Eq. 1, Fig. 1), where the term d represents
the lumped effects of the HRV disturbance at a nominal
operating point, it should be emphasised that human
heart rate variability arises from complex interactions
between the sympathetic and parasympathetic divisions of
the autonomic nervous system [18]. These divisions are
continuously engaged in regulation of cardiac output by
adjustment of stroke volume and heart rate, thus leading
to the observed variations in the time between individual
beats. This HRV depends on many factors that are not
dependent upon the control signal u (target work rate)
including hydration level, ambient temperature and health
status. Thus, it is not the purpose of the feedback control
loop and, in particular, the control signal u, to directly
influence the level of HRV. Rather, HRV is treated as a
lumped, unmeasurable output disturbance d; the task of
the controller is then, in the face of the unknown HRV
disturbance d, to achieve a sufficient level of accuracy in
the tracking of the target HR profile while maintaining an
acceptable intensity of the control signal u. This amounts
to the classical trade-off between tracking accuracy and
control signal intensity: choice of a higher closed-loop
bandwidth will tend to give a more dynamic controller
resulting in lower tracking error but higher control signal
intensity, and vice versa.

In comparison with the study of Kawada et al. [6], which
employed a PI controller and evaluated only constant HR
regulation, the RMSE values for regulation in the present
work are slightly lower (∼2.5 bpm here vs. 2.5 bpm to
3.8 bpm in [6]); but this comparison should be interpreted
with caution since RMSE will also have been affected by
the differing experimental conditions and the respective
methods for controller-parameter tuning.

A direct comparison of the intensity of control signal
activity between the two studies is not possible: here,
this was evaluated using the average power of sample-
to-sample changes in the control signal P∇u; but in [6],
no quantitative assessment of control signal intensity was
performed. It can be conjectured, however, that the control
signal intensity when using a PI controller (as in [6])
would be higher. This is because, in the present work, the
compensator, Eq. 2, was constrained at the outset to be
strictly proper (low pass). This in turn gives a strictly proper,
low-pass input-sensitivity function Uo because, from Eq. 6,
Uo = Cfb/(1 + CfbPo). Thus, when limω→∞ |Cfb| =
0, it follows that limω→∞ |Uo| = limω→∞ |Cfb| = 0.
Thus, the control signal will not respond to disturbances at
frequencies above the specified input-sensitivity bandwidth
p (set here as frequency f = 0.01 Hz; see |Uo|
in Fig. 2).

In contrast, for a PI controller Cfb(s) = kp + ki/s with
proportional gain kp and integrator gain ki (this is the exact
structure employed in [6]), the magnitude of Cfb tends to the

value kp at high frequency. Consequently, |Uo| also tends
to the value kp because, employing the condition that Po is
strictly proper (low pass), limω→∞ |Uo| = limω→∞ |Cfb| =
kp. This shows that, for a PI controller, the control signal
will react to disturbance and noise inputs across the whole
frequency spectrum.

Finally, in comparison with the study in [6], it is
noted that the nominal plant gain used here for controller
calculation (k = 0.39, mean from 25 participants) was
very close to the value estimated in [6] (k = 0.42, mean
from 10 participants). The nominal time constant used here
cannot be compared because a non-parametric model was
estimated in [6].

The performance of the controller proposed and tested in
the present work can be compared with nonlinear strategies
that have previously been applied to HR control. One
nonlinear approach has been applied to HR control during
both treadmill [4] and cycle ergometer [7] exercise. This
nonlinear method is based upon a plant model where the
control signal u appears in quadratic form, and where the
controller cancels this term using the inverse nonlinearity,
viz. the square-root function. This approach has the
important theoretical property that global convergence of
regulation errors is guaranteed for the class of nonlinear
models considered. However, the experimental evidence
provided in [4] and [7] is weak because no quantitative
measures of controller performance were employed, and
because short-duration tests were performed with only
two (treadmill, [4]) or three (cycle, [7]) participants.
Furthermore, a later independent study systematically
compared this nonlinear approach to a linear PI controller
using quantitative outcome measures and a cohort of 16
healthy male participants during treadmill exercise [26].
Using formal statistical analysis methods, this study found
no significant difference between the linear and nonlinear
controllers in HR tracking accuracy (for both controllers,
RMSE was approximately 2.3 bpm) and in average control
signal power. Moreover, the nonlinear controller was found
to be highly sensitive at low control signal levels, which was
attributed to the fact that the square-root function, which is
included in the compensator, has a gain that tends to infinity
as the control signal tends to zero.

The HR tracking accuracy reported in [26] for both the
linear and nonlinear controllers, i.e. RMSE of approxi-
mately 2.3 bpm, is slightly lower than the range of 2.5 bpm
to 3.1 bpm observed in the present work. This can likely
be attributed to the non-strictly-proper nature of the lin-
ear/nonlinear controllers implemented in [26], in contrast
to the strictly proper constraint applied here (Eq. 2): when
the controller is not strictly proper, its gain does not roll
off with frequency, thus making it more dynamic across
the whole frequency range, which tends to drive down the
RMSE; the price to be paid for this improved HR tracking
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accuracy, however, is an increased sensitivity to higher fre-
quency HRV disturbances and consequent higher average
control signal power.

Notwithstanding this critical analysis of nonlinear con-
trol strategies, further work is recommended to investigate
appropriate nonlinear plant model and controller struc-
tures, while experimental evaluations are recommended that
comprise quantitative performance-outcome measures and
participant cohorts with sufficient sample size to allow
formal statistical comparison with other linear/nonlinear
approaches.

Within the present work, the quantification of parametric
plant uncertainty showed that steady-state gains and time
constants vary over a very wide range; overall, k was on
the range 0.180 bpm/W to 0.796 bpm/W and τ ranged from
26.5 to 133.2 s (Section 3.2, Fig. 6). Despite this high level
of plant dispersion, the controller was accurate and stable
in all 73 experiments involving a total of 49 individual
participants.

This empirically observed, high degree of controller
robustness is underscored by the performance and stability
robustness analysis (Section 3.3):

• Performance robustness: the magnitudes of the input-
sensitivity and sensitivity functions, |U | and |S|, respec-
tively, were found to be almost entirely unaffected by
the plant variability at frequencies above the selected
closed-loop bandwidth p (which corresponds to f =
0.01 Hz, Fig. 7a), i.e. in the frequency range that is
important in relation to the behaviour of the control sig-
nal. Furthermore, the complementary sensitivity func-
tion magnitude |T | was found to be little affected at the
lower end of the ultra low frequency band (Fig. 7b), i.e.
at frequencies that are primarily important for reference
tracking accuracy.

• Stability robustness: very large stability margins were
evident across the whole family of plant models
(Fig. 8): gain margin was infinite in all cases while
the minimum phase margin remained large at 62.2◦
(nominal phase margin was 81.2◦).

5 Conclusion

The single-linear, time-invariant controller was found to
give accurate and stable performance with low values of
the quantitative outcomes root-mean-square tracking error
RMSE and average control signal power P∇u. The empirical
evidence of controller robustness was corroborated by
numerical analysis of key closed-loop transfer functions and
stability margins across the available plant model family.

These results, taken together with data reported in
Kawada et al. [6], demonstrate that highly accurate, stable

and robust heart rate control can be achieved using LTI
controllers of remarkably simple structure. Furthermore,
the results highlight that design methods for HR control
must give adequate attention to plant disturbances caused
by physiological heart rate variability. The input-sensitivity
approach evaluated in this work provides a direct and
transparent method of addressing this challenge.
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