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Abstract

In this paper, we introduce a new class of distributions by compounding the exponentiated extended Weibull family and

power series family. This distribution contains several lifetime models such as the complementary extended Weibull-power

series, generalized exponential-power series, generalized linear failure rate-power series, exponentiated Weibull-power series,

generalized modified Weibull-power series, generalized Gompertz-power series and exponentiated extended Weibull distribu-

tions as special cases. We obtain several properties of this new class of distributions such as Shannon entropy, mean residual

life, hazard rate function, quantiles and moments. The maximum likelihood estimation procedure via a EM-algorithm is

presented.
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1 Introduction

T
he extended Weibull (EW) family contains var-

ious well-known distributions such as exponen-

tial, Pareto, Gompertz, Weibull, linear failure
rate (Barlow, 1968), modified Weibull (Lai et al., 2003),

additive Weibull (Xie and Lai, 1995; Almalki and Yuan,
2013) and Chen (Chen, 2000) distributions. For more de-

tails see Nadarajah and Kotz (2005) and Pham and Lai

(2007).

Using the given method by Gupta and Kundu (1999),
the EW family can be generalized. We call it exponen-

tiated extended Weibull (EEW) distribution. The cumu-

lative distribution function (cdf) of this distribution is

G(x; α, β, Θ) = [1 − e−αH(x;Θ)]β, α>0, β>0, x≥0, (1)

and its probability density function (pdf) is

g(x; α, β, Θ) = αβh(x; Θ)e−αH(x;Θ)

×[1 − e−αH(x;Θ)]β−1, (2)
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where Θ is a vector of parameters, and H(x; Θ) is

a non-negative, continuous, monotone increasing, dif-
ferentiable function of x such that H(x; Θ) → 0 as

x → 0+ and H(x; Θ) → ∞ as x → ∞. It is denoted
by EEW(α, β, Θ).

The EEW distribution is a flexible family and

contains many exponentiated distributions such as
generalized exponential (Gupta and Kundu, 1999),

exponentiated Weibull (Mudholkar and Srivastava,

1993), generalized Rayleigh (Surles and Padgett, 2001;
Kundu and Raqab, 2005), generalized modified Weibull

(Carrasco et al., 2008), generalized linear failure rate
(Sarhan and Kundu, 2009), and generalized Gompertz

(El-Gohary et al., 2013) distributions.

In recent years, many distributions to model life-
time data have been introduced. The basic idea of

introducing these models is that a lifetime of a sys-

tem with N (discrete random variable) components
and the positive continuous random variable, say Xi

(the lifetime of ith component), can be denoted by the
non-negative random variable Y = min(X1, . . . , XN) or

Y = max(X1, . . . , XN), based on whether the compo-

nents are series or parallel.
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In this paper, we compound the EEW family and
power series distributions, and introduce a new class

of distribution. This class of distributions can be ap-
plied to reliability problems and its some properties are

investigated in this paper. We call it exponentiated ex-

tended Weibull- power series (EEWPS) class of distribu-
tions. In similar way, some distributions are proposed

in literature: the exponential-power series (EP) distribu-
tion by Chahkandi and Ganjali (2009), Weibull-power

series (WPS) distributions by Morais and Barreto-Souza

(2011), generalized exponential-power series (GEP) dis-
tribution by Mahmoudi and Jafari (2012), complemen-

tary exponential power series by Flores et al. (2013),
extended Weibull-power series (EWPS) distribution

by Silva et al. (2013), double bounded Kumaraswamy-

power series by Bidram and Nekoukhou (2013), Burr-
power series by Silva and Cordeiro (2013), generalized

linear failure rate-power series (GLFRP) distribution
by Alamatsaz and Shams (2014), Birnbaum-Saunders-

power series distribution by Bourguignon et al. (2014),

linear failure rate-power series by Mahmoudi and Jafari
(2014), and complementary extended Weibull-power

series by Cordeiro and Silva (2014). Similar proce-

dures are used by Roman et al. (2012), Lu and Shi
(2011), Nadarajah et al. (2015) and Louzada et al.

(2014). For compounding continuous distributions
with discrete distributions, Nadarajah et al. (2013) in-

troduced the package Compounding in R software

(R Development Core Team, 2014).

We provide three motivations for the EEWPS class of

distributions, which can be applied in some interesting

situations as follows: (i) this new class of distributions
due to the stochastic representation Y = max(X1, . . .

, XN), can arises in parallel systems with identical com-
ponents, where each component has the EEW distribu-

tion lifetime. This model appears in many industrial ap-

plications and biological organisms which the lifetime
of the event is only the maximum ordered lifetime value

among all causes. (ii) The EEWPS class of distributions
gives a reasonable parametric fit to some modeling phe-

nomenon with non-monotone hazard rates such as the

bathtub-shaped, unimodal and increasing-decreasing-
increasing hazard rates, which are common in reliabil-

ity and biological studies. (iii) The time to the last fail-
ure can be appropriately modeled by the EEWPS class

of distributions.

The remainder of this paper is organized as follows:
the pdf and failure rate function of the new class of dis-

tributions are given in Section 2. The special cases of the

EEWPS distribution are considered in Section 3. Some
properties such as quantiles, moments, order statistics,

Shannon entropy and mean residual life are given in
Section 4. Estimation of parameters by maximum like-

lihood are discussed in Section 5. Application to a real

data set is presented in Section 6.

2 Introducing new family

A discrete random variable, N is a member of power

series distributions (truncated at zero) if its probability

mass function (pmf) is given by

pn = P(N = n) =
anλn

C(λ)
, n = 1, 2, . . . , (3)

where an ≥ 0, C(λ) =
∞

∑
n=1

anλn, and λ ∈ (0, s) is chosen

in a way such that C(λ) is finite and its first, second

and third derivatives are defined and shown by C′(.),
C′′(.) and C′′′(.), respectively. The term “power se-
ries distribution" is generally credited to Noack (1950).

This family of distributions includes many of the most
common distributions, including the binomial, Poisson,

geometric, negative binomial, logarithmic distributions.

For more details about power series distributions, see
Johnson et al. (2005), page 75.

Theorem 2.1. Let N be a random variable denoting the

number of failure causes which it is a member of power se-
ries distributions with pmf in (3). Also, For given N, let

X1, X2, . . . , XN be independent identically distributed ran-

dom variables from EEW distribution with pdf in (2). Then
X(N) = max1≤i≤N{Xi} has EEWPS class of distributions

is denoted by EEWPS(α, β, λ, Θ) and has the following pdf:

f (x) = αβλh(x; Θ)e−αH(x;Θ)(1 − e−αH(x;Θ))β−1

×
C′

(

λ(1 − e−αH(x;Θ))β
)

C(λ)
, x > 0. (4)

Proof. The conditional cdf of X(N) | N = n has

EEW(α, nβ, Θ). Hence,

P(X(N) ≤ x, N = n) =
anλn

C(λ)
[1 − e−αH(x;Θ)]nβ, (5)

and the marginal cdf of X(N) is

F(x) =
C(λ(1 − e−αH(x;Θ))β)

C(λ)
, x > 0. (6)

The derivative of F with respect to x is (4). Therefore,

X(N) has EEWPS distribution.

Proposition 1. The pdf of EEWPS class can be expressed

as infinite linear combination of density of order distribution,

i.e. it can be written as

f (x) =
∞

∑
n=1

png(n)(x; α, nβ, Θ), (7)

where g(n)(x; α, nβ, Θ) is the pdf of EEW distribution with

parameters α, nβ and Θ.
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Proof. Consider t = 1 − e−αH(x;Θ). So

f (x) = αβλh(x; Θ)e−αH(x;Θ)tβ−1 C′ (λtβ
)

C(λ)

= αβλh(x; Θ)e−αH(x;Θ)tβ−1

∞

∑
n=1

nan(λtβ)n−1

C(λ)

=
∞

∑
n=1

anλn

C(λ)
nαβh(x; Θ)e−αH(x;Θ)tnβ−1

=
∞

∑
n=1

png(n)(x; α, nβ, Θ).

Proposition 2. The limiting distribution of

EEWPS(β, λ, Θ) when λ → 0+ is

lim
λ→0+

F(x) = [1 − e−αH(x;Θ)]cβ,

which is a EEW distribution with parameters α, cβ and Θ,
where c = min{n ∈ N : an > 0}.

Proof. Consider t = 1 − e−αH(x;Θ). So

lim
λ→0+

F(x) = lim
λ→0+

C(λtβ)

C(λ)
= lim

λ→0+

∞

∑
n=1

anλntnβ

∞

∑
n=1

anλn

= lim
λ→0+

actcβ +
∞

∑
n=c+1

anλn−ctnβ

ac +
∞

∑
n=c+1

anλn−c

= tcβ.

Proposition 3. The hazard rate function of the EEWPS class

of distributions is given by

r(x) =
αλβh(x; Θ)(1 − t)tβ−1C′ (λtβ

)

C(λ)− C(λtβ)
, (8)

where t = 1 − e−αH(x;Θ).

Proof. Using (4), (6) and definition of hazard rate func-

tion as r(x) = f (x)/(1− F(x), the proof is obvious.

3 Special cases

In this Section, we consider some special cases of the

EEWPS distribution.

3.1 Complementary extended Weibull
power series

If β = 1, then the pdf in (4) becomes to

f (x) = αλh(x; Θ)e−αH(x;Θ)

×
C′

(

λ(1 − e−αH(x;Θ))
)

C(λ)
, x > 0, (9)

which is the pdf of complementary extended Weibull

power series (CEWPS) class of distributions introduced
by Cordeiro and Silva (2014).

3.2 Generalized exponential-power series

If H(x; Θ) = x, then the pdf in (4) becomes to

f (x) = αβλe−αx(1 − e−αx)β−1 C′ (λ(1 − e−αx)β
)

C(λ)
, x > 0.

(10)

which is the pdf of generalized exponential-power
series (GEPS) class of distributions introduced by

Mahmoudi and Jafari (2012). The GEPS class of

distributions contains complementary exponentiated
exponential-geometric distribution introduced by

Louzada et al. (2013), complementary exponential-

geometric distribution introduced by Louzada et al.
(2011), Poisson-exponential distribution introduced

by Cancho et al. (2011) and Louzada-Neto et al.
(2011), complementary exponential-power series class

of distributions introduced by Flores et al. (2013),

generalized exponential distribution introduced by
Gupta and Kundu (1999) and generalized exponential-

geometric distribution introduced by Bidram et al.
(2013) .

3.3 Generalized linear failure rate-power se-
ries

If H(x; Θ) = ax
α + bx2

2α , then the pdf in (4) becomes to

f (x) = βλ(a + bx)e−ax− bx2

2 (1 − e−ax− bx2

2 )β−1

×
C′

(

λ(1 − e−ax− bx2

2 )β

)

C(λ)
, x > 0. (11)

which is the pdf of generalized linear failure rate-
power series (GLFRPS) class of distributions introduced

by Alamatsaz and Shams (2014). It is a modification
of generalized linear failure rate distribution intro-

duced by Sarhan and Kundu (2009) and generalized

linear failure rate- geometric distribution introduced
by Nadarajah et al. (2014). If b = 0, it becomes to

GEPS class of distributions. Also, If β = 1, it be-
comes to linear failure rate-power series introduced by

Mahmoudi and Jafari (2014).

3.4 Exponentiated Weibull- power series

If H(x; Θ) = xγ, then the pdf in (4) becomes to

f (x) = αβλγxγ−1e−αxγ
(1 − e−αxγ

)β−1
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×
C′

(

λ(1 − e−αxγ
)β
)

C(λ)
, x > 0. (12)

which is the pdf of exponentiated Weibull-power
series (EWPS) class of distributions introduced by

Mahmoudi and Shiran (2012). It is a modification

of exponentiated Weibull distribution introduced by
Mudholkar and Srivastava (1993). It is contain the

complementary Weibull geometric distribution intro-
duced by Tojeiro et al. (2014). Also, the Marshall-

Olkin extended Weibull distribution introduced by

Cordeiro and Lemonte (2013) is a special case of EWPS.

3.5 Generalized modified Weibull-power
series

If H(x; Θ) = xγ exp(τx), then the pdf in (4) becomes to

f (x) = αβλxγ−1(γ + τx)eτx−αxγ exp(τx) (13)

×
C′

(

λ(1 − e−αxγ exp(τx))β
)

(1 − e−αxγ exp(τx))1−βC(λ)
, x > 0,

and we call generalized modified Weibull-power series
(GMWPS) class of distributions. It is contained the gen-

eralized modified Weibull distribution introduced by

Carrasco et al. (2008). If τ = 0, then GMWPS class of
distributions becomes to EWPS class of distributions.

3.6 Generalized Gompertz- power series

If H(x; Θ) = 1
γ (e

γx − 1), then the pdf in (4) becomes to

f (x) = αβλeγxe
− α

γ (eγx−1)(1 − e
− α

γ (eγx−1))β−1

×
C′

(

λ(1 − e
− α

γ (eγx−1))β
)

C(λ)
, x > 0. (14)

and we call generalized Gompertz-power series class of

distributions. It is contained the generalized Gompertz

distribution introduced by El-Gohary et al. (2013).

4 Statistical properties

In this section, some properties of EEWPS class of dis-
tributions such as quantiles, moments, order statistics,

Shannon entropy and mean residual life are derived.
Using (7), we can obtain

F(x) =
∞

∑
n=1

pnG(n)(x; α, nβ, Θ) =
∞

∑
n=1

pntnβ, (15)

where t = 1 − e−αH(x;Θ). Based on the mathematical

quantities of the baseline pdf g(n)(x; α, nβ, Θ), we can
obtain some statistical quantities such as ordinary and

incomplete moments, generating function and mean de-

viations of this family of distributions.

4.1 Quantiles and Moments

Let

X = G−1

(

C−1 (C(λ)U)

λ

)

,

where U has a uniform distribution on (0, 1), G−1(y) =

H−1[− 1
α ln(1 − y

1
β )] and C−1(.) is the inverse function

of C(.). Then X has the EEWPS(α, β, λ, Θ) distribution.

This result helps in simulating data from the EEWPS
distribution with generating uniform distribution data.

Theorem 4.1. Consider X ∼ EEWPS(α, β, λ, Θ). Then the

moment generating function of EEWPS is

MX(t) =
∞

∑
n=1

∞

∑
j=0

pn

(

nβ

j + 1

)

(−1)jMY(t), (16)

where Y has EEW(α(j + 1), 1, Θ).

Proof. The Laplace transform of the EEWPS class can be

expressed as

L(s) = E(e−sX) =
∞

∑
n=1

P(N = n)Ln(s),

where Ln(s) is the Laplace transform of EEW distribu-

tion with parameters α, nβ and Θ given as

Ln(s) =
∫ +∞

0
e−sxnαβh(x; Θ)e−αH(x;Θ)

×[1 − e−αH(x;Θ)]nβ−1dx

= nαβ
∫ +∞

0
e−sxh(x; Θ)

×
∞

∑
j=0

(

nβ − 1

j

)

(−1)je−(j+1)αH(x;Θ)dx

=
∞

∑
j=0

nβ

(

nβ − 1

j

)

(−1)j
∫ +∞

0

α(j + 1)

j + 1

×h(y; Θ)e−(j+1)αH(y;Θ)−sydy

=
∞

∑
j=0

(

nβ

j + 1

)

(−1)jL1(s),

where L1(s) is the Laplace transform of the EEW(α(j +
1), 1, Θ). Therefore, the moment generating function of

EEWPS is

MX(t) =
∞

∑
n=1

pnLn(−t)

=
∞

∑
n=1

∞

∑
j=0

pn

(

nβ

j + 1

)

(−1)jL1(−t)

=
∞

∑
n=1

∞

∑
j=0

pn

(

nβ

j + 1

)

(−1)j MY(t).
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Table 1: The four moments of EEWPS model.

α β λ γ µ1 µ2 µ3 µ4

0.3 0.3 0.2 2.0 0.936 1.594 3.520 9.164

0.3 0.3 0.2 5.0 0.856 0.884 1.011 1.237

0.3 0.3 0.8 2.0 1.656 3.719 9.722 28.292

0.3 0.3 0.8 5.0 1.150 1.446 1.916 2.631

0.3 2.0 0.2 2.0 2.192 5.446 14.976 44.841

0.3 2.0 0.2 5.0 1.345 1.853 2.606 3.734

0.3 2.0 0.8 2.0 2.835 8.733 28.694 99.531

0.3 2.0 0.8 5.0 1.500 2.285 3.530 5.521

0.8 0.3 0.2 2.0 0.573 0.598 0.808 1.289

0.8 0.3 0.2 5.0 0.704 0.597 0.561 0.565

0.8 0.3 0.8 2.0 1.014 1.394 2.232 3.979

0.8 0.3 0.8 5.0 0.945 0.977 1.064 1.201

0.8 2.0 0.2 2.0 1.342 2.042 3.439 6.306

0.8 2.0 0.2 5.0 1.106 1.252 1.446 1.704

0.8 2.0 0.8 2.0 1.736 3.275 6.589 13.997

0.8 2.0 0.8 5.0 1.233 1.543 1.960 2.519

2.0 0.3 0.2 2.0 0.362 0.239 0.204 0.206

2.0 0.3 0.2 5.0 0.586 0.414 0.324 0.271

2.0 0.3 0.8 2.0 0.641 0.558 0.565 0.637

2.0 0.3 0.8 5.0 0.787 0.677 0.614 0.577

2.0 2.0 0.2 2.0 0.849 0.817 0.870 1.009

2.0 2.0 0.2 5.0 0.921 0.867 0.835 0.819

2.0 2.0 0.8 2.0 1.098 1.310 1.667 2.239

2.0 2.0 0.8 5.0 1.026 1.070 1.131 1.210

Theorem 4.2. The noncentral moment functions of EEWPS
is

µr =
∞

∑
n=1

anλn

C(λ)

∞

∑
j=0

(

nβ

j + 1

)

(−1)jµ′
r

=
∞

∑
n=1

∞

∑
j=0

pn

(

nβ

j + 1

)

(−1)jµ′
r , (17)

where µ′
r = E[Yr ] and Y has EEW(α(j + 1), 1, Θ).

Proof. We can use MX(t) to obtain µr . But from the

direct calculation, proof is obvious.

Considering H(x) = xγ and C(λ) = λ(1 − λ)−1, we

calculated the first four moments with different values
of parameters for the EEWPS distribution using (17).

Also, we computed these values from the direct defini-

tion by numerical integration. We found that the results
are same. The values are given in Table 1.

4.2 Order statistic

Let X1, X2, . . . , Xm be a random sample of size m from

EEWPS(α, β, λ, Θ), then the pdf of the ith order statistic,

say Xi:m, is given by

fi:m(x) =
m!

(i − 1)!(m − i)!
f (x)

[

C(λtβ)

C(λ)

]i−1

×
[

1 − C(λtβ)

C(λ)

]m−i

=
m!

(i − 1)!(m − i)!
f (x)

m−i

∑
j=0

(

m − i

j

)

×(−1)j

[

C(λtβ)

C(λ)

]j+i−1

=
m!

(i − 1)!(m − i)!

∞

∑
n=1

m−i

∑
j=0

png(n)(x; α, nβ, Θ)

×
(

m − i

j

)

(−1)j

[

C(λtβ)

C(λ)

]j+i−1

=
m!

(i − 1)!(m − i)!

∞

∑
n=1

m−i

∑
j=0

wj pn

×g(n)(x; α, nβ, Θ)

[

C(λtβ)

C(λ)

]j+i−1

,

where f is the pdf of EEWP class of distributions, t =

1− e−αH(x;Θ) and wj = (m−i
j )(−1)j. Also, the cdf of Xi:m

is given by

Fi:m(x) =
m

∑
k=i

m−k

∑
j=0

(−1)j

(

m − k

j

)(

m

k

) [

C(λtβ)

C(λ)

]j+k

.

An analytical expression for rth moment of order

statistics Xi:m is obtained as

E[Xr
i:m] =

m!

(i − 1)!(m − i)!

∞

∑
n=1

m−i

∑
j=0

wj pn

×E[Zr(F(Z))j+i−1],

where Z has a EEW distribution with parameters α, nβ

and Θ.

4.3 Shannon entropy and mean residual life

The maximum entropy method is a powerful tech-

nique in the field of probability and statistics. It is

introduced by Jaynes (1957) and closely related to the
Shannon’s entropy. Also, it is applied in a wide va-

riety of fields and used for the characterization of
pdf’s; see, for example, Kapur (1994), Soofi (2000) and

Zografos and Balakrishnan (2009). Shore and Johnson

(1980) treated the maximum entropy method axiomati-
cally.

Consider a class of pdf’s

F = { f (x; α, β, λ, Θ) : E f (Ti(X)) = βi, i = 0, 1, ...., m},
(18)

where T1(X), ..., Tm(X) are absolutely integrable func-
tions with respect to f , and T0(X) = 1. Also, consider

the shannon’s entropy of none-negative continuous ran-

dom variable X with pdf f defined by Shannon (1948)
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as

Hsh( f ) = E[− log f (X)] = −
∫ +∞

0
f (x) log( f (x))dx.

(19)

The maximum entropy distribution is the pdf of the
class F, denoted by f ME determined as

f ME(x; λ, β, Θ) = arg max
f∈F

Hsh( f ).

Now, suitable constraints are derived in order to pro-
vide a maximum entropy characterization for the class

(18) based on Jaynes (1957). For this purpose, the next

result plays an important role.

Proposition 4. Let X has EEWPS(α, β, λ, Θ) with the pdf
given by (4). Then,

i.

E
[

log(C′(λ(1 − e−αH(X;Θ))β))
]

=
λ

C(λ)
E
[

C′(λ(1 − e−αH(Y;Θ))β)

× log(C′(λ(1 − e−αH(Y;Θ))β))
]

,

ii.

E [log(h(X; Θ))] =
λ

C(λ)
E
[

C′(λ(1 − e−H(Y;Θ))β)

× log(h(Y; Θ))] ,

iii.

E
[

log(1 − e−αH(X;Θ))
]

=
λ

C(λ)

× E
[

C′(λ(1 − e−αH(Y;Θ))β) log(1 − e−αH(Y;Θ))
]

,

where Y follows the EEW distribution with the pdf in (2).

An explicit expression of Shannon entropy for
EEWPS distribution is obtained as

Hsh( f ) = − log(αβλ)− λ

C(λ)
E[C′(λ(1 − e−H(Y;Θ))β)

× log(C′(λ(1 − e−H(Y;Θ))β))]

+ log[C(λ)]− (β − 1)
λ

C(λ)

× E[C′(λ(1 − e−H(Y;Θ))β) log(1 − e−H(Y;Θ))]

− λ

C(λ)
E[C′(λ(1 − e−H(Y;Θ))β) log(h(Y; Θ))].

(20)

Also, the mean residual life function of X is given by

m(t) = E[X − t|X > t]

=

∫ +∞

t (x − t) f (x)dx

1 − F(t)

=

C(λ)
∞

∑
n=1

pn

∫ +∞

t zg(n)(z; α, nβ, Θ)dz

C(λ)− C(λG(x))
− t

=

C(λ)
∞

∑
n=1

pnE[ZI(Z>t)]

C(λ)− C(λG(x))
− t, (21)

where Z has a EEW distribution with parameters α, nβ
and Θ.

4.4 Reliability and average lifetime

In the context of reliability, the stress-strength model
describes the life of a component which has a random

strength X subjected to a random stress Y. The com-
ponent fails at the instant that the stress applied to it

exceeds the strength, and the component will function

satisfactorily whenever X > Y. Hence, R = P(X > Y)
is a measure of component reliability. It has many ap-

plications especially in engineering concept. Here, we

obtain the form for the reliability R when X and Y are
independent random variables having the same EEWPS

distribution. The quantity R can be expressed as

R =
∫ ∞

0
f (x; α, β, λ, Θ)F(x; α, β, λ, Θ)dx

=
∫ ∞

0
λg(x)

C′(λG(x))C(λG(x))

C2(λ)
dx (22)

=
∞

∑
n=1

pn

∫ ∞

0
g(n)(x; α, nβ, Θ)

C(λG(x))

C(λ)
dx.

5 Estimation

In this section, we first study the maximum likelihood

estimations (MLE’s) of the parameters. Then, we pro-
pose an Expectation-Maximization (EM) algorithm to

estimate the parameters.

5.1 The MLE’s

Let x1, . . . , xn be observed value from the EEWPS dis-

tribution with parameters ξ = (α, β, λ, Θ)T. The log-
likelihood function is given by

ln = ln(ξ; x) = n[log(α) + log(β) + log(λ)

− log(C(λ))] +
n

∑
i=1

log[h(xi; Θ)]

−α
n

∑
i=1

H(xi; Θ) + (β − 1)
n

∑
i=1

log ti

+
n

∑
i=1

log(C′(λt
β
i )),

where x = (x1, . . . , xn) and ti = 1 − e−αH(xi;Θ). The

components of the score function U(ξ; x) = ( ∂ln
∂α , ∂ln

∂β , ∂ln
∂λ ,
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∂ln
∂Θ

)T are

∂ln

∂α
=

n

α
−

n

∑
i=1

H(xi; Θ), (23)

∂ln

∂β
=

n

β
+

n

∑
i=1

log(ti) +
n

∑
i=1

λt
β
i log(ti)C

′′(λt
β
i )

C′(λt
β
i )

, (24)

∂ln

∂λ
=

n

λ
− nC′(λ)

C(λ)
+

n

∑
i=1

t
β
i C′′(λt

β
i )

C′(λt
β
i )

, (25)

∂ln

∂Θk
=

n

∑
i=1

∂h(xi; Θ)

∂Θk
.

1

h(xi; Θ)
− α

n

∑
i=1

∂H(xi; Θ)

∂Θk

+ (β − 1)
n

∑
i=1

∂ti
∂Θk

ti
+ βλ

n

∑
i=1

[ ∂ti
∂Θk

]t
β−1
i C′′(λt

β
i )

C′(λt
β
i )

,

(26)

where Θk is the kth element of the vector Θ.

The MLE of ξ, say ξ̂, is obtained by solving the nonlin-

ear system U(ξ; x) = 0. We cannot get an explicit form
for this nonlinear system of equations and they can be

calculated by using a numerical method, like the New-
ton method or the bisection method. Only, for given Θ,

from (23) we have

α =
n

∑
n
i=1 H(xi; Θ)

.

Therefore, (26) becomes

n

∑
i=1

∂h(xi; Θ)

∂Θk
.

1

h(xi; Θ)

− n

∑
n
i=1 H(xi; Θ)

n

∑
i=1

∂H(xi; Θ)

∂Θk
(27)

+(β − 1)
n

∑
i=1

∂ti
∂Θk

ti
+ βλ

n

∑
i=1

[ ∂ti
∂Θk

]t
β−1
i C′′(λt

β
i )

C′(λt
β
i )

.

Theorem 5.1. The pdf, f (x|Θ), of EEWPS distribution sat-
isfies on the regularity condistions, i.e.

i. the support of f (x|Θ) does not depend on Θ,

ii. f (x|Θ) is twice continuously differentiable with respect
to Θ,

iii. the differentiation and integration are interchangeable in

the sense that

∂

∂Θ

∫ ∞

−∞
f (x|Θ)dx =

∫ ∞

−∞

∂

∂Θ
f (x|Θ)dx,

∂2

∂Θ∂ΘT

∫ ∞

−∞
f (x|Θ)dx =

∫ ∞

−∞

∂2

∂Θ∂ΘT
f (x|Θ)dx.

Proof. The proof is obvious and for more details, see

Casella and Berger (2001), Section 10.

The asymptotic confidence intervals of these param-
eters will be derived based on Fisher information ma-

trix. It is well-known that under regularity conditions,
the asymptotic distribution of

√
n(ξ̂ − ξ) is multivari-

ate normal with mean 0 and variance-covariance ma-

trix J−1
n (ξ), where Jn(ξ) = limn→∞ In(ξ), and In(ξ) is

the observed information matrix as

In (ξ) = −















Uαα Uαβ Uαλ | UT
αΘ

Uαβ Uββ Uβλ | UT
βΘ

Uαβ Uλβ Uλλ | UT
λΘ

− − − − −
UαΘ UβΘ UλΘ | UΘΘ















,

whose elements are obtained by derivative the equa-
tions (23)-(26) with respect to parameters.

5.2 EM-algorithm

The traditional methods to obtain the MLE’s are numer-

ical methods for solving the equations (23)-(26), and

sensitive to the initial values. Therefore, we develop
an EM algorithm for obtaining the MLE’s of the pa-

rameters of EEWPS class of distributions. It is a very
powerful tool in handling the incomplete data problem

(Dempster et al., 1977). It is an iterative method, and

there are two steps in each iteration: expectation step
or the E-step and the Maximization step or the M-step.

The EM algorithm is especially useful if the complete
data set is easy to analyze.

Using (5), we define a hypothetical complete-data dis-

tribution with a joint pdf in the form

g(x, z; ξ) =
azλz

C(λ)
zαβh(x; Θ)(1− t)tzβ−1, x > 0, z ∈ N,

where t = 1 − e−αH(x;Θ). The E-step of an EM cycle re-

quires the expectation of (Z|X; ξ(r)) where ξ(r) = (α(r),
β(r), λ(r), Θ

(r)) is the current estimate (in the rth itera-

tion) of ξ.
The expected value of Z|X = x is

E(Z|X = x) = 1 +
λtαC′′(λtβ)

C′(λtβ)
. (28)

The M-step of EM cycle is completed by using
the MLE over Θ, with the missing z’s replaced by

their conditional expectations given above. There-

fore, the log-likelihood for the complete-data y =
(x1, . . . , xn, z1, ..., zn) is

l∗(y; ξ) ∝
n

∑
i=1

zi log(λ) + n log(αβ) +
n

∑
i=1

log h(xi; Θ)

−α
n

∑
i=1

H(xi; Θ)− n log(C(λ))

+
n

∑
i=1

(ziβ − 1) log(1 − e−αH(xi;Θ)). (29)
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On differentiation of (29) with respect to parameters α,
β, λ and Θk, we obtain the components of the score

function as

∂l∗n
∂α

=
n

α
−

n

∑
i=1

H(xi; Θ) +
n

∑
i=1

(ziβ − 1)

× H(xi; Θ)e−αH(xi;Θ)

1 − e−αH(xi;Θ)
,

∂l∗n
∂β

=
n

β
+

n

∑
i=1

zi log(1 − e−αH(xi;Θ)),

∂l∗n
∂λ

=
n

∑
i=1

zi

λ
− n

C′(λ)
C(λ)

,

∂l∗n
∂Θk

=
n

∑
i=1

∂h(xi; Θ)

∂Θk
.

1

h(xi; Θ)
− α

n

∑
i=1

∂H(xi; Θ)

∂Θk

+
n

∑
i=1

(ziβ − 1)

∂H(xi;Θ)
∂Θk

1 − e−αH(xi;Θ)
.

Therefore, we obtain the iterative procedure of the EM-

algorithm as

β̂(j+1) =
−n

n

∑
i=1

ẑ
(j)
i log[1 − e−α̂(j)H(xi;Θ̂

(j))]
,

λ̂(j+1) =
C(λ̂(j+1))

nC′(λ̂(j+1))

n

∑
i=1

ẑ
(j)
i ,

n

α̂(j+1)
−

n

∑
i=1

H(xi; Θ̂
(j)) +

n

∑
i=1

(ẑi
(j)β̂(j) − 1)

× H(xi; Θ̂
(j))e−α̂(j+1)H(xi;Θ̂

(j))

1 − e−α̂(j+1)H(xi;Θ̂
(j))

= 0,

n

∑
i=1

∂h(xi; Θ̂
(j+1))

∂Θk
.

1

h(xi; Θ̂(j+1))

− α̂(j)
n

∑
i=1

∂H(xi; Θ̂
(j+1))

∂Θk

+
n

∑
i=1

∂H(xi; Θ̂
(j+1))

∂Θk
.

ẑi
(j)β̂(j) − 1

1 − e−α̂(j)H(xi;Θ̂
(j+1))

= 0,

where λ̂(j+1) , α̂(j+1) and Θ̂
(j+1)
k are found numerically.

Here, we have

ẑ
(j)
i = 1 +

λ∗(j)C′′(λ∗(j))

C′(λ∗(j))
, i = 1, 2, ..., n,

where λ∗(j) = λ̂(j)[1 − e−α̂(j)H(xi;Θ̂k
(j)
)]β̂

(j)
.

We can use the results of Louis (1982) to obtain

the standard errors of the estimators from the EM-

algorithm. Consider ℓc(Θ; x) = E(Ic(Θ; y)|x), where

Ic(Θ; y) = −[ ∂U(y;Θ)
∂Θ

] is the (k + 3)× (k + 3) observed
information matrix. If ℓm(Θ; x) = Var[U(y; Θ)|x], then,

we obtain the observed information as

J(Θ̂; x) = ℓc(Θ̂; x)− ℓm(Θ̂; x). (30)

The standard errors of the MLE’s based on the EM-
algorithm are the square root of the diagonal elements

of the J(Θ̂; x). The computation of these matrices are
too long and tedious. Therefore, we did not present

the details. Reader can see Mahmoudi and Jafari (2012)

how to calculate these values.

6 A real example

In this section, we analyze the real data set given by
Murthy et al. (2004) to demonstrate the performance of

EEWPS class of distributions in practice. This data set
consists of the failure times of 20 mechanical compo-

nents, and is also studied by Silva et al. (2013):

0.067, 0.068, 0.076, 0.081, 0.084, 0.085, 0.085
0.086, 0.089, 0.098, 0.098, 0.114, 0.114, 0.115

0.121, 0.125, 0.131, 0.149, 0.160, 0.485

Since the EEWPS distribution can be used for mod-

eling of failure times, we consider this distribution for

fitting these data. But, this distribution is a large class
of distributions. Here, we consider five sub-models of

EEWPS distribution. Some of them are suggested in

literature.

(i) The exponentiated Weibull geometric (EWG) dis-

tribution, i.e. the EEWPS distribution with
H(x, Θ) = xγ and C(λ) = λ(1 − λ)−1.

(ii) The complementary Weibull geometric (CWG)
distribution, i.e. the EEWPS distribution with

H(x, Θ) = xγ, C(λ) = λ(1 − λ)−1 and β = 1. This

distribution is considered by Cordeiro and Silva
(2014).

(iii) The generalized exponential geometric (GEG) dis-
tribution, i.e. the EEWPS distribution with

H(x, Θ) = x and C(λ) = λ(1 − λ)−1. This dis-
tribution is considered by Mahmoudi and Jafari

(2012).

(iv) The exponentiated Chen logarithmic (ECL) dis-
tribution, i.e. the EEWPS distribution with

H(x, Θ) = exp(xγ) and C(λ) = − log(1 − λ).

(v) The complementary Chen logarithmic (CCL) dis-

tribution, i.e. the EEWPS distribution with
H(x, Θ) = exp(xγ), C(λ) = − log(1 − λ) and

β = 1. This distribution is considered by

Cordeiro and Silva (2014).

The MLE’s of the parameters for the distributions

are obtained by the EM algorithm given in Section
5. Also, the standard errors of MLE’s are computed

and given in paracenteses. To test the goodness-of-

fit of the distributions, we calculated the maximized
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Table 2: Parameter estimates (standard errors), K-S
statistic, p-value, AIC, AICC, BIC, CM and AD for the

data set.

Distribution EWG CWG GEG ECL CCL

α̂ 28.665 25.972 27.752 17.111 22.019

(s.e.) (4.617) (11.093) (6.841) (1.572) (10.177)

γ̂ 0.199 1.642 — 0.136 1.586

(s.e.) (0.052) (0.407) — (0.026) (0.231)

λ̂ 0.136 0.012 0.001 0. 146 0.261

(s.e.) (0.918) (1.122) (0.658) (0.032) (0.332)

β̂ 5.5 e7 — 13.825 7.4 e7 —

(s.e.) (1.6 e8) — (8.471) 2.3 e7 —

log (L) 37.978 26.422 32.976 37.794 25.759

K-S 0.124 0.264 0.160 0.121 0.262

p-value 0.917 0.122 0.683 0.931 0.127

AIC -67.957 -46.845 -59.952 -67.588 -45.518

AICC -65.29 -45.345 -58.452 -64.922 -44.018

BIC -63.974 -43.858 -56.965 -63.606 -42.531

CM 0.048 0.436 0.153 0.051 0.463

AD 0.402 2.537 1.136 0.423 2.663

log-likelihood (log(L)), the Kolmogorov-Smirnov (K-S)

statistic with its respective p-value, the AIC (Akaike

Information Criterion), AICC (AIC with correction),
BIC (Bayesian Information Criterion), CM (Cramer-von

Mises statistic) and AD (Anderson-Darling statistic) for
the five submodels of distribution. The R software

(R Development Core Team, 2014) is used for the com-

putations.

The results are given in Table 2, and from K-S, it can

be concluded that all five models are appropriate for
this data set. But, the EWG and ECL distributions are

better than other distributions. In fact, we have a better
fit when there is the parameter β (exponentiated param-

eter) in model. The plots of the densities (together with

the data histogram) and cdf’s given in Figure 1 confirm
this conclusion.
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