
Automatic hand phantom map generation 
and detection using decomposition support 
vector machines
Huaiqi Huang1,2*  , Claudio Bruschini2  , Christian Antfolk3, Christian Enz2, Tao Li1, Jörn Justiz1 
and Volker M. Koch1

Abstract 

Background:  There is a need for providing sensory feedback for myoelectric prosthe-
sis users. Providing tactile feedback can improve object manipulation abilities, enhance 
the perceptual embodiment of myoelectric prostheses and help reduce phantom limb 
pain. Many amputees have referred sensation from their missing hand on their residual 
limbs (phantom maps). This skin area can serve as a target for providing amputees with 
non-invasive tactile sensory feedback. One of the challenges of providing sensory feed-
back on the phantom map is to define the accurate boundary of each phantom digit 
because the phantom map distribution varies from person to person.

Methods:  In this paper, automatic phantom map detection methods based on four 
decomposition support vector machine algorithms and three sampling methods are 
proposed, complemented by fuzzy logic and active learning strategies. The algo-
rithms and methods are tested on two databases: the first one includes 400 generated 
phantom maps, whereby the phantom map generation algorithm was based on our 
observation of the phantom maps to ensure smooth phantom digit edges, variety, and 
representativeness. The second database includes five reported phantom map images 
and transformations thereof. The accuracy and training/ classification time of each 
algorithm using a dense stimulation array (with 100 × 100 actuators) and two coarse 
stimulation arrays (with 3 × 5 and 4 × 6 actuators) are presented and compared.

Results:  Both generated and reported phantom map images share the same trends. 
Majority-pooling sampling effectively increases the training size, albeit introducing 
some noise, and thus produces the smallest error rates among the three proposed 
sampling methods. For different decomposition architectures, one-vs-one reduces 
unclassified regions and in general has higher classification accuracy than the other 
architectures. By introducing fuzzy logic to bias the penalty parameter, the influence of 
pooling-induced noise is reduced. Moreover, active learning with different strategies 
was also tested and shown to improve the accuracy by introducing more representa-
tive training samples. Overall, dense arrays employing one-vs-one fuzzy support vector 
machines with majority-pooling sampling have the smallest average absolute error 
rate (8.78% for generated phantom maps and 11.5% for reported and transformed 
phantom map images). The detection accuracy of coarse arrays was found to be signifi-
cantly lower than for dense array.
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Conclusions:  The results demonstrate the effectiveness of support vector machines 
using a dense array in detecting refined phantom map shapes, whereas coarse arrays 
are unsuitable for this task. We therefore propose a two-step approach, using first a 
non-wearable dense array to detect an accurate phantom map shape, then to apply a 
wearable coarse stimulation array customized according to the detection results. The 
proposed methodology can be used as a tool for helping haptic feedback designers 
and for tracking the evolvement of phantom maps.

Keywords:  Phantom map, Support vector machines, Sensory feedback, Hand 
amputee, Machine learning, Active learning

Background
Although the dexterity of hand prostheses has made significant progress in the past dec-
ades, there is still no or limited sensory feedback in commercial prostheses [1, 2]. To 
our knowledge, the only commercial prosthesis equipped with sensory feedback is the 
Vincent Evolution 2 hand from the Vincent Systems GmbH [3]. This hand has only one 
vibrator, providing very limited feedback. A survey conducted by Pylatiuk et al. showed 
that upper arm amputees would like to have sensory feedback integrated in the hand 
prosthesis [4]. Providing sensory feedback can not only improve the functionality of the 
prosthesis, but also enhance the body ownership feeling of the amputees. Another ben-
efit is to relieve phantom limb pain [5].

There are several ways to provide amputees with tactile sensory feedback. The meth-
ods can be roughly divided into two main categories: invasive and non-invasive feed-
back. The invasive approach stimulates the central nervous system using cortical 
electrodes [6] or the peripheral nervous system using either cuff electrodes [7, 8] or 
transversal intrafascicular multichannel electrodes [9]. Non-invasive feedback systems 
apply stimuli on the surface of the skin. The stimuli can be electrical currents (electro-
tactile) [10–14], vibrations (vibrotactile) [11] or mechanical pushing (mechanotactile) 
[15, 16] on the skin to elicit sensations.

Many amputees have referred sensation of their lost arm on their remaining stump, 
called phantom map (examples of phantom maps are shown in Fig 1a). Phantom map 
could serve as an area to provide sensory feedback. A phantom map is a region on the 
body that can evoke a sensation of the lost hand. Surveys have shown that 80–90% of 
amputees develop a phantom map immediately after amputation [17]. While half of 
those amputees keep stable long-term phantom maps [17], most of the time, the hand 
phantom maps are present on the face or on the remaining stump. Pressure applied on 
one area of the phantom map gives the sensation that it comes from a specific finger or 
an area of the amputated hand.

The dominant theory regarding the phantom map formation is the reorganization of 
the cortical topography. In the Penfield map, the hand area is bordered by the upper 
arm and the face. When the hand is amputated, these two regions (upper arm and face) 
invade the area representing the hand, thereby forming the phantom map [18].

Previous works have demonstrated the feasibility of providing non-invasive sen-
sory feedback on the hand phantom maps [19–21]. One of the benefits of providing 
sensory feedback on the phantom map is its high spatial resolution. We have indeed 
observed that the phantom map area has a smaller two-point discrimination dis-
tance than the contralateral upper arm, for example. It has also been reported that 
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somatosensory feedback (feedback applied on the phantom map) has a higher dis-
crimination accuracy and requires lower mental workload when the amputees are 
required to recognize the stimulation pattern [19].

The phantom map distribution and sensitivity vary from individual to individual 
because of the “uncontrollable muscle and nerve reorganization” which takes place 
after the amputation [17, 19]. The phantom map shape can also change over time [18].

Finding the hand phantom map distributions of individual amputees is of great 
importance in order to provide efficient stimulation patterns and take full advantage 
of the high spatial resolution provided by the phantom map.

Fig. 1  Reported phantom map image classification examples. Examples of a reported phantom map images 
[13, 23, 27, 28], b processed and down-sampled phantom maps, and c predicted phantom maps using 
OVO-SVM and 2× 2 majority pooling
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Current phantom map detection methods are still quite rudimentary, using palpa-
tion and then drawing the phantom map directly on the skin of the amputee [22, 23]. 
This detection method is inconsistent and inaccurate. It is difficult to record detailed 
phantom map distribution and to track the evolvement of each individual phantom map. 
Moreover, to the best of our knowledge, no phantom map database exists at present.

Current sensory feedback applied on phantom maps normally uses one actuator 
(vibrator or pusher) per phantom finger [20]. In this approach, a rough phantom map 
distribution detection is sufficient. However, when a dense stimulation array is applied 
on the phantom map, a more accurate phantom map distribution estimation is needed. 
The WiseSkin project, for example, aims at providing richer feedback to upper arm 
amputees by incorporating dense, miniaturized sensory nodes in a hand glove, and using 
wireless transmission to convey the sensory data to a processing unit [24]. The latter 
generates signals to activate a corresponding dense actuator array placed on the phan-
tom map of the amputee.

Previous work
An automatic phantom map detection method has been proposed in our previous work 
[24, 25]. The proposed method collects a small amount of phantom map distribution 
data of an amputee and uses this data and different algorithms to generate a detailed 
graphical phantom map. An example of automatic phantom map detection using SVM 
algorithms is shown in Fig. 2. This approach, which was tested on simulated phantom 
map models, can help feedback designers to customize the stimulation array and poten-
tially increase the haptic vocabulary. It can also help to find an optimized place for elec-
tromyography (EMG) electrodes to avoid interactions between EMG electrodes and 
sensory feedback arrays. The proposed algorithms included two non-machine learning 
based (group testing and adaptive edge finding [24]) and two machine learning based 
algorithms (neural network [24] and support vector machine (SVM) [25]). The simula-
tion results showed that support vector machine based algorithms have higher over-
all accuracy than the other tested algorithms. They were however based on simplified 
ellipse-based phantom map models and only their overall error rates were compared, 
without a detailed training and classification cost analysis (i.e. analysis of the algorithm 
sensitivity for a series of figures of merit, and training or classification time). 

The general approach in this paper is similar to the flow in previous work (Fig. 2), con-
sisting of three stages: sampling, training, and classification. However, this paper sub-
stantially extends the previous work in all stages and proposes four multi-class SVM 
algorithms for automatic phantom map detection, complemented by fuzzy SVM and 
active learning to further increase the detection accuracy. More realistic and detailed 
contour phantom map models were generated to test the algorithms using the speci-
fications of fine grained stimulation arrays. Refined metrics were used to evaluate the 
effectiveness of the algorithms, including on the performance of a “realistic” coarse stim-
ulation array. A time cost and shifting error analysis was included as well.

This paper is organized as follows: the hand phantom map databases, including a novel 
contour phantom map model generation and reported phantom map processing, are 
introduced in “Hand phantom map databases” section, then three data sampling meth-
ods are presented in “Sampling methods” section. The proposed support vector machine 
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algorithms with and without fuzzy membership functions or active learning are detailed 
in “Support vector machine” section. The accuracy and timing aspects of the proposed 
algorithms are presented “Results” section and the results are discussed in “Discussion” 
section. Conclusions are provided in “Conclusion” section.

Hand phantom map databases
Two databases are introduced in this section to test the phantom map detection algo-
rithms: the first database consists of generated phantom maps using a contour model 
(“Hand phantom map model generation” section), whereas the second database is based 
on processed and transformed reported phantom map images (“Database from reported 
phantom map images” section).

Hand phantom map model generation

In this subsection, we describe the generation process which we employed to produce 
realistic phantom maps using a contour model (Fig.  2: Initialization). The distribution 

Fig. 2  Automatic phantom map detection flow. Automatic phantom map detection flow diagram. In the 
flow graph, only the generated phantom map images are used as an example
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and sensitivity of phantom maps do vary individually. From the descriptions of the 
reported phantom maps and interviews with amputees, it can for example be observed 
that phantom maps have clear and smooth edges [19, 23]. There can be repeated phan-
tom digit representations (one phantom finger has more than one non-connected area 
represented on the phantom map) [19]. Some amputees have a complete phantom map, 
meaning that all five phantom fingers exist, while others only have partial phantom maps 
(one or more phantom fingers are missing). Furthermore, it is also observed that when 
several phantom digits are touched simultaneously, the amputee can distinguish all the 
digits that are being touched.

To simplify the model, it is assumed that there is no overlap between phantom dig-
its. Considering the average size of the remaining stump and the typical minimum two-
point discrimination distance, the phantom map was modeled as a 100 × 100 matrix A . 
Each element in the matrix is assigned a number from [0, 1, 2, 3, 4, 5], representing no 
phantom sensation, phantom thumb, phantom index, phantom middle, phantom ring, 
and phantom little finger, respectively. After having selected the actual phantom map 
types (number of phantom fingers—either 5 or 10—and completeness/incompleteness, 
a contour model was used to generate the individual phantom maps. The generation 
algorithm starts by randomly selecting 4–5 points within an a× b window (for 5 finger 
phantom maps, 0 < a, b ≤ 60 and for 10 finger phantom maps, 0 < a, b ≤ 45 ). The val-
ues of a and b were determined empirically to provide reasonable phantom map shapes 
and a wide range of phantom sensation coverage; for example, when too large it was very 
difficult for the contour algorithm to converge and/or generate balanced and representa-
tive phantom maps. The selected data points are connected by an active snake contour 
model [26]. All the elements included in the contour edge are assigned the same finger 
number, starting from 1. Then the generation algorithm continues selecting data until all 
the needed phantom fingers are assigned (Fig. 3).

The generated phantom maps are then used to test the performance of the proposed 
detection algorithms.

The size of the phantom sensation area (the area on the remaining stump that can 
evoke the sensation of the lost fingers) varies from person to person. Thus, we define a 
variable called ‘phantom sensation coverage ( CPS )’ to describe the ratio of the phantom 
sensation area against the remaining stump

where A Phantom fingers is the total phantom finger area, and A Stump area is the whole 
stump area, A Stump area = 100× 100.

The phantom map model generation method provide the possibility to adjust the 
phantom sensation coverage range (Fig. 4), select between complete and partial phan-
tom maps, and control the total number of generated phantom digit representations 
(Fig. 5). Examples of generated phantom map models are shown in Fig. 6.

Database from reported phantom map images

To further validate the proposed algorithms, we also used five reported phantom map 
images from the literature [13, 23, 27, 28] to build a second phantom map database. 

(1)CPS =
A Phantom fingers

A Stump area
,
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Fig. 3  Phantom map generation flow. Phantom map generation flow graph

Fig. 4  CPS controlled by a and b. Phantom sensation coverage control: average CPS of 5 finger phantom 
maps generated by varying a and b within 0 < a, b ≤ 60
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To digitize the reported phantom map images, the edge of each phantom finger in the 
reported phantom map images (Fig.  1a) was outlined in Illustrator (Adobe Illustrator 
CC, United States) and each phantom finger area is assigned a color. Then each Illustra-
tor processed image is imported into MATLAB 2017b (The MathWorks, Inc., United 
States) and down-sampled into a 100× 100 matrix (Fig. 1b), with each color mapped to 
its corresponding grey scale value. The compressed matrix (image) is used for classifica-
tion. The corresponding predicted phantom maps using OVO-SVM and 2× 2 majority 
pooling are presented in Fig. 1c.

The digitized phantom maps are then transformed into a group of images using rota-
tion, scaling, shearing, translation, and barrel or pin cushion transformation. For rota-
tion, each digitized reported phantom map image is rotated between 0 ◦ and 360◦ for 
every 5 ◦ . For scaling, both proportional scaling and one-dimensional scaling are used. 
The scaling factor ranges from 10 and 100%. For the translation, both single direction 
and bi-directional translation are used. The shear factor ranges from 0 to 1. For barrel 
or pin cushion transformation, the amplitude of the cubic term varies between − 0.01 to 
0.01. Examples of the transformed images are shown in Fig. 7.

Sampling methods
In our current work, we apply machine learning algorithms to accurately detect 
phantom map shapes with limited number of sampled points, referred as samples 
in the rest of the paper. For machine learning, selecting representative training data 
is essential, especially in applications where labeling is expensive. From our experi-
ence working with amputees, it can be observed that (a) the amputee can give a clear 

Fig. 5  CPS distribution. CPS distribution of 400 generated phantom maps (100 samples of each type). x-axis: 
CPS , y-axis: number of phantom maps.
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response to the location of the stimuli (i.e., clearly identify which phantom finger 
has been touched), and (b) when the stimulation falls across several phantom fin-
gers, the amputee can still indicate which finger felt stronger.

Taking these elements into account, three different sampling methods for SVMs 
are proposed and explained in this section (Fig. 2: Step 1: Sampling): random sam-
pling, systematic sampling, and majority pooling sampling. Although their effective-
ness is explored below on simulated data, the sampling protocols are designed in 
such a way that they are also to be applicable in future clinical tests.

Random sampling (RS)

Random sampling consists of randomly picking m data sets and labeling them 
individually (Fig.  8a). The m data sets will be used for training the support vector 
machine algorithms.

Fig. 6  Generated phantom map models. Examples of generated phantom map models
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Systematic sampling (SS)

Instead of randomly choosing the query data point, the whole phantom map region is 
evenly divided into a regular grid. Each grid point is a sampling point (Fig. 8b).

Majority pooling sampling (MPS)

The idea of majority-pooling comes from the max-pooling concept of convolutional 
neural networks. Applying pooling can result in more compact representations and 
higher robustness to noise [29]. First, the algorithm defines a set of non-overlapping 
rectangular windows Wi each containing p× q sampling points, where Wi ⊂ Astump area 
and i ∈ [1, 2 . . . ,M] , M being the number of training data sets. Then the corresponding 
phantom finger numbers of all the data points within Wi are collected. In clinical prac-
tice the subject responds which finger(s) he or she feels being touched, and if more than 
one phantom finger is within the stimulation region, the amputee has to choose which 
one feels stronger. In this study, all the points within the selected window will be labeled 
as the one the amputee chooses, i.e.,

Original Rotation

Shearing 

Pin cushion 
transformation

Scaling

Translation

Fig. 7  Examples of reported phantom map image transformations, including rotation, scaling, shearing, 
translation, and pin cushion transformation in contrast to the original phantom map shape
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where Mo represents mode operation, which selects the value which occurs most fre-
quently in the window.

Examples of majority pooling sampling are shown in Fig. 8c, d. Majority-pooling can 
introduce errors because all the data points within a pooling window are labeled accord-
ing to the majority vote. A pooling induced error EMP is therefore defined as

where NE is the number of wrongly labeled training data due to pooling and N is the 
total number of training data sets.

Support vector machine
After selecting the training samples, the support vector machines (SVMs) need to be trained 
using the acquired samples (Fig. 2: Step 2: training). After the training step, the SVMs can 
be used to classify the phantom map shape distribution (Fig. 2: Step 3: Classification).

Support vector machine basics

A SVM is a non-probabilistic, parametric binary linear classifier, based on the maximum 
margin principle. The basic idea behind a SVM is to minimize the classification error 
rate while maximizing the geometric margin between two classes [30].

In a binary-class classification problem, given M training data sets: 
Tr = {(ptr,1, c1), (ptr,2, c2), . . . , (ptr,M, cM)} , where ptr,i ∈ Rn , i = 1, 2, . . . ,M , ptr,i is 
the feature of the ith training data set, Rn is the feature space, n is the feature dimen-
sion, and ci is the training class label in the ith training data set, whereby ci ∈ {−1,+1} , 
i = 1, 2, . . . ,M (outputs of Fig. 2: Step 1). The SVM training consists in solving the fol-
lowing optimization problem:

(2)∀i,W i = Mo(W i),

(3)EMP =

NE

N
,

Fig. 8  Illustration of the proposed sampling methods: a random sampling, b systematic sampling, c 2 × 2 
majority pooling sampling, and d 2 × 2 majority pooling sampling. The total number of samples is 100 for 
each case. The stars represent sampled points. The sampled points were enlarged for better visualization
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where b is the bias of the hyperplane, C is the penalty parameter, and ζi is the slack 
variable.

Because the relationship between class labels (phantom digit number) and attributes 
(the location of sampling points) is non-linear, a non-linear kernel function is used to 
map the input space into a feature space for higher classification accuracy. In this paper, 
a radial basis function (RBF) kernel is chosen [31], because it maps the input space into 
Hilbert space (an infinite hyperplane) and provides more flexibility [32]. More details 
about the kernel function and SVM parameter tuning can be found in Appendix A.

Training and classification data definition for automatic hand phantom map detection

As mentioned before, SVMs use collected training data sets, including training features 
and training classes to find support vectors (a selected number of training data). Then 
SVMs use the support vectors to assign each testing feature a class. The training data 
sets collection Tr is defined as

where M = 100 when using random and systematic sampling, and M = 100× p× q 
when using majority pooling sampling ( p× q being the pooling size), ptr,i is the train-
ing feature (the position of the data points in a phantom map), with ptr,i = (xi, yi) , xi and 
yi being the coordinates of point i in a phantom map matrix M, and ci is the class label 
( ci ∈ {0, 1, 2, 3, 4, 5} , i = {1, 2, . . . ,M}).

The collection of testing features is defined as

whereas the collection of testing classes is defined as

where ctst,1 ∈ [0, 1, 2, 3, 4, 5] . For each individual phantom map, M selected points are 
sampled and used to train the SVMs. Because the distribution of phantom map is dif-
ferent from person to person, each individual phantom map needs its own training and 
classification.

Multi‑class support vector machine

A SVM is intrinsically a binary classifier. Two approaches have been proposed to extend 
binary SVM classifiers to multi-class SVM classifiers. The first approach, proposed by 
Crammer and Singer, is a direct method, which treats the multi-class classification prob-
lem as a large ‘constrained optimization problem with a quadratic objective function’ 
[33]. The second approach is to decompose a multi-class classification problem into a 
collection of binary classification problems. The direct approach is slow and involves 
a complex optimization problem. The decomposition approaches generally offer good 
performance and are easier to implement [34].

(4)
min 1

2

∥

∥ω

∥

∥

2
+ C

∑M
i=1 ζi,

s.t. ci(ω
Tptr + b) ≥ 1− ζi,

and ζi ≥ 0, i = 1 . . .M,

(5)Tr = {(ptr,1, ctr,1), . . . , (ptr,M, ctr,M)},

(6)Ptst = {ptst,1, . . . ,ptst,10000},

(7)Ctst = {ctst,1, . . . , ctst,10,000},
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There are mainly four decomposition methods: one-vs-all (OVA), one-vs-one (OVO), 
the directed acyclic graph (DAG), and the binary tree (BT) method.

One‑vs‑all support vector machine (OVA‑SVM)

The principle of an OVA-SVM is to train each class against all the rest of the classes. 
When training the jth class, the jth class is assigned positive labels, while the others are 
assigned negative labels. After training all the binary classifiers, the final class is deter-
mined by the highest output value.

One‑vs‑one support vector machine (OVO‑SVM)

For an OVO-SVM, all the combinations of class pairs need to be trained. For a k-class 
classification problem, each binary classifier determines a preferred class. After training 
all the k(k − 1)/2 classifiers, the class that has the most votes wins. Although an OVO-
SVM needs to train more binary SVMs, the training data contained in each subset is 
smaller. Thus, the training time needed for each individual SVM is smaller, compared to 
that of an OVA-SVM.

Directed acyclic graph support vector machine (DAG‑SVM)

The training of a DAG-SVM is the same as OVO-SVM. In the classification phase, it fol-
lows a rooted binary directed acyclic graph (DAG). For a k-class classification problem, 
this graph has k(k − 1)/2 internal nodes and k leaves. Each node is a binary classifier 
Di,j . Each leaf represents a class. k is the total number of classes [35]. In our application, 
the DAG would be [0 1 2 3 4 5] for a complete phantom map, where 0 represents no 
phantom sensation and 1–5 correspond to the five phantom fingers. Then each binary 
SVM chooses the preferred class between the first and the last class of the list. The non-
preferred class is then deleted from the list. This procedure continues until a final class 
decision is reached.

Binary tree support vector machine (BT‑SVM)

A BT-SVM is constructed based on a binary tree structure. Each internal node is a 
binary SVM. During the training phase, half of the remaining training data are assigned 
positive labels, the other half negative labels. The main goal of a BT-SVM is to reduce the 
number of binary classifiers, thus decreasing the needed training and classification time.

Table 1 lists the number of binary SVMs required for a k-class classification problem.

Table 1  Multi-class SVM classifiers: number of  binary SVMs required for  the  four main 
decomposition methods

Method Number of binary SVMs required for a k-class 
classification problem

Number of SVMs required 
to classify a complete phantom 
map

OVA k 6

OVO k(k−1)
2

15

DAG k(k−1)
2

15

BT 2log2k 5
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Fuzzy support vector machines

Although the classification accuracy of a SVM is very high, it is highly influenced by 
noise and outliers [36]. Fuzzy SVM (FSVM) was proposed to increase the robustness of 
a conventional SVM by applying a fuzzy membership function to the training data sets 
[37]. The fuzzy membership function is used to reformulate the SVM so that noisy input 
points contribute less in training the decision surface. In our classification application 
and within the proposed model, the noise mainly comes from majority pooling sampling 
(“Majority pooling sampling (MPS)” section). In order to reduce the effect of pooling-
induced errors, a step fuzzy membership function fc is therefore proposed:

where i and j are the element indices in a pooling window, Si and Sj are the phantom sen-
sation labels of the ith and jth element, with Si, Sj ∈ [0, 1, 2, 3, 4, 5] , and α is a constant.

In this approach, the penalty parameter C in (4) becomes an array:

where Cconst is the penalty parameter value in a conventional SVM.

Active learning support vector machine

Based on the consideration that the human phantom map detection process is likely 
gradual and adaptive, we decided to apply active learning as well to the four decompo-
sition SVMs. Active learning is able to query the candidate data interactively, using a 
specified rule (called query strategy) and sequentially adding new data for labeling and 
contribution to the training [38]. One of the most widely used query strategies is uncer-
tainty sampling [39, 40], whereby margin sampling and its variations, especially multi-
class level uncertainty, have shown good performance when combined with SVMs [39]. 
Moreover, in order to achieve faster training, batch-mode active learning is often used, 
whereby a group of instances is added at a time. Furthermore, diversity criteria are often 
employed for query data selection to ensure the representativeness of selected instances. 
In the current study, we applied angle-based diversity SVMs [41, 42].

Different initial and batch sizes with and without diversity criteria were employed in 
this study. During preliminary testing and parameter tuning, we found out that (a) the 
diversity criteria did not improve the classification accuracy, and (b) the initial size 80 
with batch size 2 achieved the highest classification accuracy. In the following sections, 
only results using the aforementioned testing configuration will be presented.

Results
In the absence of a wearable dense stimulation array, the aforementioned algorithms 
were tested on the two databases detailed in “Hand phantom map model generation” 
section, containing 400 generated phantom map models (Fig.  5), as well as processed 
and transformed reported phantom map images, respectively. Both the phantom map 
models and the phantom map detection methods were implemented in MATLAB 2017b 
(The MathWorks, Inc., United States). The program was running on a HP laptop with an 
Intel core i5-4300 CPU@1.90GHz.

(8)fc =

{

1 when ∀ i and j, i �= j, Si = Sj ,
α otherwise,

(9)C = Cconst × fc,
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We have opted for a total of 100 samples for the sampling phase based on initial testing 
results, which highlighted that a sampling size smaller than 100 led to a large increase 
in error rate, while the accuracy increase was not significant above this size. We also 
believe this number to be realistic for a dense array. Indeed, from our experience of test-
ing with amputees, the average time needed to stimulate and get the response is 15–30 s. 
In practice, when the total number of samples is 100, 25–30 min are needed to complete 
data collection (the active time involving an amputee). This time is deemed acceptable 
without causing fatigue nor adaptation.

The overall simulation setup is summarized in Table 2. The accuracy (“Accuracy” sec-
tion) and timing (“Timing” section) results are presented and discussed below.

Accuracy

The accuracy are presented by six types of metrics, defined in “Accuracy metrics defini-
tion” section. The influences of two types of stimulation arrays: dense and coarse, SVM 
parameters, sampling methods, different SVM algorithms, and socket shifting on accu-
racy are presented.

Accuracy metrics definition

To evaluate the accuracy of the phantom map detection algorithms, six types of metrics 
are defined: absolute error rate ( EA ), functional error rate ( EF ), redundancy error rate 
( ER ), insufficiency error rate ( EI ), precision error rate ( EP ), and phantom sensation cov-
erage ratio ( RPSC ) between a generated phantom map and its corresponding predicted 
phantom map.

The general error rate E is defined as

(10)E =

∑N
i=1 fi(ci,a, ci,p)

N
,

Table 2  Simulation setup for the different sampling methods

Sampling methods

RS and SS MPS (pooling size = p× q)

# Training data sets per phantom map model 100 100× p× q

# Testing data sets per phantom map model 10,000

Number of phantom maps in each database

 Phantom map database Type Number of phantom map images

 # Generated phantom maps Complete 5 100

Complete 10 100

Incomplete 5 100

Incomplete 10 100

 # Transformed reported phantom map images Reported (original) 5

Rotation 72 × 5

Scaling 10 × 5

Shearing 20 × 5

Translation 10 × 5

Barrel or pin cushion 20 × 5
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ci,a is the real label of the ith testing set, ci,p is the predicted label of the ith testing set, 
and N is the number of testing data sets for EA , EF , ER , and EI , and the number of testing 
data sets containing phantom sensation for EP.

• • For EA , ci,a ∈ {0, 1, 2, 3, 4, 5} , ci,p ∈ {0, 1, 2, 3, 4, 5} . EA measures the fraction of all 
misclassified data points of a predicted phantom map.

• • For EF , ci,a ∈ {1, 2, 3, 4, 5} , ci,p ∈ {1, 2, 3, 4, 5} . EF measures the fraction of points 
belonging to one phantom finger which are falsely classified into another finger, lead-
ing to a functional error (wrong finger stimulation when providing sensory feed-
back). ( EF = 1-recall [43]).

• • For ER , ci,a = 0 , ci,p ∈ {1, 2, 3, 4, 5} . ER measures the fraction of points belonging to 
class 0 (i.e. no phantom sensation) which are wrongly classified into other classes. 
When providing sensory feedback, these points do not cause mistakes between fin-
gers, but their stimulation is redundant and costs energy without providing useful 
feedback.

• • For EI , ci,a ∈ {1, 2, 3, 4, 5} , ci,p = 0 . EI measures the loss of stimulation points which 
takes place when data points belonging to class 1 to 5 (phantom thumb to phantom 
little finger) are misclassified as class 0 (no phantom sensation) and therefore not 
stimulated.

• • For EP , ci,a ∈ {1, 2, 3, 4, 5} , ci,p ∈ {1, 2, 3, 4, 5} . EP is an extension of the precision 
measurement of binary classification [43]; it indicates the fraction of incorrectly clas-
sified phantom sensation points with respect to all the phantom sensation points in 
the generated phantom map.

The relationship of the first four types of error rates is:

EP is related to EF:

RPSC is defined as

where C ′

PS is the phantom sensation coverage of the predicted phantom map and CPS is 
the phantom sensation coverage of the original generated phantom map. RPSC defines 
the proportion of the predicted phantom map C ′

PS over the corresponding generated 
phantom map model (the original CPS ) (13).

To demonstrate the defined metrics, Fig.  9 shows examples of generated phantom 
maps, predicted phantom maps, their confusion matrices and accuracy metrics.

where fi(ci,a, ci,p) =

{

1 when ci,a �= ci,p,
0 when ci,a = ci,p,

(11)EA = EF + ER + EI .

(12)EP =

EF

CPS
.

(13)RPSC =

C ′

PS

CPS
,
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SVM parameters C and γ

For SVM-based methods, the parameter selection exerts a great influence on the classi-
fication performance. The involved parameters are the penalty parameter C and the RBF 
kernel parameter γ . In order to determine the optimal C and γ values, 16 pre-selected 
representative phantom maps were used (shown in Fig. 10), carrying out a grid search 
to cover a range of C and γ values ( C ∈ [10−3, 10−2, 10−1, 1, 5, 10, 20, 30, 40, 50] and 

Fig. 9  Examples of real and predicted phantom maps. Examples of generated phantom maps, predicted 
phantom maps, their confusion matrices, absolute error rates ( EA ), functional error rates ( EF ), redundancy error 
rates ( ER ), insufficiency error rates ( EI ), and precision error rates(EP ) using a BT-SVM with 3× 3 majority pooling 
and b OVA-SVM with 3× 3 majority pooling
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γ ∈ [10−3, 10−2, 10−1, 1, 5, 10, 20, 30, 40, 50] ). The C and γ pairs that produce the small-
est absolute error rate EA are selected for further evaluation.

Grand average accuracy

The grand average accuracy is the average error rate over all the phantom maps in one 
database. The grand average accuracy and phantom sensation coverage ratio of gener-
ated phantom maps and reported, as well as their transformed phantom map images are 
presented separately in Fig. 11.

The accuracy results obtained by using the reported phantom map images showed sim-
ilar trends as those obtained by using the generated phantom maps. For example, both 
types of phantom maps benefited from majority-pooling sampling, OVO decomposition 

Fig. 10  Selected phantom maps PSC. The 16 pre-selected representative phantom maps used for choosing 
the SVM parameters C and γ . a Four complete phantom maps with 5 phantom fingers, b four incomplete 
phantom maps with 10 phantom fingers, c four complete phantom maps with 10 fingers, and d four 
incomplete phantom maps with 10 fingers
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Absolute error rate (EA) Functional error rate (EF)

Redundancy error rate (ER) Insufficiency error rate (EI)

Precision error rate (EP) Phantom map sensation coverage ratio (RPSC)

Absolute error rate (EA) Functional error rate (EF)

Redundancy error rate (ER) Insufficiency error rate (EI)

Precision error rate (EP) Phantom map sensation coverage ratio (RPSC)

OVA OVO DAG BT

OVA OVO DAG BT

OVA OVO DAG BT OVA OVO DAG BT

OVA OVO DAG BT

OVA OVO DAG BT

OVA OVO DAG BT

OVA OVO DAG BT

OVA OVO DAG BT OVA OVO DAG BT

OVA OVO DAG BT

OVA OVO DAG BT

Random sampling Systematic sampling Majority pooling (2×2)
Active learning (2×2) Fuzzy SVM (2×2)

% %

% %

%

% %

% %

%

a

b

Fig. 11  Grand average accuracy using dense array. Grand average error rates and phantom sensation 
coverage ratios over a all 400 generated phantom maps and b five reported phantom map images and 
their corresponding transformed images. For 2× 2 majority pooling, EMP = 5.35% for generated phantom 
maps and EMP = 4.27% for reported phantom map images. The grand average accuracy is influenced both 
by the sampling methods and SVM algorithms used. For both generated and reported phantom maps, 
OVO-SVM produces the smallest error rate. Even though the absolute error rate ( EA ) for reported phantom 
maps is higher than for the generated ones, the more critical metric (function error rate EF ) is still within an 
acceptable range
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architecture, and added fuzzy logic or active learning to the penalty parameters. The fol-
lowing analyses (“Discussion” section) are therefore applicable to both types, although 
we will focus mainly on the discussion of the generated data. Quantitatively speaking, 
the error rates of the reported phantom maps are slightly higher than those of the gener-
ated ones, for all the algorithms and sampling methods tested. This could be explained 
by the lower average phantom sensation coverage of the former.

Fig. 12  Stimulation devices. Two types of stimulation devices and an experimental coarse stimulation array. 
These are primarily used for providing sensory feedback for upper limb amputees. a Hybrid (vibrotactile and 
mechanotactile) stimulation device, b mechanotactile stimulation device
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Phantom map detection accuracy using coarse arrays

The potential performance using coarse stimulation arrays designed in our lab is also 
evaluated. These stimulation arrays are designed primarily to provide sensory feed-
back for upper limb amputees. Figure 12a is a hybrid stimulation actuator combining 
a servo motor and an eccentric rotating mass vibrator. The minimal contact size is 
fixed by the vibrator (153 mm2 ). Fig. 12b is a servo motor based mechanotactile vibra-
tor; the arm and pin are 3D printed and the contact size is controllable. A 3× 5 hybrid 
actuator array (Fig. 12c) [44] or a 4 × 6 mechanotactile actuator array can fit on the 
remaining stump of an amputee and are currently being investigated.

The average phantom map area is roughly 100 cm2 . The minimum actuator contact 
sizes for mechanotactile and hybrid are 100 and 153 mm2 , respectively. Given that 
in a simulation scenario the pooling size reflects the physical contact size, the corre-
sponding minimum pooling sizes p× q (defined in 4.3) are 15× 9 and 7× 7 for hybrid 
and mechanotactile actuators, respectively (Fig. 13).

Fig. 13  Coarse array sampling methods. Graphical representations of coarse array sampling. The blue 
stars represent sampling points. a Hybrid stimulation array: 3× 5 sampling size with 15× 9 pooling size. b 
Mechanotactile stimulation array: 4× 6 sampling size with 7× 7 pooling size
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Figure 14 shows the grand average accuracy results of five types of error rates and 
phantom sensation coverage ratios when using coarse array to detect phantom map 
shapes, compared with the best case scenario from generated phantom maps and 
reported and transformed phantom maps. Fuzzy SVMs were also evaluated; the over-
all performance was however not significantly improved when using FSVMs ( p = 0.34 
when using the paired t-test to compare the results from standard SVMs and fuzzy 
SVMs), and the corresponding results are therefore not reported. Fig. 15 shows exam-
ples of generated phantom maps, their corresponding predicted phantom maps, the 
confusion matrices, and six metrics.

Systematic error caused by socket shifting

After detecting the phantom map shape, the stimulation devices will be used to pro-
vide sensory feedback. The stimulation devices themselves are embedded in a socket, 
which the amputees will need to wear on and off on a daily basis. The socket position 
can therefore shift, for example laterally as shown in Fig. 16. We have therefore simu-
lated the effect of such a movement on the different error rates ( EA , EF  , ER , EI , and 
EP ) in case of the OVO-SVM algorithm applied to a scenario using complete phan-
tom maps with 5 fingers each, for different expected shift levels (Fig. 17).

Timing

Different sampling and training methods result in different training ( Tt ) and classifica-
tion times ( Tc ). Table 3 shows the grand average training and classification time using 

Absolute error rate (EA) Functional error rate (EF)

Redundancy error rate (ER) Insufficiency error rate (EI)

Precision error rate (EP) Phantom map sensation coverage ratio (RPSC)

Multi-modal stimulation array 3×5 Mechanotactile stimulation array 4×6

Dense array with FSVM (2×2 pooling)

% %

% %

%

OVA OVO DAG BT

OVA OVO DAG BT

OVA OVO DAG BT OVA OVO DAG BT

OVA OVO DAG BT

OVA OVO DAG BT

Fig. 14  Grand average accuracy using coarse array. Grand average accuracy results over all 400 generated 
phantom maps using coarse stimulation arrays, compared with the best scenario case in the dense array 
(Fig. 12). Statistical analysis using paired t-test was conducted. All the coarse array accuracy results were 
significantly different ( p < 0.05 ) from their counterpart when using the dense array
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different sampling methods, averaged over all 400 generated phantom maps and calcu-
lated for the target ideal dense array as well as for the two examples of coarse stimula-
tion arrays currently under investigation to provide sensory feedback (see also “Phantom 
map detection accuracy using coarse arrays” section).

Discussion
The influences of different SVM algorithms and sampling methods on classification 
accuracies and training and classification time are discussed in this section.

Performance of different sampling methods

In general, random and systematic sampling produce higher absolute error rate 
EA (Fig.  11). The reason is that the two sampling methods can not sample enough 

Fig. 15  Coarse array examples. Examples of using coarse stimulation arrays to detect phantom map 
distributions. The used array types and algorithms are a OVO-SVM, 3× 5 hybrid coarse array (corresponding 
to 15× 9 majority pooling), and b BT-SVM, 4× 6 mechanotactile coarse array (corresponding to 7× 7 
majority pooling)
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representative data points, as illustrated qualitatively in Fig. 8. Unlike majority pool-
ing, which covers a large range of samples, random and systematic sampling only 
sample 1% of the total data, thus resulting in poor prediction performance. The two 
methods also produce a high insufficiency error rate EI (Fig. 11). This means that the 
two sampling methods cannot fully grasp the trend of a phantom map model.

All four decomposition multi-class SVM algorithms benefit to various degrees from 
majority pooling sampling (Fig. 11), which results in more training data sets without 
increasing the active time involving an amputee. For all algorithms, majority pooling 

Fig. 16  Shift examples. Examples of shifting error caused by a lateral socket shift
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sampling reduces absolute error rate ( EA ) and functional error rate ( EF  ). It was also 
observed that for the chosen dense array settings (Table  2), 2× 2 majority pooling 
produces the smallest error rates for all five error rate metrics.

However when using majority pooling in other settings, there is a trade-off between 
the pooling-induced error rate and sampling range. A larger pooling size can produce a 
larger sampling range coverage, but it introduces more pooling-induced errors or noise. 
For a particular setting, an optimal pooling size exists.

The influence of different decomposition SVM methods

Overall, OVO-SVM has the smallest absolute error rate (Fig. 11) among the four tested 
algorithms and the predicted phantom map shapes best represent the original generated 
phantom map shapes (Fig.  9). The OVO architecture reduces the unclassified regions 
(compared to the OVA architecture), is less sensitive to unbalanced data sets (compared 
to the BT architecture), and provides a more thorough evaluation (compared to the 
DAG architecture).

The error rates of OVA-SVM when using majority pooling are higher than those of 
OVO-SVM, and lower than those of BT-SVM. The major issue with OVA-SVM is the 
presence of unclassified regions, as can be seen in Fig. 9b (dashed black lines running 
within a phantom map finger).

Among the four proposed algorithms, BT-SVM is intrinsically different from the 
other three multi-class SVMs. All the other three methods classify, to some degree, 

Fig. 17  OVO shift error boxplot. Error rates ( EA : red, EF : green, ER : blue, and EI : Magenta, EP : black) as functions 
of different degrees of shifting (no shift, 2% shift, and 5% shift). The rectangle spans the first and the third 
quartile of the error rate. The line inside each rectangle shows the median value. The two whiskers above 
and below each rectangle show the minimum and the maximum. The phantom map models used are 100 
complete phantom maps with five fingers. The algorithm used was OVO-SVM with 2× 2 majority pooling
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one class at a time, whereas a BT-SVM tries to separate a group of classes from 
another group of classes. When classifying a complete phantom map, the BT-SVM 
first classifies between class group (0, 1, 2) and class group (3, 4, 5). When then classi-
fying between classes (3, 4, 5), it does not consider the classes (0, 1, 2), but only looks 
for the largest margin between the classes (3, 4, 5) themselves. This can result in two 
of the class regions being connected in the predicted phantom map, such as in Fig. 9a.

When using BT-SVM, different tree structures can produce different prediction 
results, especially when dealing with unbalanced data sets. BT-SVM should theoretically 
have a faster training and classification speed, however, the fast speed is at a price of 
degraded performance [45].

The influence of fuzzy logic and active learning

Fuzzy logic and active learning are applied to each decomposition SVM algorithm. A 
FSVM assigns a fuzzy membership function (8) to each training data set, so that each 
training data set makes a different contribution in the training process. A FSVM can 
reduce the influence of pooling induced errors EMP (3). Using FSVMs generally increases 
the detection accuracy when using the 100× 100 dense arrays. It was also observed that 
FSVMs reduce the unclassified region for OVA- and OVO-SVM, as was also reported in 
previous literature [46, 47]. Active learning also helps to increase the detection accuracy 
by selecting more representative training data.

Detection accuracy using coarse arrays

Comparing Figs. 11 and 14, it can be observed that the accuracy decreases significantly 
when using coarse stimulation arrays.

The discussion about the influence of decomposition methods and sampling meth-
ods when using a dense array stands true for the coarse array. However, FSVMs do not 
decreases the error rate when coarse arrays are used. The reason could be that the pool-
ing sizes of coarse arrays are much larger but the sampling density is much smaller, so 
that the pooling induced error EMP is larger than that of a dense array.

In order to accurately detect a phantom map distribution, a dense array is therefore 
needed. However, to the best of our knowledge, no wearable dense array (100 × 100) is 
readily available. We therefore propose to divide the design of a sensory feedback system 
into two parts: the first part makes use of a non-wearable dense array to detect the accu-
rate boundaries of a phantom map, then according to the shape distribution, a custom-
ized stimulation array with 20–30 actuators can be integrated into a wearable socket.

Systematic error caused by socket shifting

As could be expected, all the error rates increase with the shifting degree (Fig. 17). The 
absolute error rate EA increases dramatically when the shifting degree increases (Fig. 17). 
However, the corresponding increase in the average functional error rate EF is important 
in relative terms (from 0.12 to 0.97%), still small in absolute terms. The EA increase at 5% 
lateral shifting, for example, is indeed mainly caused by an increase of the redundancy 
error rate (reaching 10.1%) and of the insufficiency error rate EI (reaching 9.94%).
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In other words, despite the fact that EA = 21.0% at 5% lateral shift, the more critical 
error rate EF  amounts to less than 1%, which is small enough to be negligible. We can 
conclude that the function of a stimulation array would be minimally affected by a slight 
socket misalignment.

Timing

The training and classification times increase substantially with the pooling size, but still 
stays within an acceptable range. Given the same number of training data sets, the train-
ing and classification time were influenced by decomposition architectures. OVO and 
DAG share the same training process. Under the same conditions, the training times 
of OVO and DAG are the same. As mentioned in “One-vs-one support vector machine 
(OVO-SVM)” section, given the same number of training data sets, OVO and DAG-
SVM do not require significantly more training time than the other two methods when 
using random and systematic sampling, and sometimes even less training time when 
using majority pooling sampling. The classification processes of OVO and DAG-SVM 
are different. DAG-SVM requires much less classification time than OVO-SVM at the 
price of a slightly higher absolute error rate ( EA ). For active learning, due to the itera-
tive nature, the training time was several times longer than that of standard SVMs and 
FSVMs, although still less than 1 s (Table 3).

Table 3  Grand average training time Tt  and  classification time Tc  of  all 400 generated 
phantom maps using a  dense array (100 samples) and  two coarse (stimulation) arrays 
( 3× 5 and 4× 6 actuators, corresponding to simulation pooling sizes of 15× 9 and 7× 7)

RS random sampling, SS systematic sampling, MP majority pooling sampling, AL active learning, OVA one-vs-all, OVO one-vs-
one, DAG direct acyclic graph, BT binary tree

Method Tt  (ms) Tc  (s) Tt  (ms) Tc  (s)

Dense array

OVA OVO

 RS 35.0 15.9 54.9 33.7

 SS 28.6 15.3 47.9 32.7

 MP (2 × 2) 84.2 17.5 79.3 39.6

 AL 300 16.1 278 38

DAG BT

 RS 54.9 15.8 24.8 5.57

 SS 47.9 15.5 19.8 5.30

 MP (2 × 2) 79.3 16.5 48.1 6.05

 AL 278 17 239 5.83

Hybrid coarse (stimulation) array, 3× 5 actuators

OVA OVO

 MP 15× 9 952 34.7 356 46.7

DAG BT

356 35.8 301.9 9.13

Mechanotactile coarse (stimulation) array, 4× 6 actuators

OVA OVO

 MP 7× 7 348.3 25.2 196 45.0

DAG BT

196 43.5 153 9.79
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Conclusion
In this paper, three sampling methods and four decomposition multi-class SVMs were 
proposed for use in automatic phantom map detection.

In the absence of wearable dense stimulation arrays, the accuracy and timing aspects 
were tested on realistic and flexible generated phantom maps as well as five reported 
phantom map images and transformations thereof. The phantom map generation algo-
rithm considered different types of phantom maps and introduced parameters to pro-
vide a variety of reasonable and representative shapes. The trends of the classification 
results obtained by the two types of phantom maps are similar. Therefore, the analyses 
and discussion were applicable for both generated and reported phantom maps.

For the dense stimulation array, we have found that fuzzy OVO-SVM with 2× 2 pool-
ing size has the highest classification accuracy and near real-time training speed (less 
than 1 s training time for both generated and reported phantom maps).

The potential performance using coarse stimulation arrays, designed primarily to pro-
vide sensory feedback, was also evaluated and found to be much lower than that of a 
dense array. Thus, they are unsuitable for refined phantom map shape detection. We 
therefore propose a two-step approach, using first a non-wearable dense array to detect 
an accurate phantom map shape, then to apply a wearable coarse stimulation array cus-
tomized according to the detection results.

To the best of our knowledge, this is the first attempt to apply machine learning algo-
rithms to identify the distribution of phantom maps. The proposed methodology can be 
used as a tool for helping haptic feedback designers and for tracking the evolvement of 
phantom maps.
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Appendix A: Radial basis function and SVM parameter tuning
Kernel functions are essential to expand the classification capacity of a linear classifier to 
handle non-linear data. In this paper, a radial basis function (RBF) kernel

is chosen, because it maps the input space into Hilbert space (an infinite hyperplane) 
and provides more flexibility [32]. In (14), pi and pj are the features from the ith and jth 
training or classification data sets.

In general, the penalty parameter C defines the ‘softness’ of a SVM. A large C gives a 
high penalty for non-separable points. It tends to overfit, exaggerating minor fluctua-
tions or noise in the data. On the other hand, if C is too small, the SVM tends to under-
fit, meaning that the SVM is not able to find the main trend of the underlying data. The 
RBF kernel parameter γ defines the influence of a single training data set: a large γ value 
implies that a single example exerts great influence on the whole SVM model. Both over-
fitted SVMs and underfitted SVMs produce poor prediction performance.
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