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Abstract: In this article, we establish logarithmic stability estimates for the determination of the perturbation
of the biharmonic operator from partial data measurements when the inaccessible part of the domain is flat
and homogeneous boundary conditions are assumed on this part. This is an improvement to a log-log type
stability estimate proved earlier for the partial data case.
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1 Introduction
Let us consider theboundary-valueproblem for aperturbationof thebiharmonic operator posed in abounded
domain Ω ⊂ ℝn (n ≥ 3) with smooth boundary, equipped with the Navier boundary conditions, that is,

Bqu := (∆2 + q)u = 0 in Ω,
u = f on ∂Ω,
∆u = g on ∂Ω,

(1.1)

where f ∈ H7/2(∂Ω) and g ∈ H3/2(∂Ω). Biharmonic operators (with potentials) are widely studied in the con-
text of modelling of hinged elastic beams and suspension bridges. Wewould like to refer to [7, Chapter 1]) for
a discussion of these models and other applications.

If 0 is not an eigenvalue of Bqu = 0 in the domain Ω with the boundary conditions u|∂Ω = 0 = ∆u|∂Ω,
/there exists a unique solution u ∈ H4(Ω) to the problem (1.1) when (f, g) ∈ H7/2(∂Ω) × H3/2(∂Ω) (see [7]).

Let us define the set QN of potentials q ∈ Hs(Ω), s > n
2 , as

QN := {q : ‖q‖Hs(Ω) ≤ N for some N > 0} (1.2)

and assume that for all q ∈ QN , the value 0 is not an eigenvalue for (1.1) with homogeneous boundary con-
ditions on ∂Ω and thus the problem (1.1) admits a unique solution for each q.

In this article, we shall consider a bounded domain Ω (with smooth boundary) where Ω ⊂ {x : xn < 0}
and a part Γ0 of the boundary ∂Ω is contained in the plane {x : xn = 0}.
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252 | A. P. Choudhury and H. Heck, Stability estimates

We shall assume that the supports of f and g are contained in Γ := Ω \ Γ0 and that the boundary mea-
surements ∂u

∂ν and
∂(∆u)
∂ν are available on Γ only. Thus the part Γ0 is assumed to be an inaccessible part of the

boundary.
In order to define the Dirichlet-to-Neumann map that is connected with our boundary measurement we

set
H t0(Γ) = {f ∈ H t(∂Ω) : supp f ⊂ Γ}.

The partial Dirichlet-to-Neumann mapNq can then be defined as

Nq : H
7
2
0 (Γ) × H

3
2
0 (Γ) → H

5
2 (Γ) × H

1
2 (Γ), (f, g) Ü→ (

∂u
∂ν |Γ ,

∂(∆u)
∂ν |Γ),

where u is the solution to (1.1).
Our aim, in this article, is to address the question of stability in the inverse problem of determination of

the potential q from the partial Dirichlet-to-Neumann map Nq. The corresponding question of unique iden-
tification of the potential q from the map Nq was recently studied in [19], wherein the author combined the
techniques in [14, 15] with a reflection argument introduced in the work [13] to prove the identification of
a first-order perturbation as well. The stability question of recovering the potential q for the operatorBq was
also studied in [6], where by following the methods introduced for the study of the Calderón inverse problem
in [1] and [9], logarithmic stability estimates were proved when the boundary measurements are available
on the whole boundary. Further log-log type estimates were obtained when the measurements are available
only on slightly more than half of the boundary. We shall also like to refer to the works [11, 12] in the context
of unique determination of the potential q fromBq.

It will be worthwhile to note that this kind of inverse problem, for the conductivity equation, was first
introduced in the work [3]. The uniqueness question for dimensions three or higher was settled in the work
[17] based upon the idea of complex geometric optics (CGO) solutions. Themethod introduced in the proof of
the stability estimates in [1] was based on [17]. The work [9] which dealt with the partial data case combined
the idea of CGO solutions with the techniques of [2]. For subsequent developments related to the stability
issues of the Calderón inverse problem and the inverse problem of the related Schrödinger equation, we refer
to the works [4, 5, 8, 10, 18].

In this article, we prove a logarithmic-type stability estimate for the determination of q from the Dirichlet-
to-NeumannmapNq. Wewould like to emphasize that here we deal with a partial data case and thus, for this
particular class of domains, we are able to improve the log-log type estimates proved in [6]. The strategy of
our proof closely follows that in [10]. We use the reflection argument used in [13, 19] and combine it with a
suitable quantitative version of the Riemann–Lebesgue lemma derived in [10].

On the space Hα(Γ) × Hβ(Γ) (which we shall henceforth denote as Hα,β(Γ)), we shall consider the norm

‖(f, g)‖Hα,β(Γ) := ‖f‖Hα(Γ) + ‖g‖Hβ(Γ).
Let us define

‖Nq‖ := sup{‖Nq(f, g)‖H 5
2 ,

1
2 (Γ) : ‖(f, g)‖H 7

2 ,
3
2 (Γ) = 1}.

With the above notations, we now state the main result in this article.

Theorem 1.1. Let Ω ⊂ ℝn be a bounded domain as described above and let Nq1 , Nq2 be the partial Dirichlet-
to-Neumannmaps corresponding to the potentials q1, q2 ∈ QN . Then there exist constants C, α, η > 0 such that

‖q1 − q2‖L∞(Ω) ≤ C(‖Nq1 −Nq2‖ + |ln‖Nq1 −Nq2‖|
−2α2
n+2 ) η

2(1+s) ,
where C depends on Ω, n, N, s only and α, η depend on s and n only.

Remark 1.2. We believe that the techniques used in the proof of the stability estimate stated above can be
generalized to the study of other geometries (see [19]) like hemispheres and slab-like domains and work
in this direction is in progress. In particular, when Γ0 is part of a hemisphere, similar logarithmic-stability
estimates should follow by considering a suitable analogue of the Kelvin transformation.
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2 Preliminary results
We begin this section by briefly recollecting the results pertaining to the existence of CGO solutions for the
equationBqu = 0 in a domain Ω. For a detailed exposition and proofs, we refer to the works [14–16].

2.1 Carleman estimates and CGO solutions

The existence of CGO solutions was established using Carleman estimates which we state next. We recall that
the standard semiclassical Sobolev norm of a function f ∈ Hs(ℝn) is defined as ‖f‖Hsscl(ℝn) := ‖⟨hD⟩s f‖L2(ℝn),
where ⟨ξ⟩ = (1 + |ξ|2)1/2.
Proposition 2.1. Let q ∈ QN and ϕ = α ⋅ x for some unit vector α. Then there exist positive constants h0 (≪ 1)
and C depending on the dimension n and the constant N in (1.2) only such that for all 0 < h < h0 the following
estimate holds for any u ∈ C∞c (Ω):

""""e
ϕ
h h4Bqe− ϕ

h u""""L2(Ω) ≥ h2

C ‖u‖H4
scl(Ω).

Using this estimate, we can prove the following result guaranteeing the existence of CGO solutions.

Proposition 2.2. There exist positive constants h0 (≪ 1) and C depending only on the dimension n and the
constant N in (1.2) such that for all 0 < h < h0 there exist solutions toBqu = 0 belonging to H4(Ω) of the form

u(x, ζ; h) = e
ix⋅ζ
h (1 + hr(x, ζ; h)),

where ζ ∈ ℂn satisfies ζ ⋅ ζ = 0, |Re(ζ)| = |Im(ζ)| = 1 and ‖r‖H4
scl

≤ Ch.

2.2 A version of the Riemann–Lebesgue lemma

In order to estimate the terms involving Fourier transforms, we shall use a quantitative version of the
Riemann–Lebesgue lemma which we discuss next. The following results were proved in [10] but for the
sake of completeness we include the proofs here. In what follows, we shall use the following convention for
the definition of the Fourier transform of a function f :

Ff(ξ) := ∫ℝn f(x)e−ix⋅ξ dx.
Lemma 2.3. Let Ω ⊂ ℝn be a bounded domain with C1 boundary and let f ∈ C0,α(Ω) for some α ∈ (0, 1). Let ̃f
denote the extension of f toℝn by zero. Then there exist δ > 0 and C > 0 such that

‖ ̃f ( ⋅ − y) − ̃f ( ⋅ )‖L1(R)n ≤ C|y|α
for any y ∈ ℝn with |y| < δ.

Proof. Given the fact that Ω is a bounded domain with C1 boundary, we can find a finite number of balls
Bi(xi), i = 1, . . . ,m, with centers xi ∈ ∂Ω and C1 diffeomorphisms

ϕi : Bi(xi) → Q := {x� ∈ ℝn−1 : ‖x�‖ ≤ 1} × (−1, 1).

Let
d := dist(∂Ω, ∂(

m
⋃
i=1 Bi(xi))).

Then it follows that d > 0.
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254 | A. P. Choudhury and H. Heck, Stability estimates

Let Ω̃ϵ = ⋃x∈∂Ω B(x, ϵ), where B(x, ϵ) is the ball of radius ϵ with center x. Now if ϵ < d, we clearly have
that

Ω̃ϵ ⊂
m
⋃
i=1 Bi(xi).

Our next step is to estimate the volume of Ω̃|y| when 0 < |y| < δ ≤ d (where we also assume that d ≤ 1).
To do so, we note that for z1, z2 ∈ B(x, |y|) ∩ Bi(xi), we have

|ϕi(z1) − ϕi(z2)| ≤ ‖∇ϕi‖L∞ |z1 − z2| ≤ C|y|
for some positive constant C. This implies

ϕi(Ω̃|y| ∩ Bi(xi)) ⊂ {x� ∈ ℝn−1 : ‖x�‖ ≤ 1} × (−C|y|, C|y|),

and using the transformation formula, we then have the estimate vol(Ω̃|y|) ≤ C|y|.
Therefore,

‖ ̃f ( ⋅ − y) − ̃f ( ⋅ )‖L1(ℝn) = ∫

Ω\Ω̃|y|
| ̃f (x − y) − ̃f (x)| dx + ∫

Ω̃|y|
| ̃f (x − y) − ̃f (x)| dx

≤ Cvol(Ω)|y|α + 2‖f‖L∞vol(Ω̃|y|)
≤ C(|y|α + |y|)
≤ C|y|α , when |y| < δ.

The following lemma provides a quantitative version of the Riemann–Lebesgue lemma for functions satisfy-
ing the conditions of the previous lemma.

Lemma 2.4. Let f ∈ L1(ℝn) and suppose there exist constants δ > 0, C0 > 0 and α ∈ (0, 1) such that for |y| < δ,
we have

‖f( ⋅ − y) − f(y)‖L1(ℝn) ≤ C0|y|α . (2.1)

Then there exist constants C > 0 and ϵ0 > 0 such that for any 0 < ϵ < ϵ0, we have the inequality

|Ff(ξ)| ≤ C(e− ϵ2 |ξ|2
4π + ϵα),

where the constant C depends on C0, ‖f‖L1 , n, δ, and α.

Proof. Let us denote G(x) := e−π|x|2 and define Gϵ(x) := ϵ−nG( xϵ ). Let fϵ := f ∗ Gϵ. Then using the triangle
inequality, we write

|Ff(ξ)| = |Ffϵ(ξ) + F(fϵ − f)(ξ)|
≤ |Ffϵ(ξ)| + |F(fϵ − f)(ξ)|.

Now,
|Ffϵ(ξ)| = |Ff(ξ)| ⋅ |FGϵ(ξ)| ≤ ‖f‖L1(ℝn)ϵ−nϵnFG(ϵξ) ≤ ‖f‖L1(ℝn)e− ϵ2 |ξ|2

4π . (2.2)

Next we estimate the term |F(fϵ − f)(ξ)|. In order to do so, we write it as

|F(fϵ − f)(ξ)| ≤ ‖fϵ − f‖L1(ℝn)
≤ ∫ℝn ∫ℝn |f(x − y) − f(x)|Gϵ(y) dx dy
≤ ∫|y|<δ ∫ℝn |f(x − y) − f(x)|Gϵ(y) dx dy + ∫|y|≥δ ∫ℝn |f(x − y) − f(x)|Gϵ(y) dx dy
≤ I1 + I2 (say).
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Now using (2.1), we obtain

I1 = ∫|y|<δ‖f(⋅ − y) − f(y)‖L1(ℝn)Gϵ(y) dy
≤ C0 ∫|y|<δ |y|αGϵ(y) dy = C0 ∫

Sn−1
δ

∫
0

rn−1rαϵ−ne− πr2
ϵ2 dr dθ

= C
δ

∫
0

ϵn−1un−1ϵαuαϵ−ne−πu2ϵ dr = Cϵα δ

∫
0

un+α−1e−πu2 du = Cϵα , (2.3)

where the generic constant C depends on C0, n, δ, and α.
Also,

I2 ≤ 2‖f‖L1(ℝn) ∫|y|≥δ Gϵ(y) dy ≤ C‖f‖L1(ℝn)
∞
∫
δ

ϵ−ne− πr2
ϵ2 rn−1 dr ≤ C‖f‖L1(ℝn) ∞

∫
δ
ϵ

un−1e−πu2 du
≤ C‖f‖L1(ℝn) ∞

∫
δ
ϵ

e−πu du (choosing ϵ sufficiently small, less than some ϵ0 ≪ 1)

≤ C‖f‖L1(ℝn) 1π e− πδ
ϵ

≤ Cϵα (since α, ϵ < 1, we have 1
e πδϵ

< ϵ
πδ < ϵα

πδ ), (2.4)

where the generic constant C depends on ‖f‖L1(ℝn), n, δ, and α.
From (2.2), (2.3) and (2.4), it therefore follows that

|Ff(ξ)| ≤ C(e− ϵ2 |ξ|2
4π + ϵα).

Remark 2.5. We would like to note that since, by assumption, the potentials q ∈ Hs(Ω) where s > n
2 , there

exists α > 0 such that q ∈ C0,α(Ω). Hence the conclusions of Lemma 2.4 hold true for the potentials q.

3 Stability estimates
In this section, we now establish the stability estimate given by Theorem 1.1. As a first step, we derive the
following integral identity involving the Dirichlet-to-Neumann map for the operatorBq.

Lemma 3.1. Let u1, u2 be solutions of (1.1) corresponding to q = q1, q2, respectively. Further let v denote the
solution toB∗

q1v = 0 in Ω such that v = 0 = ∆v on Γ0. Then the following identity holds true:

∫
Ω

(q2 − q1)u2 v̄ dx = ∫
Γ

∂ν(∆(u1 − u2))v dS + ∫
Γ

∂ν(u1 − u2)(∆v) dS (3.1)

Proof. To begin with, let us recall the Green’s formula

∫
Ω

(Bqu)v dx − ∫
Ω

uB∗
qv dx = ∫

∂Ω

∂ν(∆u)v dS + ∫
∂Ω

∂νu(∆v) dS − ∫
∂Ω

(∆u)∂νv dS − ∫
∂Ω

u(∂ν(∆v)) dS

for u, v ∈ H4(Ω). Let u1, u2 be solutions to (1.1) for q replaced by q1 and q2, respectively, and let us define

u = u1 − u2.

Let v ∈ H4(Ω) be the solution to B∗
q1v = 0 in Ω and let us note that on the part of the boundary Γ0, we have

v = 0 = ∆v.
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With q = q1 and u, v defined as above, we then apply the Green’s formula to get

∫
Ω

(Bq1 (u1 − u2))v dx = ∫
∂Ω

∂ν(∆(u1 − u2))v dS + ∫
∂Ω

∂ν(u1 − u2)(∆v) dS

− ∫
∂Ω

(∆(u1 − u2))∂νv dS − ∫
∂Ω

(u1 − u2)(∂ν(∆v)) dS. (3.2)

The last two termson the right-hand sideof (3.2) vanish since u1 and u2 satisfy the sameboundary conditions.
Also let us note that

Bq1 (u1 − u2) = Bq1u1 −Bq1u2 = (∆2 + q1)u1 − (∆2 + q1)u2 = 0 + q2u2 − q1u2 = (q2 − q1)u2.

The first two integrals on the right-hand side of (3.2) are actually on Γ since the integrands vanish on Γ0 as v
and ∆v are 0 on Γ0. Therefore, the identity (3.2) reduces to

∫
Ω

(q2 − q1)u2v dx = ∫
Γ

∂ν(∆(u1 − u2))v dS + ∫
Γ

∂ν(u1 − u2)(∆v) dS,

and thus we have proved the result.

3.1 A suitable change of coordinates

Given a point x = (x1, . . . , xn) ∈ℝn, we denote x� = (x1, . . . , xn−1) ∈ℝn−1 and hence we can write x = (x�, xn).
For given ξ ∈ ℝn, (ξ, ξ � ̸= 0) we will now choose unit vectors α and β in an appropriate way. These

vectors will be used when we construct the CGO solutions. To start with, we define the orthonormal basis
E = {e1, . . . , en} inℝn in the following way: Let e1 = ξ �/|ξ �| and en = (0, . . . , 1). Let e2, . . . , en−1 be such that
the n-th component ei,n = 0 for i = 2, . . . , n − 1 and such that E is an orthonormal basis ofℝn.

In order to calculate the coordinates of a vector x ∈ ℝn with respect to the basis Ewe define the following
transformation matrix:

TES = (

e1
e2
...
en

) = ((

(

ξ1/|ξ �| ξ2/|ξ �| ⋅ ⋅ ⋅ ξn−1/|ξ �| 0
∗ ∗ ⋅ ⋅ ⋅ ∗ 0
...

... ⋅ ⋅ ⋅
... 0

∗ ∗ ⋅ ⋅ ⋅ ∗ 0
0 0 ⋅ ⋅ ⋅ 0 1

))

)

.

Note, that here ∗ describes a matrix entry that we cannot describe more precisely, in general. For the case
n = 3, for example, we can choose e2 = (− ξ2|ξ �| , ξ1|ξ �| , 0). Further, note that TES is an orthogonal matrix. Hence
T−1
ES = TTES =: TSE and TSE is thematrix that calculates standard coordinates from the coordinateswith respect

to E.
More precisely, the vector ξ has the following representation with respect to the basis E:

ξe = TES ⋅ ξ = ((

(

ξ �⋅ξ �|ξ �|
0
...
0
ξn

))

)

.

Since TES is orthogonal, it is clear that the coordinate transformation defined by TES preserves the scalar
product.

Let (βe,1, . . . , βe,n)e be the representation of β = (β1, . . . , βn) in the new coordinates. Since the coordi-
nate change preserves the n-th coordinate, it follows that βe,n = βn.
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The vector β is perpendicular to ξ and therefore

0 = ξ ⋅ β = (ξe,1, 0, . . . , 0, ξe,n)e ⋅ (βe,1, . . . , βe,n)e = ξe,1βe,1 + ξe,nβe,n = ξe,1βe,1 + ξnβn .

Also,
|β| = 1 â⇒ |(βe,1, . . . , βe,n)e| = 1.

A suitable choice of β is

βe,1 = −
ξn
|ξ| , βn = βe,n =

ξe,1
|ξ| , βe,j = 0 for j = 2, . . . , n − 1.

Hence,

β2n =
ξ2e,1
|ξ|2

=
ξ21 + ⋅ ⋅ ⋅ + ξ2n−1

|ξ|2
.

For the choice of the unit vector α perpendicular to both ξ and β, we proceed as follows: We want to choose α
such that the n-th coordinate αn is 0. Since the vectors α and β should be perpendicular to each other, that
would mean

0 = α ⋅ β = (αe,1, . . . , αe,n)e ⋅ (βe,1, . . . , βe,n)e = αe,1βe,1 + αe,nβe,n = αe,1βe,1

since αe,n = αn = 0. In particular, we can therefore choose αe,1 = 0 and choose αe,2, . . . , αe,n−1 such that
α2e,2 + ⋅ ⋅ ⋅ + α2e,n−1 = 1.

Since αe,1 = 0 = αe,n, the condition α ⋅ ξ = 0 is also satisfied.

Remark 3.2. It will be important to note that this change of coordinates leading to the above choices of the
vectors α and β can be carried out for ξ, ξ � ̸= 0. In other words, we can carry out this change of coordinates
for any ξ which does not lie on the ξn-axis.

3.2 The stability estimates

Let Ω∗ := {x ∈ ℝn : (x�, −xn) ∈ Ω} denote the reflection of Ω about xn = 0 and we extend a potential q ∈ QN
to Ω∗ by reflecting q about xn = 0.

Let us also define

ζ1 =
hξ
2 +√1 − h2 |ξ|

2

4 β + iα, ζ2 = −
hξ
2 +√1 − h2 |ξ|

2

4 β − iα,

where α, β are constructed as in Section 3.1, i.e. they are unit vectors in ℝn, and α, β and ξ being mutually
perpendicular.

Then Proposition 2.2 applied to the domain Ω ∪ Ω∗ guarantees the existence of CGO-solutions to
Bq2 ũ2 = 0 andB∗

q1 ṽ = 0 in the domain Ω ∪ Ω∗ of the form
ṽ(x, ζ1; h) = e

ix⋅ζ1
h (1 + hr1(x, ζ1; h)), ũ2(x, ζ2; h) = e

ix⋅ζ2
h (1 + hr2(x, ζ2; h))

with ‖rj‖H4
scl(Ω∪Ω∗) ≤ Ch, j = 1, 2, provided h ≤ h0 and 1 − h2 |ξ|2

4 is positive.
These CGO-solutions, in turn, provide solutions ofBq2u2 = 0 andB∗

q1v = 0 in the domain Ω of the form

v(x, ζ1; h) = e
ix⋅ζ1
h (1 + hr1(x, ζ1; h)) − e

i(x� ,−xn )⋅ζ1
h (1 + hr1((x�, −xn), ζ1; h)),

u2(x, ζ2; h) = e
ix⋅ζ2
h (1 + hr2(x, ζ2; h)) − e

i(x� ,−xn )⋅ζ2
h (1 + hr2((x�, −xn), ζ2; h)),

with v, u2 ∈ H4(Ω) and satisfying the conditions v|Γ0 = 0 = ∆v|Γ0 , u2|Γ0 = 0 = ∆u2|Γ0 .
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We now estimate the right-hand side of (3.1). To do so, we observe that (see also [6])
!!!!!!!
∫
Γ

∂ν(∆(u1 − u2))v̄ dS + ∫
Γ

∂ν(u1 − u2)(∆v) dS
!!!!!!!

≤ ‖∂ν(∆(u1 − u2))‖L2(Γ)‖v‖L2(Γ) + ‖∂ν(u1 − u2)‖L2(Γ)‖∆v‖L2(Γ)
≤ C(‖∂ν(∆(u1 − u2))‖L2(Γ)‖v‖H1(Ω) + ‖∂ν(u1 − u2)‖L2(Γ)‖∆v‖H1(Ω))
≤ C(‖∂ν(∆(u1 − u2))‖L2(Γ) + ‖∂ν(u1 − u2)‖L2(Γ))(‖v‖H1(Ω) + ‖∆v‖H1(Ω))
≤ C(‖∂ν(∆(u1 − u2))‖H 1

2 (Γ) + ‖∂ν(u1 − u2)‖H 5
2 (Γ))(‖v‖H1(Ω) + ‖∆v‖H1(Ω))

≤ C‖(Nq1 −Nq2 )(f, g)‖H 5
2 ,

1
2 (Γ)(‖v‖H1(Ω) + ‖∆v‖H1(Ω))

≤ C‖Nq1 −Nq2‖‖(f, g)‖H 7
2 ,

3
2 (Γ)(‖v‖H1(Ω) + ‖∆v‖H1(Ω))

≤ C‖Nq1 −Nq2‖(‖u2‖H4(Ω) + ‖∆u2‖H2(Ω))(‖v‖H1(Ω) + ‖∆v‖H1(Ω)). (3.3)

Therefore, we shall now have to estimate the norms of u2, v and their derivatives that appear in the above
expression. Since Ω is a bounded domain, we assume that Ω ⊂ B(0, R) for some fixed R > 0. Then proceeding
as in [6], we can prove

‖v‖H1(Ω) ≤ C
h e

2R
h , ‖∆v‖H1(Ω) ≤ C

h e
2R
h , ‖∆u2‖H2(Ω) ≤ C

h e
2R
h , ‖u2‖H4(Ω) ≤ C

h4
e

2R
h .

Using these estimates in (3.3), we have

!!!!!!!
∫
Γ

∂ν(∆(u1 − u2))v̄ dS + ∫
Γ

∂ν(u1 − u2)(∆v) dS
!!!!!!!
≤ C‖Nq1 −Nq2‖(

C
h4
e

2R
h +

C
h e

2R
h )(

C
h e

2R
h +

C
h e

2R
h )

≤ C‖Nq1 −Nq2‖ ⋅
C
h4
e

2R
h ⋅

C
h e

2R
h

≤
C
h5
e

4R
h ‖Nq1 −Nq2‖,

and using the fact that 1
h ≤ e R

h , we can therefore write

!!!!!!!
∫
Γ

∂ν(∆(u1 − u2))v̄ dS + ∫
Γ

∂ν(u1 − u2)(∆v) dS
!!!!!!!
≤ Ce

9R
h ‖Nq1 −Nq2‖.

We next estimate the left-hand side of (3.1). To do so, we write q = q2 − q1 and note that

∫
Ω

qu2vdx = ∫
Ω

q[e
ix⋅ζ2
h (1 + hr2(x, ζ2; h)) − e

i(x� ,−xn )⋅ζ2
h (1 + hr2((x�, −xn), ζ2; h))]

×[e− ix⋅ζ1
h (1 + hr1(x, ζ1; h)) − e− i(x� ,−xn )⋅ζ1

h (1 + hr1((x�, −xn), ζ1; h))] dx
= ∫
Ω

q[e
i
h x⋅(ζ2−ζ1)(1 + hr2(x, ζ2; h))(1 + hr1(x, ζ1; h))

+ e
i
h (x� ,−xn)⋅(ζ2−ζ1)(1 + hr2((x�, −xn), ζ2; h))(1 + hr1((x�, −xn), ζ1; h))

− e
i
h [x⋅ζ2−(x� ,−xn)⋅ζ1](1 + hr2(x, ζ2; h))(1 + hr1((x�, −xn), ζ1; h))

− e
i
h [(x� ,−xn)⋅ζ2−x⋅ζ1](1 + hr1(x, ζ1; h))(1 + hr2((x�, −xn), ζ2; h))] dx. (3.4)

Let us introduce the notations

(x�, −xn) ⋅ ζj ≡ x ⋅ ζ∗j , rj((x�, −xn), ζj; h) ≡ r∗j (x, ζj; h).
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Then (3.4) can be written as

∫
Ω

(q2 − q1)u2v dx = ∫
Ω

q[e
i
h x⋅(ζ2−ζ1)(1 + hr2)(1 + hr1) + e

i
h x⋅(ζ∗2 −ζ∗1 )(1 + hr∗2)(1 + hr∗1)

− e
i
h [x⋅ζ2−x⋅ζ∗1 ](1 + hr2)(1 + hr∗1) − e i

h [x⋅ζ∗2 −x⋅ζ1](1 + hr1)(1 + hr∗2)] dx
= ∫
Ω

q[e
i
h x⋅(ζ2−ζ1) + e i

h x⋅(ζ∗2 −ζ∗1 )] dx − ∫
Ω

q[e
i
h [x⋅ζ2−x⋅ζ∗1 ] + e i

h [x⋅ζ∗2 −x⋅ζ1]] dx
+ ∫
Ω

qw(x, r1, r2, r∗1 , r∗2) dx, (3.5)

where

w = e
i
h x⋅(ζ2−ζ1)(hr2 + hr1 + h2r2r1) + e i

h x⋅(ζ∗2 −ζ∗1 )(hr∗2 + hr∗1 + h2r∗2 r∗1)
− e

i
h [x⋅ζ2−x⋅ζ∗1 ](hr2 + hr∗1 + h2r2r∗1) − e i

h [x⋅ζ∗2 −x⋅ζ1](hr1 + hr∗2 + h2r1r∗2).
It can easily be checked that i

h x ⋅ (ζ2 − ζ1) = −ix ⋅ ξ and i
h x ⋅ (ζ

∗
2 − ζ∗1 ) = −i(x�, −xn) ⋅ ξ , and therefore the first

term on the right-hand side of (3.5) is nothing but

∫ℝn q(x)e−ix⋅ξ dx = Fq(ξ).

Also,

x ⋅ ζ2 − (x�, −xn) ⋅ ζ1 = (x�, xn) ⋅ ζ2 − (x�, −xn) ⋅ ζ1
= (x�, xn) ⋅ (−h2 ξ � +√1 − h2 |ξ|

2

4 β� − iα�, −h2 ξn +√1 − h2 |ξ|
2

4 βn − iαn)

− (x�, −xn) ⋅ (h2 ξ � +√1 − h2 |ξ|
2

4 β� − iα�, h2 ξn +√1 − h2 |ξ|
2

4 βn − iαn)

= (x�, xn) ⋅ (−hξ �, 2√1 − h2 |ξ|
2

4 βn − 2iαn)

= −hξ �x� + 2√1 − h2 |ξ|
2

4 βnxn − 2iαnxn

= −hξ �x� + 2√1 − h2 |ξ|
2

4 βnxn

since αn = 0. This implies

i
h [x ⋅ ζ2 − (x�, −xn) ⋅ ζ1] = −ix�ξ � + 2i

h
√1 − h2 |ξ|

2

4 βnxn = −ix ⋅ (ξ �, −2h√1 − h2 |ξ|
2

4 βn).

Therefore,

∫
Ω

q(x)e
i
h [x⋅ζ2−x⋅ζ∗1 ] dx = Fq((ξ �, −2h√1 − h2 |ξ|

2

4 βn)). (3.6)

Similarly we have,

(x�, −xn) ⋅ ζ2 − x ⋅ ζ1 = (x�, −xn) ⋅ (−h2 ξ � +√1 − h2 |ξ|
2

4 β� − iα�, −h2 ξn +√1 − h2 |ξ|
2

4 βn − iαn)

− (x�, xn) ⋅ (h2 ξ � +√1 − h2 |ξ|
2

4 β� − iα�, h2 ξn +√1 − h2 |ξ|
2

4 βn − iαn)

= (x�, xn) ⋅ (−hξ �, −2√1 − h2 |ξ|
2

4 βn + 2iαn),

Bereitgestellt von | Fachhochschule Bern
Angemeldet

Heruntergeladen am | 13.11.19 14:32



260 | A. P. Choudhury and H. Heck, Stability estimates

which, since αn = 0, implies

i
h [(x

�, −xn) ⋅ ζ2 − x ⋅ ζ1] = −ix�ξ � − 2i
h
√1 − h2 |ξ|

2

4 βnxn = −ix ⋅ (ξ �, 2h√1 − h2 |ξ|
2

4 βn),

and therefore

∫
Ω

q(x)e
i
h [x⋅ζ∗2 −x⋅ζ1] dx = Fq((ξ �, 2h√1 − h2 |ξ|

2

4 βn))⋅ (3.7)

Using Lemma 2.4, we can estimate terms (3.6) and (3.7) as

|Fq((ξ �, −2h√1 − h2 |ξ
2|
4 βn))| + |Fq((ξ �, 2h√1 − h2 |ξ

2|
4 βn))| ≤ C(e

− ϵ2
4π [|ξ �|2+( 4

h2
−|ξ|2)β2n] + ϵα).

We next estimate the last term on the right-hand side of (3.5) using the bounds on the norms of rj, j = 1, 2.
To do so, we observe that

!!!!!!!
∫
Ω

qw(x, r1, r2, r∗1 , r∗2) dx!!!!!!! ≤ ∫
Ω

|q|[|hr2 + hr1 + h2r2r1| + |hr∗2 + hr∗1 + h2r∗2 r∗1 |
+ |hr2 + hr∗1 + h2r2r∗1 | + |hr1 + hr∗2 + h2r1r∗2 |] dx

≤ C[(h‖r2‖L2(Ω) + h‖r1‖L2(Ω) + h2‖r2‖L2(Ω)‖r1‖L2(Ω))
+ (h‖r∗2‖L2(Ω) + h‖r∗1‖L2(Ω) + h2‖r∗2‖L2(Ω)‖r∗1‖L2(Ω))
+ (h‖r2‖L2(Ω) + h‖r∗1‖L2(Ω) + h2‖r2‖L2(Ω)‖r∗1‖L2(Ω))
+ (h‖r1‖L2(Ω) + h‖r∗2‖L2(Ω) + h2‖r1‖L2(Ω)‖r∗2‖L2(Ω))].

Using the bounds on the norms of rj, j = 1, 2, stated in Proposition 2.2 and since h ≪ 1, we can write
!!!!!!!
∫
Ω

qw(x, r1, r2, r∗1 , r∗2) dx!!!!!!! ≤ Ch.
Now for ξ ̸= 0, |ξ �| > 0, we have

e− ϵ2
4π [|ξ �|2+( 4

h2
−|ξ|2)β2n] = e− ϵ2

4π [|ξ �|2+( 4
h2

−|ξ|2) |ξ�|2|ξ|2 ] = e− ϵ2
4π

4
h2

|ξ�|2|ξ|2 .
Let ρ > 1 be a real number to be chosen later. Then for any ξ ̸= 0 such that 0 < |ξ �| < ρ, |ξn| < ρ, the following
holds: Since |ξ|2 < 2ρ2, we have − 1|ξ|2 < − 1

2ρ2 and hence

−
ϵ2

4π
4
h2

|ξ �|2
|ξ|2

≤ −
ϵ2

4π
2
h2

|ξ �|2
ρ2

,

which then implies that

e− ϵ2
4π

4
h2

|ξ�|2|ξ|2 ≤ e− ϵ2
4π

2
h2

|ξ�|2
ρ2 .

Thus for any ξ ̸= 0 such that 0 < |ξ �| < ρ, |ξn| < ρ, we have the estimate

|Fq(ξ)| ≤ C[e
9R
h ‖Nq1 −Nq2‖ + e

− ϵ2
4π

2
h2

|ξ�|2
ρ2 + ϵα + h].

Let Zρ = {ξ ∈ ℝn : |ξ �| < ρ, |ξn| < ρ}. Then using Parseval’s identity, we can write
‖q‖2H−1 = ∫

Zρ

|Fq(ξ)|2

1 + |ξ|2
dξ + ∫

Zcρ

|Fq(ξ)|2

1 + |ξ|2
dξ ≤ ∫

Zρ

|Fq(ξ)|2

1 + |ξ|2
dξ + C

ρ2
. (3.8)
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Now since the set {ξ ∈ ℝn : |ξ �| = 0} is of n-dimensional Lebesguemeasure zero, we can ignore it and estimate
the integral over Zρ as follows:

∫
Zρ

|Fq(ξ)|2

1 + |ξ|2
dξ ≤ C[e

18R
h ‖Nq1 −Nq2‖

2 + ϵ2α + h2] ∫
Zρ

dξ
1 + |ξ|2

+ C
ρ

∫−ρ ∫
B�(0,ρ) e

− ϵ2
π

1
h2ρ2

|ξ �|2
1 + |ξ|2

dξ �dξn
≤ Cρne

18R
h ‖Nq1 −Nq2‖

2 + Cρnϵ2α + Cρnh2 + C
ρ

∫−ρ ∫
B�(0,ρ) e

− ϵ2
π

1
h2ρ2

|ξ �|2
1 + |ξ|2

dξ �dξn .
Therefore, from (3.8), we can write

‖q‖2H−1 ≤ Cρne
18R
h ‖Nq1 −Nq2‖

2 + Cρnϵ2α + Cρnh2 + C
ρ2

+ C
ρ

∫−ρ ∫
B�(0,ρ) e

− ϵ2
π

1
h2ρ2

|ξ �|2
1 + |ξ|2

dξ �dξn . (3.9)

In order to estimate the integral
ρ

∫−ρ ∫
B�(0,ρ) e

− ϵ2
π

1
h2ρ2

|ξ �|2
1 + |ξ|2

dξ �dξn ,
we choose ϵ such that h = ϵ2 and proceed as follows:

ρ

∫−ρ ∫
B�(0,ρ) e

− ϵ2
π

1
h2ρ2

|ξ �|2
1 + |ξ|2

dξ �dξn ≤ 2ρ ∫
B�(0,ρ) e−

ϵ2
π

1
h2ρ2

|ξ �|2 dξ � = Cρ ρ

∫
0

rn−2e− ϵ2
π

1
h2ρ2

r2 dr = Cρ
ρ

∫
0

rn−2e− 1
πhρ2

r2 dr

= Cρ2h
1
2 ρn−2h n−2

2

h
1
2

∫
0

un−2e− 1
π u

2 du ≤ Cρnh
n−1
2

∞
∫
0

un−2e− 1
π u

2 du ≤ Cρnh
n−1
2 .

Using this in (3.9), we have

‖q‖2H−1 ≤ Cρne
18R
h ‖Nq1 −Nq2‖

2 + Cρnhα + Cρnh2 + Cρnh
n−1
2 +

C
ρ2
,

and since h ≪ 1, n−12 ≥ 1 and α ∈ (0, 1), we can write

‖q‖2H−1 ≤ Cρne
18R
h ‖Nq1 −Nq2‖

2 + Cρnhα + C
ρ2
.

Next we choose h such that ρnhα = 1
ρ2 , that is, h = 1/ρ n+2

α . Then we have

‖q‖2H−1 ≤ C 1
h nα
n+2 e 18R

h ‖Nq1 −Nq2‖
2 + Ch

2α
n+2

≤ C 1
h 1
α
e

18R
h ‖Nq1 −Nq2‖

2 + Ch
2α
n+2 (since nα

n+2 < 1
α , we have h

1
α < h

nα
n+2 )

≤ C 1
h 1
α
e

18R
h1/α ‖Nq1 −Nq2‖

2 + Ch
2α
n+2

≤ Ce
20R
h1/α ‖Nq1 −Nq2‖

2 + Ch
2α
n+2 (since 1

h < 1
h 1
α
). (3.10)

Let h̃ = min{h0, ϵ20}, δ = e− 20R
h̃1/α and let us assume ‖Nq1 −Nq2‖ < δ. We then choose

ρ = {
1

20R |ln‖Nq1 −Nq2‖|}
α2
n+2 .

With this choice of ρ, we have
1
h 1
α
= ρ

n+2
α2 =

1
20R |ln‖Nq1 −Nq2‖|.
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Now,

‖Nq1 −Nq2‖ < e
− 20R

h̃
1
α (≪ 1) â⇒ ln‖Nq1 −Nq2‖ < −

20R
h̃ 1
α

â⇒ |ln‖Nq1 −Nq2‖| >
20R
h̃ 1
α

â⇒
1

20R |ln‖Nq1 −Nq2‖| >
1
h̃ 1
α

â⇒
1
h 1
α
>

1
h̃ 1
α

â⇒ h < h̃ < h0.

For |ξ �| < ρ, |ξn| < ρ, we also have
h2 |ξ|

2

4 < h2 ρ
2

2 =
1
2ρ

2 1
ρ

2(n+2)
α

=
1

2ρ[ 2(n+2)α −2] < 1,

and thus estimate (3.10) indeed remains valid for our choice of h. Also

20R
h 1
α

= |ln‖Nq1 −Nq2‖| = − ln‖Nq1 −Nq2‖ â⇒ ln‖Nq1 −Nq2‖ = −
20R
h 1
α

â⇒ ‖Nq1 −Nq2‖ = e
− 20R
h1/α

â⇒ e
20R
h1/α ‖Nq1 −Nq2‖ = 1,

and therefore from (3.10), it follows that for ‖Nq1 −Nq2‖ < δ, we have

‖q1 − q2‖2H−1(Ω) ≤ C(‖Nq1 −Nq2‖ + |ln‖Nq1 −Nq2‖|
−2α2
n+2 ). (3.11)

The case when ‖Nq1 −Nq2‖ ≥ δ follows directly keeping in mind the uniform bound N satisfied by the poten-
tials belonging to the set QN .

From (3.11), we can now derive an estimate for the L∞ norm of q1 − q2 by using the interpolation theo-
rem. We recall that if t0, t, t1 are such that t0 < t1 and t = (1 − β)t0 + βt1, where β ∈ (0, 1), then the H t-norm
of a function f can be estimated, using the interpolation theorem, as

‖f‖H t ≤ ‖f‖1−βH t0 ⋅ ‖f‖βH t1 .

To apply this in our case, we define η > 0 such that s = n
2 + 2η and choose t0 =−1, t1 = s and t = n

2 + η = s − η.
Then,

t = (1 − β)t0 + βt1, where β =
1 + s − η
1 + s ,

and using the Sobolev embedding theorem and the interpolation theorem, we have the estimate

‖q1 − q2‖L∞(Ω) ≤ C‖q1 − q2‖H n
2 +η(Ω) ≤ C‖q1 − q2‖1−βH−1(Ω)‖q1 − q2‖βHs(Ω) ≤ C‖q1 − q2‖ η

1+s
H−1(Ω)

≤ C(‖Nq1 −Nq2‖ + |ln‖Nq1 −Nq2‖|
−2α2
n+2 ) η

2(1+s) ,
which gives us the stated stability estimate.
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