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Features of the structure, development, and activity of the zebrafish noradrenergic system 

explored in new CRISPR transgenic lines 

Matthew J. Farrar  

Kristine E. Kolkman  

Joseph R. Fetcho  

Farrar, M. J., Kolkman, K. E., & Fetcho, J. R. (2018). Features of the structure, development, and activity 
of the zebrafish noradrenergic system explored in new CRISPR transgenic lines. Journal of Comparative 
Neurology, 526(15), 2493–2508. https://doi.org/10.1002/cne.24508 

Abstract 

The noradrenergic (NA) system of vertebrates is implicated in learning, memory, arousal, and 

neuroinflammatory responses, but is difficult to access experimentally. Small and optically 

transparent, larval zebrafish offer the prospect of exploration of NA structure and function in an 

intact animal. We made multiple transgenic zebrafish lines using the CRISPR/Cas9 system to 

insert fluorescent reporters upstream of slc6a2, the norepinephrine transporter gene. These lines 

faithfully express reporters in NA cell populations, including the locus coeruleus (LC), which 

contains only about 14 total neurons. We used the lines in combination with two‐photon 

microscopy to explore the structure and projections of the NA system in the context of the 

columnar organization of cell types in the zebrafish hindbrain. We found robust alignment of NA 

projections with glutamatergic neurotransmitter stripes in some hindbrain segments, suggesting 

orderly relations to neuronal cell types early in life. We also quantified neurite density in the 

rostral spinal cord in individual larvae with as much as 100% difference in the number of LC 

neurons, and found no correlation between neuronal number in the LC and projection density in 

the rostral spinal cord. Finally, using light sheet microscopy, we performed bilateral calcium 

imaging of the entire LC. We found that large‐amplitude calcium responses were evident in all 

LC neurons and showed bilateral synchrony, whereas small‐amplitude events were more likely 

to show interhemispheric asynchrony, supporting the potential for targeted LC neuromodulation. 

Our observations and new transgenic lines set the stage for a deeper understanding of the NA 

system. 

1 INTRODUCTION 

Noradrenaline (NA) acts to modulate sleep–wake cycles, learning and memory, attention and 

reward, and long‐term potentiation (Aston‐Jones & Cohen, 2005; Sara, 2009). The locus 

coeruleus (LC)—the primary source of NA‐projections in the mammalian neocortex—is highly 

evolutionarily conserved across vertebrates (Smeets & González, 2000) and projects widely 

throughout the brain and spinal cord in mammals (Amaral & Sinnamon, 1977; Gatter & Powell, 

1977; Levitt & Moore, 1979; Moore & Bloom, 1979; Pickel, Segal, & Bloom, 1974; Sakai, 

Touret, Salvert, Leger, & Jouvet, 1977; Steindler, 1981). In recent years, increasing attention has 

also been given to the role of NA in modulation of neuroinflammation (Gavin Norris & 

Benveniste, 1993; Gyoneva & Traynelis, 2013; Mori et al., 2002; O'Donnell, Zeppenfeld, 

https://doi.org/10.1002/cne.24508
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McConnell, Pena, & Nedergaard, 2012; Russo, Boullerne, Gavrilyuk, & Feinstein, 2004; Xie et 

al., 2013), and the loss of LC neurons has been implicated in Parkinson's disease (Newman, 

Punati, Ling, & Carvey, 2006; Rommelfanger et al., 2007; Rommelfanger & Weinshenker, 2007) 

and Alzheimer's disease (Heneka et al., 2010; Kong, Ruan, Qian, Liu, & Le, 2010; Tomlinson, 

Irving, & Blessed, 1981; Weinshenker, 2008).  

Despite great interest in the NA system, its study in mammals is limited by physical barriers. For 

example, their deep location in brainstem makes LC neurons inaccessible to optical microscopy, 

even when using deep‐penetrating two‐photon (Helmchen & Denk, 2005) and three‐photon (Xu 

& Horton, 2015; Xu, Sinefeld, Ouzounov, Paudel, & Bifano, 2015) excited fluorescence (2PEF 

and 3PEF, respectively). Owing to their widespread projection patterns in mammals, studies of 

the projections of NA neurons in general and LC neurons in particular has been largely limited to 

retrograde tracing and/or immunohistochemistry/immunofluorescence following tissue 

sectioning. Multicellular physiological studies of LC in mammals are possible but challenging 

(Aston‐Jones & Bloom, 1981a, 1981b; Lestienne, Herve‐Minvielle, & Robinson, 1997; Totah, 

Neves, Panzeri, Logothetis, & Eschenko, 2017). In the most recent of these studies, Totah et al. 

(2017) were able to record as many as 52 single units simultaneously. While an impressive 

improvement on previous work, the rat LC contains between 3,000 and 4,000 neurons bilaterally 

(Goldman & Coleman, 1981).  

A complementary path to access this neuromodulatory system is to explore it in a more 

accessible model. Neuromodulatory systems are ancient and shared among vertebrates (Smeets 

& González, 2000; Weiger, 1997), so one might expect considerable preservation of core 

functional roles across species. Transparent zebrafish larvae offer a path to explore the NA 

system in vivo throughout the entire CNS, both in early development and at young free 

swimming stages (White et al., 2008). The development (Schweitzer, Löhr, Filippi, & Driever, 

2012) and projection patterns (Tay, Ronneberger, Ryu, Nitschke, & Driever, 2011) of the 

zebrafish catecholaminergic system and the organization and innervation patterns of the 

monoaminergic systems as a whole (McLean & Fetcho, 2004) have been studied throughout the 

larval zebrafish CNS by immunohistochemistry and immunofluorescence, providing a good 

foundation for subsequent investigations. The LC is especially attractive as the number of 

neurons in the LC ranges between ~10 and ~20 bilaterally (Ma, 1994), allowing for 

comprehensive studies of the whole nucleus.  

The ability to study structure and function in vivo depends on selective labeling of neuronal 

classes via transgenic approaches. Zebrafish lines have been created and studied for 

monoaminergic neurons collectively (Tg[ETvmat2:GFP]) (Wen et al., 2008), and those 

expressing tyrosine hydroxylase (TH; Tg[Th:GFP]) (Gao, Li, & Li, 2005), dopamine β‐

hydroxylase (DßH; Tg[dßh:EGFP])(Zhu et al., 2012), and the dopamine transporter 

(DAT;Tg[dat:EGFP])(Xi et al., 2011) specifically. Strong contributions to understanding the 

zebrafish catecholaminergic system have come through genetic mapping (Filippi, Mahler, 

Schweitzer, & Driever, 2010), separation of the dopaminergic from noradrenergic pathways by 

genetic dissection (Kastenhuber, Kratochwil, Ryu, Schweitzer, & Driever, 2010), and by tracing 

of projection patterns in zebrafish transiently expressing EGFP in single catecholaminergic 

neurons (Schweitzer et al., 2012; Tay et al., 2011).  
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Recently, correlations between stimulus reaction times and neuromodulatory responses—

including NA nuclei—were studied in zebrafish larvae using 2PEF microscopy (Lovett‐Barron et 

al., 2017) and the Tg(elavl3:H2B‐GCaMP6s) calcium indicator strain. While this approach is 

strong for pan‐neuronal studies of correlations across many neuromodulatory systems, it has 

some drawbacks for studying the NA system in detail. First, the tonic firing rate in rats is ~1 Hz 

(Aston‐Jones & Bloom, 1981a), while the decay time for GCaMP6s ~1 s for a single event 

(Chen, Wardill, Sun, Pulver, & Renninger, 2013), and slower when nuclear localized. Thus, 

when high‐temporal resolution imaging is required, an indicator with a faster response is 

desirable. Second, NA cells were identified by TH antibody staining and sophisticated large‐

scale image registration ex vivo, limiting its easy adoption and making real‐time observations of 

known cell types impossible. Since the tools for specifically studying the noradrenergic system 

were limited, we set out to build key transgenic tools, validate them, and apply them to look at 

basic features of the structural and functional organization of the NA system, and the LC in 

particular.  

We used the CRISPR/Cas9 system to develop three novel fluorescent reporter lines under control 

of the norepinephrine transporter (NET) gene (slc6a2) promoter. Two of the lines, Tg(net: 

mTdTomato) and Tg(net:mCFP) express membrane‐targeted TdTomato and membrane‐targeted 

Enhanced Cyan Fluorescent Protein (ECFP), and the third, Tg(net:H2B‐GCaMP6f), expresses 

the calcium indicator GCaMP6f (Chen et al., 2013; Dunn et al., 2016).  

We imaged the development of the NA neurons and projections from 24 hours post fertilization 

(hpf) to 5 days post fertilization (dpf) and found dramatic branching of LC neurons between 24 

and 48 hpf. We explored the density of spinal projections (mostly of LC origin (Tay et al., 2011)) 

as a function of the bilateral number of LC neurons and found no correlation between spinal cord 

projection density and neuron count. We found strong association of NA fibers with the known 

columnar organization of glutamatergic neurons in hindbrain, suggesting early orderly 

relationships between patterning in fast transmitters systems and neuromodulatory ones that 

might later be obscured as neurons migrate. Finally, we used fast light sheet microscopy for 

bilateral functional imaging of the entire LC. This revealed synchronous activation of all of the 

neurons in the LC bilaterally for strong calcium responses, in contrast with predominately 

unilaterally synchronous activation for small calcium events, pointing to potential functional 

heterogeneity even in this very small nucleus. Our work opens wider access to the noradrenergic 

system in zebrafish, reveals early developmental patterns that link neuromodulatory development 

to hindbrain patterns underlying circuit construction, and supports the presence of different 

synchronous and asynchronous functional modes in the LC itself.  

2 MATERIALS AND METHODS 

2.1 Fish care 

Zebrafish between 24 hpf and 7 dpf were obtained from a laboratory stock of transgenic Casper 

zebrafish (White et al., 2008). All procedures were in accord with the U.S. National Institutes of 

Health guidelines for animal use in experiments, and were approved by Cornell University's 

Institutional Animal Care and Use Committee.  
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For time‐lapse imaging over several days, larvae were returned to labeled petri dishes containing 

Hanks Buffered Salt Solution (HBSS) and placed in an incubator on a diurnal light cycle. Larvae 

were fed twice daily in the incubator. 

After imaging, larvae were euthanized in tricaine solution (Western Chemical Inc.; 0.6% in 

HBSS) at neutral pH. 

2.2 Transgenic strains 

In addition to the strains created, we used Tg(vglut2:DsRed‐loxP‐GFP) (Miyasaka et al., 2009), 

Tg(glyt2: GFP) (McLean, Fan, Higashijima, Hale, & Fetcho, 2007), Tg(Gad1b:GFP) (Satou et 

al., 2013), and Tg(ETvmat2:GFP) (Wen et al., 2008) reporter lines, all of which had been crossed 

into the Casper strain.  

2.3 Antibody characterization 

Larvae were euthanized in tricaine solution. A modified (Varaga, 2006) whole‐mount protocol 

(Westerfield, 2000) was followed closely. Briefly, 5 dpf embryos were fixed in 4% 

paraformaldehyde (Tousimis) for 30 min following euthanasia, and tissue was permeabilized 

using acetone (Electron Microscopy Services) freezing overnight.  

Noradrenergic neurons were identified by anatomical location and positive staining for tyrosine 

hydroxylase (mouse antiquail tyrosine hydroxylase monoclonal antibody, RRID:AB_528490, 

Cat. No. aTH; deposited to the DSHB by Le Douarin, N./Ziller C; Developmental Studies 

Hybridoma Bank, University of Iowa) at 1:20 dilution. This antibody was raised against 

recombinant TH (aa 60–368)/β‐galactosidase fusion protein. The absence of staining of cells not 

known to be catecholaminergic based on neuroanatomy was used as a negative control. 

After washout, specimens were incubated with an Alexa Fluor conjugated secondary antibody 

(goat antimouse polyclonal IgG antibody, Alexa Fluor 594, RRID:AB_141372, Cat. No. A‐

11005; Life Technologies) at 1:100 dilution (20 μg/mL). This antibody was raised against mouse 

γ‐immunoglobulins heavy and light chains. 

To amplify EGFP, GCaMP6f, and ECFP reporter proteins, an antibody for Green fluorescent 

protein (GFP) (rabbit antigreen fluorescent protein polyclonal antibody, RRID:AB_221570, Cat. 

No. A‐6455, Life Technologies) was used at 1:200 dilution. This antibody was raised against 

GFP isolated directly from Aquorea victoria. The absence of staining of cells not previously 

observed to express reporter proteins was used as a negative control.  

After washout, specimens were incubated with an Alexa Fluor conjugated secondary antibody 

(goat antirabbit polyclonal IgG antibody, Alexa Fluor 488, RRID:AB_143165, Cat. No. A‐

11008; Life Technologies) at 1:100 dilution (20 μg/mL). This antibody was raised against rabbit 

γ‐immunoglobulins heavy and light chains. 

TdTomato fluorescence was sufficiently intact to obviate amplification. 
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2.4 sgRNAs design and preparation 

Guide RNA vectors were created using pDR274 (Hwang et al., 2013) and following a protocol 

described previously (Kimura, Hisano, Kawahara, & Higashijima, 2014). Briefly, synthetic 

oligonucleotide sequences (Integrated DNA Technologies) of the form 5′‐tagg‐N18 and 5′‐aaac‐

N18 (complementary) were annealed and inserted into the BsaI site of pDR274. We targeted the 

NET (slc6a2) promoter region within the first 1 kb upstream of the predicted 5’UTR. The 

sequence for this region was identified in the DKEY‐182H7 clone (GenBank: BX663609.29). 

We used a previously described algorithm (Doench et al., 2014) to identify high‐efficiency target 

regions. We found success using our second trial sequence, N18 = 5′‐atggacacgcctccaagt, which 

we designated as NETsg2. This sequence targeted a PAM site 296 bp upstream of the predicted 

5’UTR. Guide RNA for the Mbait target sequence in the donor plasmids was created using the 

sgM vector described previously (Kimura et al., 2014) (a gift from Shinichi Higashijima). Lists 

of target sequences are provided in Table 1.  

Table 1. List of sgRNA sequences used in line creation  

sgRNA 

designatio

n 

Target sequence Forward oligo (5′–3′) Reverse oligo (5′–3′) 
Successful

? 

NETsg1 agcgtcagtctctcattttctgg taggcgtcagtctctcattttc  
aaacgaaaatgagagactgac

g  
No 

NETsg2 
tcatggacacgcctccaagtcg

g 

taggatggacacgcctccaa

gt  
aaacacttggaggcgtgtccat  Yes 

sgM ggctgctgcggttccagagg n/a n/a Yes 

• Underlined letters denote mismatches between target sequence and the BsaI cloning site 

of the pDR274 cloning vector. Bolded Letters denote the protospacer‐adjacent motif 

(PAM) site. 

• Italicized letters denote the portion of the oligo specific to the BsaI site of pDR274. 

Template DNA was concentrated by PCR amplification using the oligonucleotides 5′‐

aaaagcaccgactcggtg and 5′‐atggtcagtattgagcctcagg and column purification before in vitro 

transcription using the MAXIscript T7 RNA Polymerase Kit (Life Technologies). RNA was 

purified with the RNaqueous Micro Kit (Life Technologies) using the small RNA isolation 

protocol. 

2.5 Single‐cell electroporation 

5 dpf larvae of the Tg(ETvmat2:gfp) strain were anesthetized (0.02% tricaine in HBSS) and 

embedded in 1.6% agarose. Then, 20% w/v (in extracellular solution) AlexaFluor 647 Dextran 

(10,000 MW, anionic, lysine fixable; Molecular Probes) was delivered through a patch 

micropipette by electroporating single target cells of the LC using 1‐ to 5‐s trains of 5‐V, 300‐ms 

pulses at 240 Hz. 2PEF imaging was completed immediately following electroporation.  

2.6 Creation of donor plasmids 
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Donor plasmids were created by replacing the dsRed, loxP sites, and kanamycin resistance gene 

from the Mbait‐hs‐lrl‐GFP plasmid described previously (Kimura et al., 2014) (a gift from Shini‐

ichi Higashijma) with a reporter of our choosing. This plasmid contains the Mbait target 

sequence for Cas9 digestion and a minimal hsp70 promoter sequence for enhancement of 

expression. Briefly, the Mbait‐hs‐lrl‐GFPbackbone was PCR amplified using primers containing 

at least 10 bp overhanging the 5′ and 3′ ends of the reporter to be inserted. The amplicon 

contained the MBait target sequence, hsp70, and plasmid backbone while removing all previous 

reporter proteins. The desired reporter was PCR amplified from existing plasmids using primers 

containing at least 10 bp overhanging the 5′ and 3′ ends of the modified backbone. This design of 

primers resulted in 20 bp of overlap at each end of the backbone and reporter insert. Complete 

lists of all primers used are provided in Table 2. Gibson assembly (New England Biolabs) was 

used to insert the new reporters and circularize the plasmid.  

Table 2. List of primers used for donor plasmids  

Amplicon Forward primer (5′‐3′) Reverse primer (5′‐3′) 

zGap43‐ECFP gatcgaaagcatgctgtgctgcatcagaag tcgtccatgccgagagtg 

rGap43‐TdTomato gatcgaaagcatgctgtgctgtatgagaagaacc cgcggccgctttacttgtacagctcgtccatgc 

H2B‐Gcamp6f gatcgaaagcatgccagagccagcgaa cgcggccgcttcacttcgctgtcatcatttgtac 

MBait plasmid 

backbone: zGap43‐

ECFP insert 

gcatggacgagctgtacaagtaa agcacagcatgctttcgatccactagatttcaag  

MBait plasmid 

backbone: rGap43‐

TdTomato insert 

gtacaagtaaagcggccgcgactctaga  agcacagcatgctttcgatccactagatttcaag  

MBait plasmid 

backbone: H2B‐

GCamp6f insert 

agcgaagtgaagcggccgcgactc  gctctggcatgctttcgatccactagatt  

• Bolded letters reflect the sequence corresponding to the reporters. Standard font letters 

correspond to the MBait hsp70 donor plasmid backbone sequence. 

We created three reporter donor plasmids using this approach. The first used the zebrafish Gap43 

(zGap43) protein fused to enhanced cyan fluorescent protein (ECFP), resulting in a membrane‐

targeted ECFP expression. The second utilized the rat Gap43 (rGap43) sequence fused to 

TdTomato, resulting in membrane‐targeted TdTomato expression. The third donor plasmid 

utilized a H2B‐Gamp6f (Dunn et al., 2016) plasmid (a gift from Misha Ahrens) containing the 

nuclear‐localized GCaMP6f (Chen et al., 2013) reporter.  

DNA was column‐purified using the EZNA Plasmid Mini Kit (Omega Bio‐Tek). 

2.7 Microinjection 

Single‐cell embryos from the Casper line were simultaneously injected with Cas9 protein (PNA 

Bio, Inc.), Mbait sgRNA, NET sgRNA, and one of the donor plasmids described above. The 

final concentration of constituents was as follows: ~500 ng/μL Cas9 protein, ~30 ng/μL of each 



7 
 

sgRNA, and ~6 ng/μL of the donor plasmid. Embryos were screened at 2–3 dpf for widespread 

expression in the LC, medulla oblongata, and area postrema.  

2.8 Insertion mapping 

Embryonic genomic DNA was collected from 4 dpf embryos and column‐purified using the 

EZNA MicroElute Genomic DNA Kit (Omega BioTek). A primer in the hsp70 element (5′‐

acctcgtcggggaaaaagtc) paired with either a primer in the forward orientation 5′ upstream to the 

target site (5′‐ccctcaacaaatgtaacacagtca) or a primer in the reverse orientation 3′ downstream to 

the target site (5′‐cgttagggtaagtcatgtcggg) were used to detect forward and reverse insertion 

respectively. PCR products were cloned into the Zero Blunt TOPO PCR cloning vector (Life 

Technologies) and sequenced using M13 forward primers. In all founder fish, we observed 

forward orientation insertion. Details of the cut site and indel formation are described in Table 3.  

Table 3. Insertion mapping of donor DNA  

Line Sequence 
Cut site relative to 

target (bp) 

Insertion 

length (bp) 

Net: mCFP …acacgcctggggcc…  −7 0 

Net: 

mTdTomato 
…acacgcctgcggtgcaggtggggcc…  −6 10 

Net: H2B‐

GCamp6f 
…atcccattccagggaggttccaggtggggcc…  −24 16 

• Sequencing of CRISPR lines showed the integration of the donor plasmid (bolded) into 

genomic DNA (standard), including the presence of insertions (italicized) in two of the 

three lines. 

2.9 Wide‐field fluorescence and embryo screening 

Wide‐field fluorescence was performed on a microscope with epi‐fluorescence capabilities 

(BX51WI; Olympus). Transgenic embryos of all strains were screened by eye for TdTomato, 

dsRed, and GFP. ECFP‐expressing embryos were screened with the aid of a camera (QICAM IR 

FAST; Q Imaging). 

2.10 2PEF imaging 

2PEF imaging of living larvae was performed on a custom‐built multiphoton microscope using 

open‐source ScanImage software (Pologruto, Sabatini, & Svoboda, 2003). Briefly, zebrafish 

larvae were anesthetized in tricaine solution (0.02% in HBSS) and embedded in low‐melting 

point agarose (Sigma‐Aldrich; 1.6% in HBSS). Imaging was performed at multiple wavelengths 

between 800–950 nm depending on fluorophore combination, with excitation provided by a 

Chameleon Ti:Sapph laser (Coherent). High‐numerical‐aperture imaging was performed using a 

Nikon (Apo LWD 25;Nikon) objective. Imaging sessions lasted approximately 30 min.  



8 
 

Unless otherwise noted, images were taken with depth increments of 1 μm. Resolution in the xy‐

plane varied.  

2.11 Light sheet fluorescence microscopy (LSFM) imaging 

LSFM imaging was performed on a custom‐built light‐sheet microscope based on the design of 

and employing software provided by Misha Ahrens (Ahrens, Orger, Robson, Li, & Keller, 2013; 

Dunn et al., 2016; Freeman et al., 2014). Briefly, a single illumination arm was used to provide 

488‐nm light for calcium imaging of the Tg(net:H2B‐GCaMP6f) strain. A 4× Olympus (XL 

Fluor 4×) lens (Olympus) was used for illumination and a 16× Nikon (LWD 16×) lens (Nikon) 

was used for fluorescence collection. A Hamamatsu Orca Flash camera (4.0) (Hamamatsu) was 

used to collect images.  

Fish were paralyzed by immersion in alpha‐bungarotoxin (20% diluted in HBSS, Biotins, Inc.) 

for approximately 4 min and then transferred back into HBSS. After waiting about 15 min for the 

paralysis to take effect, the fish were mounted in low‐melting point agarose (Sigma‐Aldrich; 2% 

in HBSS) in a custom built imaging chamber and then covered with HBSS. 

Spontaneous calcium activity was imaged 1,000 times over approximately 4.5 to 7 min. Fish 

were imaged at 5 um depth increments, for 50–100 um in order to encompass all of the LC. 

Speed of imaging ranged from 2.4–3.7 stacks/s depending on the total depth of the stack. 

2.12 2PEF image processing 

Image analysis of 2PEF images was performed using a combination of FIJI/ImageJ software and 

custom‐Matlab (Mathworks Inc.) code. Two‐dimensional images of three‐dimensional stacks 

were created by making average or maximum intensity projections in the z‐direction, typically 

ranging between 20–100 μm. Images shown in their native xy‐orientation were otherwise 

unprocessed.  

• For images showing transverse sections (yz‐planes), images were filtered using a three‐

dimensional (3D) median filter with radii corresponding to 0.5 μm in all directions. 

Sections were then projected along the x‐direction in approximately 20 or 40 μm sections.  

• To remove aliasing effects when rotating images, all images in Figure 4 were median 

filtered with a radius of 2 pixels.  

• For sagittal sections (xz‐planes) in Figure 2, images were down‐sampled in the xy‐plane 

by a factor of 2 with pixel averaging (1,024 × 1,024 to 512 × 512) and frames were 

stitched together using 3D image stitching plugins in FIJI (Preibisch, Saalfeld, & 

Tomancak, 2009). Images were then virtually resliced and projected to give xz‐profiles 

(i.e., virtual sagittal sections). Images were scaled with interpolation in the z‐dimension to 

give an aspect ratio of 1.  

• To measure neurite density, a ~10 μm section of the spinal cord just caudal to the area 

postrema was selected. A 3D Gaussian blur (1 × 1 × 2) filter was imposed to improve 

tracing outcomes. Neurites were traced manually in 3D using the Simple Neurite Tracer 

plugin to FIJI (Longair, Baker, & Armstrong, 2011). Only neurites that entered the rostral 
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end of the image and exited the caudal end were considered, thus excluding commissural 

and terminal processes.  

• 3D Sholl analysis of single electroporated LC neurons was performed using a 

combination of custom‐Matlab code and Imaris (Bitplane) software. Neurites were traced 

three dimensionally as filaments and the location of the soma was marked in Imaris. The 

filament data was exported to Matlab. Concentric spheres of increasing radii and centered 

on the cell soma were constructed and the number of neurites crossing the surface was 

evaluated from the filament trajectories. 

2.13 LSFM image processing 

Image analysis of LFSM images was performed using Matlab and Imaris software. To eliminate 

images containing LC responses at light onset during imaging, the first 50 stacks in the data set, 

representing the first 13–20 s of data, were removed from analysis. The remaining 950 stacks, 

were registered in three‐dimensions using custom‐written code in Matlab. 

After image registration, a 3D maximum intensity projection over time of the images was created 

using Imaris software. LC neurons were easily identified by their brightness, and 4.1 × 4.1 × 8 

um oval volumes indicating regions of interest were placed on the LC neuron locations. Oval 

volumes were transferred from the max projection onto the whole registered dataset, and it was 

confirmed manually that there were no data points where the ovals left the cells. Mean 

fluorescence was measured within each volume. 

We calculated the normalized fluorescence change ([F − F0]/F0) for each cell trace. To compute 

the baseline fluorescence, F0, each trace was smoothed using a moving average of 10 data points. 

The 30th percentile of a 100‐point window of this smoothed curve was used as the moving 

baseline, F0.  

Since our sampling rate was at the limit of the temporal resolution of our signal, we were 

cautious in our approach to which calcium signals we used for our assessment of synchrony. 

First, we overlaid calcium traces from all LC neurons. From these traces, the maximum signal 

from all cells at all time points was extracted and used to generate a new “maximum intensity” 

trace (see Supporting Information Figure S1). To obtain well‐separated peaks, this trace was 

automatically screened in Matlab for local maxima according to peak width and prominence. 

Only local maxima in this curve with a peak prominence of at least 0.2 and a width of at least 

three frames using Matlab were considered for further consideration. This was done to assure 

that at least one of the imaged NA cells had clear calcium kinetics in the individual events used 

to assess synchrony. This approach was conservative, so some potential calcium events, where 

the response of even the cell with the largest fluorescence change was modest, were likely 

excluded (e g. right most peak in Supporting Information Figure S1). Peak prominence—a 

measure of how well a local maxima stands out compared to surrounding data—was preferred to 

hard‐thresholding of peak size since it allowed us to include local maxima without reference to 

baseline fluorescence. The criteria of peak width ensures that the kinetics of the calcium peak 

can be resolved. With these automatically identified peaks from the maximal curve, we then 

manually verified from the individual cell traces that these peaks had kinetics characteristic of 

calcium indicators so as to account for artifacts introduced into our “maximum intensity” curve. 
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The result of our automated screen was that calcium events with ([F − F0]/F0) < 0.2 were 

excluded.  

The cell with the largest peak at a given time was identified as our template cell (see Supporting 

Information Figure S2), and a template cell was determined independently for each observed 

fluorescence increase in the traces. An interval of time spanning the event, (t1,t2), was then 

selected manually. Using the calcium trace of the template cell, T0(t), we then computed an 

intensity‐independent similarity index:  

(1) 

where:  

(2) 

and  

(3) 

for j between 1 and N − 1, where N is the total number of cells imaged. We also subtracted the 

minimum value of each signal to eliminate negative values over the window of interest. This 

allowed us an objective means of determining cell synchrony amongst cells with different 

calcium amplitudes. Highly similar traces result in a value close to one and dissimilar traces in a 

value near 0. In most cases, the synchrony or asynchrony was obvious (see Figure 6c,e). To 

distinguish borderline cases, we needed an objective cutoff. As such, we heuristically determined 

that a similarity index of 0.7 resulted in appropriate categorization when the 

synchronicity/asynchronicity was clear. For reference, in Figure 6e, the right LC neurons had a 

similarity index with the template cell of between 0.48 and 0.62 while the left LC neurons were 

between 0.95 and 0.98. Cells with a similarity metric above the 0.7 cutoff were deemed 

“responsive” while cells below this cutoff were deemed “unresponsive.” The percent of LC cells 

responding bilaterally was then calculated.  

3 RESULTS 

3.1 Fluorescent reporters inserted upstream of the NET (slc6a2) gene show strong 

expression in NA neurons 

We constructed donor plasmids (Figure 1a) containing a target PAM site (MBait), a minimal 

hsp70 promoter (hsp70), and membrane‐targeted TdTomato or ECFP reporters. These donor 

plasmids were co‐injected into hundreds of single‐cell embryos of the Casper strain with NET 

sgRNA, MBait sgRNA, and Cas9 protein. Embryos were screened at 3–5 dpf for widespread 

fluorescent reporter expression, with an approximate 2–4% success rate. Single founder fish 

were isolated, and this F0 generation was crossed back into the Casper mutant background strain 

to create stable lines. Sequencing of the F1 generation (Figure 1b) showed the insertion of the 

donor plasmid beginning at the plasmid PAM site. Insertion occurred 7 bp upstream of the 

genomic DNA PAM site for Tg(net:mCFP) and 6 bp upstream for Tg(net:mTdtomato). The 

genomic PAM site was 269 bp upstream of the 5’UTR for the gene slc6a2. For 

Tg(net:mTdTomato), a small indel was present between the genomic DNA and the donor 
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plasmid. Robust expression of both reporters was readily seen in wide‐field fluorescence 

microscopy (Figure 1c). Using 2PEF microscopy, cell somas (yellow arrows) were clearly 

visible in the medulla oblongata/area postrema (Figure 1d) and LC (Figure 1e), and processes 

were easily distinguished throughout the CNS.  

 
Figure 1  

Open in figure viewerPowerPoint 

Cas9/CRISPR‐mediated nonhomologous end‐joining insertion of donor plasmids upstream of 

predicted slc6a2 5’UTR generates NA‐reporter lines. Donor plasmids (a) containing the MBait 

target sequence, a minimal heat shock promoter, and a membrane‐targeted fluorescent reporter 

were coinjected with Cas9, an MBait sgRNA, and an sgRNA targeted approximately 300 bp 

upstream of the 5’UTR for slc6a2 (NET). Sequencing (b) revealed insertion near the target 

location with (TdTomato) and without (ECFP) small insertions. Deletions were present in both 

cases. Robust expression of ECFP (c; 4 dpf) and TdTomato (d,e; 6 dpf) was seen throughout the 

fish. Cell bodies were visible in the medulla oblongata, area postrema (d, yellow arrows) and LC 

(e, yellow arrows). Immunostaining (f–j) showed strong overlap between TH and reporter cells 

in the LC (f, orange boxes; g) and in the area postrema/medulla oblongata (h). TH but not 

reporter was seen in the dopaminergic diencephalon, as expected (j). Regions of reporter 

expression without TH expression were large blood vessels (e, f, green arrows), weakly 

https://onlinelibrary.wiley.com/cms/attachment/6ba7c977-135b-41ef-8d28-35c05bcb7d25/cne24508-fig-0001-m.jpg
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expressing cells proximal to the LC (g, orange arrows) and an unidentified group of cells near 

the dorsal surface of the brain (i) [Color figure can be viewed at wileyonlinelibrary.com]  

To verify that our strain captured expression in NA cell populations, we performed whole‐mount 

immunofluorescence using primary antibodies to GFP (Figure 1f–j; top) and antityrosine 

hydroxylase (TH) in Tg(net:mCFP) larvae at 5 dpf (Figure 1f–j; middle) (n = 3 larvae). Anti‐TH 

staining was also performed in Tg(net:mTdTomato) larvae (n = 3 larvae). No antibody staining of 

the TdTomato was necessary, as the protein remained bright after tissue processing. Overlays 

(Figure 1f–j; bottom) revealed co‐localization of fluorescent reporters with TH expression in the 

LC (Figure 1f,g) and in the area postrema (Figure 1h), but not the dopaminergic ventral 

diencephalon (Figure 1j). In contrast to the strong expression seen in colocalized cells, weaker 

expression was seen in some blood vessels (Figure 1f), non‐TH‐expressing cells in the region of 

the LC (Figure 1g, orange arrows), and in a population of cells of unknown ontogeny and 

neurotransmitter phenotype dorsal to the LC and proximal to the surface of the brain (Figure 1i, 

yellow box).  

3.2 NA‐processes show juxtaposition with glutamatergic neurons in hindbrain, 

particularly in rhombomere 6 

Synergistic interactions between NA neurons and glutamatergic neurons have been described 

previously (Egli, Kash, Choo & Savchenko, 2005; Pralong & Magistretti, 1995; Takahashi, 

Hayashi, & Tanaka, 2017; Tsuda, Tsuda, Nishio, Masuyama, & Goldstein, 1994; Yuen et al., 

2014; Zhang, Carreno, Cunninghman, & Mifflin, 2009). The hindbrain is organized into columns 

by morphological classes of neurons expressing particular transmitter phenotypes (Kinkhabwala 

et al., 2011). The new transgenic lines allowed us to explore the relationship between NA 

processes and the known ground plan of neuronal classes in hindbrain. We crossed the 

Tg(net:mCFP) with Tg(vglut:dsRed‐loxP‐GFP) and used 2PEF to visualize the relationships of 

NA processes with glutamatergic cell bodies and neuropil (Figure 2) in the hindbrain of 5 dpf 

larvae (n = 4). We resliced our image stacks and examined overlap at various locations (Figure 

2a) in the hindbrain (Figure 2b–j). We visualized 15 μm (Figure 2c–i,k) or 30 μm (Figure 2b,j) 

cross sections beginning at the LC in rhombomere 1 (Figure 2b) and ending at the beginning of 

the spinal cord (Figure 2k). The NA processes in rhombomeres 5–7 were located in the ventral 

neuropil and formed repeated bands that aligned with the axis of the glutamatergic columns that 

fell above them (Figure 2e–i). Dendrites of glutamatergic neurons ramify in these regions, 

suggesting stronger interactions between NA and some hindbrain cell types, in particular 

glutamatergic ones.  
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Figure 2  

Open in figure viewerPowerPoint 

Simultaneous imaging of glutamatergic and noradrenergic cells using crossed reporter lines. 

Two‐photon z‐stacks of 5 dpf larvae from Tg(vglut:dsRed‐loxP‐GFP) x Tg(net:mCFP) were 

stitched together and virtually resliced to show patterns of expression along the body axis (a). 

Reslicing to show transverse projections revealed the relations between NA projections and 

glutamatergic neurotransmitter stripes (e–i) [Color figure can be viewed at 

wileyonlinelibrary.com]  

To explore the relationship of NA with neurons of different transmitter phenotypes in hindbrain, 

we crossed Tg(net:mCFP) with a glutamatergic reporter line Tg (vglut:dsRed‐loxP‐GFPs; Figure 

3a), a GABAergic reporter line Tg(gad1b:RFP; Figure 3b), and we crossed our Tg(net:mCFP) 

(n = 4 larvae; not shown) and Tg(net:mTdTomato) (n = 2 larvae) lines with a glycinergic reporter 

line Tg(glyt2:GFP; Figure 3c). Fish were imaged using 2PEF microscopy at 5 dpf. Since both 

NA processes and neurotransmitter stripes showed strong localization in rhombomere 6, we 

examined 15 μm sections in rhombomere 6, just caudal to the otic vesicles. We overlaid the axis 

of the stripes (Figure 3, yellow dashed boxes) with the NA processes. Strong overlap was seen 

with all glutamatergic stripe axes, but not with those for GABAergic or glycinergic neurons. We 

also saw NA processes adjacent to ventral‐lying glutamatergic cell bodies; these glutamatergic 

https://onlinelibrary.wiley.com/cms/attachment/d024447b-818c-43e1-b8ab-74cf7904ff89/cne24508-fig-0002-m.jpg
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neurons arise in the columns dorsally and migrate to a ventral location. These observations 

suggest that the known columnar origin of hindbrain cell types is also tied, at least in some brain 

regions, to an orderly patterning of neuromodulatory projections (Kinkhabwala et al., 2011).  

 
Figure 3  

Open in figure viewerPowerPoint 

Comparison of various neurotransmitter stripes' orientation with NA projections. Two‐photon 

images of rhombomere 6 of 5 dpf larvae virtually resliced to show orientation of NA processes 

(first column) with glutamatergic (a), gad1b (b), and glycinergic (c) neurotransmitter stripes. 

Stripe orientation is indicated by yellow dashed boxes. Ventral‐lying cell bodies are visible in 

vglut:dsRed and gad1b:RFP but not glyt2:GFP larvae [Color figure can be viewed at 

wileyonlinelibrary.com]  

3.3 NA neurons show proliferation, migration, and ramification of processes with 

age 

To follow the development of NA neurons and processes, we performed 2PEF imaging in 

zebrafish larvae (n = 4 larvae) from 1 to 5 dpf (Figure 4). We considered rostral‐caudal 

maximum intensity projections of 50 μm in the LC (Figure 4a), 10 μm in the medulla oblongata 

(Figure 4b), 35–40 μm in the area postrema (Figure 4c), and 5 μm in the optic tectum (Figure 

https://onlinelibrary.wiley.com/cms/attachment/50068dcd-983b-4eb4-b2ae-1cebcf73e150/cne24508-fig-0003-m.jpg
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4d). We considered 70 μm dorsal–ventral projections in the spinal cord (Figure 4e). Images in 

Figure 4 from 2 to 5 dpf are from the same animal.  

• In the LC (Figure 4a), we saw increases in labeled cells between 1 and 2 dpf. NA 

contributions to the posterior commissure (yellow arrows) formed between 2 and 3 dpf 

and included more processes with increasing age.  

• In the medulla oblongata (Figure 4b), we saw strong association between glutamatergic 

transmitter stripes and NA processes (green arrows) as early as 2 dpf, with the overlap 

continuing throughout the timeframe of observations. The fibers also overlapped with 

glutamatergic cell bodies that had migrated ventrally.  

• At the location of the area postrema (Figure 4c), we saw patterns that suggest a ventral‐

dorsal and lateral‐medial migration of NA neuron cell bodies (white arrows).  

• Innervation of the optic tectum (Figure 4d) increased dramatically with the size of the 

tectal neuropil.  

• In spinal cord (Figure 4e), contralateral projections (orange arrows) were seen to develop 

between 2 and 3 dpf, and developed more fully elsewhere (Figure 4a–d) in this time 

period as well.  

 
Figure 4  

Open in figure viewerPowerPoint 

Transgenic lines show development of NA neurons through time‐lapse 2 photon imaging. 

Reconstructed time‐lapse 2 photon images of the LC (a), medulla oblongata (b), area postrema 

(c), optic tectum (d), and spinal cord (e). NA fibers joining the posterior commissure (a, yellow 

arrows) were visible at day 3. NA fibers were associated ventrally with glutamatergic neurons 

displaced from the stripes by migration (b, green arrows). NA cells in the area postrema 

appeared to shift from a ventrolateral to dorsomedial position (c, white arrows). Commissural 

https://onlinelibrary.wiley.com/cms/attachment/08dea725-fe35-4395-acfb-5b4b2b190639/cne24508-fig-0004-m.jpg
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processes (orange arrows) were prominent at 3 dpf and beyond [Color figure can be viewed at 

wileyonlinelibrary.com]  

3.4 NA spinal cord neurite density and LC ramification proximal to the soma do 

not vary with LC neuron count 

Previous studies have reported large variation in the number of LC neurons in zebrafish (Ma, 

1994) as well as the relative fractions of individual LC neurons projecting to target regions (Tay 

et al., 2011). We looked for some potential changes in NA process ramification in response to 

high or low numbers of LC neurons to ask whether fish with more LC neurons might have 

individual neurons that branch less and thus maintain a similar level of neuromodulatory 

processes. Since cytosolic‐labeled somas are more readily distinguished from each other than 

membrane‐targeted labels, we used the Tg(ETvmat2:gfp) reporter line to quantify variation in 

LC neuron numbers (Figure 5a) in larvae at 5–7 dpf (n = 55 larvae). We readily identified LC 

somas anatomically and confirmed the complete overlap of EGFP and TH by antibody staining 

(Figure 5b; n = 9 fish). LC neurons are anatomically well‐separated from other monaminergic 

neurons labeled in this line. Bilateral LC numbers ranged from 9 to 20, in line with prior reports 

(Ma, 1994).  

 

https://onlinelibrary.wiley.com/cms/attachment/d895890f-8364-4e66-ad34-063ff7859458/cne24508-fig-0005-m.jpg
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Figure 5  

Open in figure viewerPowerPoint 

Projection density and LC neuron count. Larvae at 5–7 dpf in multiple clutches of 

Tg(ETvmat2:Gfp) showed a wide distribution in the number of bilateral LC neurons (a). 

Antibody staining with anti‐TH and anti‐GFP showed complete overlap of transgenic labeling 

within the LC (b). Single‐cell electroporation (c) with Alexa Fluor 647 dextran enabled 

reconstruction of proximal LC neuron projections. Reconstructions (d) of the cell bodies (purple 

circles) and projections (black lines) were constructed for cells with varying numbers of neurons. 

Larger processes were visible for hundreds of microns from the soma (e, yellow arrow), with 

clear projections near the contralateral LC (blue arrow) and distal sites (red arrow). Projections 

were analyzed by Sholl analysis proximal to the soma. Two‐photon images of the spinal cord 

sections were traced in three dimensions. Virtually reslicing the reconstruction allowed spinal 

projections to be viewed in cross section (g; top) and counted (g; bottom). The total number of 

projections was counted (h, blue data points) and used to compute an area density (h, orange data 

points) and plotted as a function of bilateral LC neuron count in 5–6 dpf larvae (n = 16 fish) 

[Color figure can be viewed at wileyonlinelibrary.com]  

We first assessed whether individual neurons (Figure 5c,d) in fish with varying numbers of LC 

neurons showed variation in branching proximal to the soma by single‐cell electroporation of 

AlexaFluor 647 dextran (Figure 5c,e) in 5 dpf larvae. We quantified branching using 3D Sholl 

analysis (Figure 5f). We saw no systematic variation of branching structure across fish with few 

(8–10, n = 4 larvae), intermediate (11–14, n = 8 larvae), or many (15–19, n = 3 larvae) LC 

neurons. Figure 3f shows the average curve for the group (solid line) along with the minimum 

and maximum bounding curves (shaded area).  

To assess whether the density of spinal projections was affected by LC neuron count, we crossed 

Tg(ETvmat2:gfp) fish with Tg(net:mCFP) fish and imaged at 5 dpf. The bright EGFP‐containing 

soma made for robust quantification of distinct LC neurons, while the membrane‐targeted ECFP 

allowed for quantification of neurites. All LC soma were EGFP‐ and ECFP‐positive (n = 16 

fish). We assessed the number of processes in the spinal cord by manually tracing and counting 

processes in three dimensional stacks. An example of a coronal cross section with identified 

axons as shown in Figure 5g. The spinal cord was chosen both for the ease of analysis and 

because it has been previously shown (Tay et al., 2011) that 40–60% of LC neurons project to 

the spinal cord while only 10% or fewer medulla oblongata/area postrema neurons project there. 

We saw no correlation between LC neuron count and process density in spinal cord (Figure 5h).  

3.5 LC neurons show strong synchrony for large calcium events and ipsilateral 

synchrony for smaller calcium events 

High‐speed light sheet microscopy of zebrafish larvae offers the possibility of imaging the 

activity of every LC neuron bilaterally, which is not yet possible in mammals. To explore 

activity patterns across the LC, we created a nuclear‐targeted GCaMP6f line with the donor 

sequence inserted upstream of the 5’UTR for slc6a2 using an analogous approach to the 

membrane‐targeted reporter lines. Insertion occurred 24 base pairs upstream of the target PAM 

site, and a small indel was present in our founder line (see Table 2 for details). Reporter fidelity 

was confirmed by anti‐TH and anti‐GFP antibody staining (Figure 6a) which confirmed 
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complete overlap of TH‐positive cells in the LC region with the reporter (n = 5 larvae), including 

cells distal to the main nucleus cluster (yellow arrows).  

 
Figure 6  

Open in figure viewerPowerPoint 

Bilateral LC neuron calcium imaging with light sheet microscopy. Antibody labeling (a) showed 

complete overlap of reporter expression with TH expression in the Tg(net:H2B‐GCaMP6f) 

transgenic line, including cells distal to the main cluster (yellow arrows). Simultaneous bilateral 

LC calcium imaging allowed us to calculate images (b and d) and traces (c and e) of fluorescence 

relative to baseline. Completely synchronous calcium events (b and c) were observed bilaterally, 

while asynchronous events were seen to vary across the body (d and e). Note the difference in 

the time axis between c and e. Events shown in (b) and (c) are from different animals; events in 

(d) and (e) correspond to the same event. The degree of synchrony versus event amplitude was 

considered (f), where amplitude was defined as the largest peak amongst the traces from 

individual cells. Large‐peak (c; f top arrow) and small‐peak (e; f bottom arrow) calcium events 

showed differing degrees of synchrony. For events with less than 100% of the cells responding 

given our criteria (f; red dashed box), all of the nonresponsive cells were contralateral to the cell 

with the largest peak (g) [Color figure can be viewed at wileyonlinelibrary.com]  

https://onlinelibrary.wiley.com/cms/attachment/517bee96-7f4d-4d10-9dc9-91d26a333c30/cne24508-fig-0006-m.jpg


19 
 

We were particularly interested in the extent to which LC neurons showed synchronous or 

asynchronous activity across the entire population, as it might reflect the ability to 

neuromodulate widely via activation of the entire population, or more locally through activation 

of restricted neuronal subsets. We imaged the spontaneous activity of LC neurons bilaterally, 

avoiding LC responses to excitation light onset (see Materials and Methods). LC neurons had 

spontaneous calcium events that varied across the population (Figure 6b–e). We identified 

calcium transients where the peak prominence in Δ F/F0 of the template cell, defined as the cell 

with the greatest peak value of Δ F/F0 (see Materials and Methods), was above 0.2. To quantify 

synchrony as an intensity‐independent metric, we computed a similarity index, S, as described in 

methods, and determined the percent of LC neurons that were synchronously active for 

individual calcium events (see Materials and Methods for details).  

The entire LC neuronal population was often bilaterally synchronously active (Figure 6b,c) with 

very similar event waveforms in all the neurons. The likelihood of bilateral synchrony rose with 

an increase in calcium event amplitude (Figure 6f). In the case of events where not every LC 

neuron was activated bilaterally (Figure 6d,e), we always observed synchrony on the side 

containing the neuron with the biggest calcium response (ipsilateral), with the number of neurons 

responding on the contralateral side varying from 0 to 80% (Figure 6g). In summary, for the 

largest calcium events, we saw bilateral synchrony. For smaller calcium events closer to our 

detection threshold, we always observed ipsilateral synchrony, with the degree of contralateral 

synchrony varying considerably.  

4 DISCUSSION 

We created NA‐specific fluorescent reporter zebrafish lines that allow for the exploration of NA 

structure, activity, and development throughout the entirety of the CNS. This system is especially 

tractable for studies of the LC because the LC is less than 20 neurons in size bilaterally. Using 

CRISPR techniques, we were able to create stable fluorescent reporter lines under the control of 

the endogenous (predicted) norepinephrine promoter. These lines were then imaged with 2PEF 

to provide high‐spatial resolution imaging of the NA system in the context of glycinergic, 

glutamatergic and GABAergic neurons and time‐lapse imaging of NA development. Our 

calcium‐indicator line was combined with high‐speed light sheet microscopy to provide high‐

temporal resolution, bilateral LC imaging revealing the heterogeneity in bilateral LC activity. 

Our results were obtained on the background of the Casper zebrafish (White et al., 2008) to 

remove pigment that interferes with the imaging of the live animal. While we cannot rule out 

subtle effects of the pigment mutations, we find that the number of LC neurons (Ma, 1994) and 

the essential features of the development of processes match prior work using histological 

approaches in wild type larvae (McLean & Fetcho, 2004).  

4.1 Transgenic strains show high‐fidelity reporting 

Our antibody staining showed complete overlap of fluorescent reporters in our Tg(net:XFP) lines 

with TH‐positive cells in regions known to contain NA neurons, including the LC, medulla 

oblongata, and area postrema. We did not see reporter expression in known non‐NA 

catecholaminergic neurons. Interestingly, we did see weak reporter expression in TH‐negative 

cells in the vicinity of the LC, and in blood vessels. There are several possible explanations for 
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this observation. One explanation is that there is a small amount of nonspecific expression, in 

part due to the inclusion of the minimal hsp70 promoter region in our insert. While this is 

possible, the observation of expression in blood vessels is consistent with the findings of NET 

expression in capillary endothelial cells in the mouse brain (Wakayama, Ohtsuki, Takanaga, & 

Hosoya, 2002). Moreover, given that NA‐release is known to be autoinhibitory (Aghajanian, 

Cedarbaum, & Wang, 1977; Andrade & Aghajanian, 1984; Callado & Stamford, 1999; 

Cedarbaum & Aghajanian, 1978), it is conceivable that neurons near the LC would show 

expression of a neuromodulator reuptake protein. At the time of writing, an antibody has not yet 

been identified for NET in zebrafish, so we cannot directly explore its endogenous expression.  

4.2 Glutamatergic neuron relationships with NA processes in rhombomeres 5–7 

suggests cell type specific interactions 

We saw strong relationships between NA‐processes and the columnar organization of neuronal 

cell types in hindbrain (Kinkhabwala et al., 2011). Seen most clearly in rhombomere 6, NA 

processes in the ventral neuropil aligned with the glutamatergic cell columns and associated with 

glutamatergic cell bodies that had already migrated ventrally into the neuropil. These striking 

associations might tie neuromodulatory systems to neurons with particular structural and 

transmitter phenotypes early in development. This could act to shape functional properties of 

particular neuronal types early in life, and perhaps even later, given the continued association we 

observe with glutamatergic neurons after they have migrated. Evidence that neuromodulators can 

shape development and migration (Crandall et al., 2007; Riccio et al., 2008; Riccio et al., 2012) 

also raises the possibility that the associations we observe are tied to particular developmental 

patterns in the associated hindbrain columns. These relationships point to some very targeted 

interactions between neuromodulatory systems and specific classes of neurons that may not be so 

obvious later in life when neurons of different transmitter phenotypes intermingle post‐

migration. In addition, these findings may bear on the evaluation of ideas such as the “Glutamate 

Amplifies Noradrenergic Effects” (GANE) model (Mather, Clewett, Sakaki, & Harley, 2015), in 

which positive feedback loops are generated between local glutamate and norepinephrine release 

at so‐called “NE hotspots.”  

4.3 NA development shows increased ramification and commissural branching 

with time 

Our observations of time of differentiation and elaboration of axonal projections of NA neurons 

during development were in substantial agreement with previous work (Kastenhuber et al., 2010; 

McLean & Fetcho, 2004), which has been summarized elsewhere (Schweitzer et al., 2012). 

Methodologically, our studies differ in that we performed time‐lapsed in vivo imaging in the 

same fish and used transgenic reporters in contrast to immunofluorescent techniques described 

previously. The availability of the reporter lines of course provides an opportunity to use 

zebrafish to explore directly how the dynamics of the development of the system might be 

altered in mutant fish and disease models.  

4.4 NA neurite projection density suggests patterns of ramification of LC 

neuronal processes 
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Supernumerary LC neurons are associated with the quaking (qk) mutant mouse (Maurin, Berger, 

Le Saux, Gay, & Baumann, 1985), and the loss of LC neurons is associated with Parkinson's 

disease (Newman et al., 2006; Rommelfanger et al., 2007; Rommelfanger & Weinshenker, 2007) 

and Alzheimer's disease (Heneka et al., 2010; Kong et al., 2010; Tomlinson et al., 1981; 

Weinshenker, 2008). Our observations of huge variation in LC number between individual 

zebrafish agree with both the previous studies (Ma, 1994) in zebrafish and the variations of more 

than 50% observed in both rats (Goldman & Coleman, 1981) and humans (Manaye et al., 2011; 

Manaye, McIntire, Mann, & German, 1995). The variation in LC number and/or subsequent loss 

raises the question of how differences in the absolute number of LC neurons affect CNS 

innervation. However, the effect of LC neuron count on the NA projections has not—to the best 

of our knowledge—been studied previously.  

Owing to the tractable number of neurons to analyze and the ability to image the entire CNS, our 

transgenic strains combined with 2PEF microscopy provided a platform to evaluate this question 

in a vertebrate. We explored the projection patterns of LC neurons in fish with few (~10) and 

many (~20) LC neurons within genetically similar populations. Based on previous studies of 

supernumerary Mauthner cells (Liu, Gray, Otto, Fetcho, & Beattie, 2003) that showed decreased 

axon collaterals with increasing neuron count, we hypothesized that an increased number of LC 

neurons would similarly result in a diminished ramification of LC neurites near the soma. In 

contrast to our prediction, tracings of individual dye‐electroporated LC neurons showed no 

difference in branching proximal to the soma between fish with few and fish with many total LC 

neurons.  

Using our transgenic reporter lines, we further found that there were no systematic differences in 

NA neurite density in the rostral spinal cord, a region where NA fibers are dominated by neurons 

of the LC (Tay et al., 2011). Taken together, our results suggest that fish with few LC neurons 

have increased ramification distal to the soma so as to maintain innervation of target regions at 

the same level as fish with many LC neurons. If the situation were similar in humans, it might 

mean a human with relatively few NA neurons would be more vulnerable to their loss in diseases 

like Parkinson's.  

4.5 Calcium imaging reveals synchronous calcium events bilaterally for large‐

amplitude events and ipsilateral synchrony for smaller‐amplitude events 

Using fast light sheet imaging with a genetically‐encoded calcium indicator allowed us to obtain 

the activity of every LC neuron bilaterally. This type of spatial and temporal resolution is made 

possible only by the combination of fast calcium indicator dyes, a fast light sheet microscope, 

and the inherent transparency and small size–both spatially and numerically–of the zebrafish LC. 

In examining spontaneous calcium events, we found that large‐amplitude events resulted in a 

high degree of synchrony bilaterally, while smaller‐amplitude events had a higher probability of 

being asynchronous across the body, while synchronous unilaterally. 

Paired slice recordings in adult rats (Alvarez, Chow, Van Bockstaele, & Williams, 2002) showed 

a high degree of firing synchrony for pairs of neurons that exhibit low (<1 Hz) sub‐threshold 

oscillations, while neonatal rats showed synchrony in a frequency‐independent manner. This 

observation is attributable to the connexin 36 gap junctions found in the rat LC, with greater 
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abundance in neonates than in adult animals (Rash et al., 2007). It is worth noting that due to the 

associated technical challenges, observations of synchrony (Alvarez et al., 2002; Ballantyne, 

Andrzejewski, Mückenhoff, & Scheid, 2004) in firing between pairs of neurons are evaluated in 

only one LC. Our pan‐LC observations of ipsilateral synchrony with partial contralateral 

asynchrony demonstrate that LC coupling across hemispheres is weaker than within ipsilateral 

nuclei. These observations are only possible because the larval zebrafish LC is amenable to fast 

LSFM imaging of a tractable number of neurons. Our transgenic lines together with LSFM 

provide a powerful platform for detailed studies of the LC that is simply not possible in 

mammalian model organisms.  

That we did not observe clear ipsilateral asynchrony seen by others with electrophysiology may 

be attributed to several factors. First, the decay time of GCaMP6f in cytosolic specimens is 

approximately 200–500 ms (Chen et al., 2013), while our typical imaging rate was 

~300 ms/stack. This is far less temporal resolution than achieved using electrophysiology. The 

slower signals and imaging times are prone to selection bias, since we preferentially selected 

large‐amplitude events with clear kinetics. Since we only observed asynchrony in small‐

amplitude events and we eliminated responses that did not have at least one neuron with Δ F/F0 

above 0.2, our results likely underestimate the extent of asynchrony that occurs. Nevertheless, 

we were able to reveal patterns of synchrony and asynchrony bilaterally and in the entire LC 

population, neither of which could be studied previously. In addition, zebrafish larvae at 5 dpf 

are still undergoing significant development. The level of asynchrony may thus rise in older 

animals, as seems the case with mammals. However, the loss of transparency with age provides a 

technical limitation to exploring this hypothesis. Advances in deeply penetrating three photon 

imaging (Ouzounov et al., 2017) into intact adult zebrafish brains may allow for these studies in 

the near future.  

These observations of lateralized asynchrony in the LC suggest that NA modulation can occur 

differentially on the two sides of the nervous system. Consistent with this idea, LC stimulation in 

rats showed increased cerebral blood flow ipsilateral to the stimulation compared to the 

contralateral side (Toussay, Basu, Lacoste, & Hamel, 2013), indicative of hemisphere‐specific 

increases in neuronal activity. While the basis of the response amplitude dependence of 

synchrony is unknown, changes from inhibitory to excitatory effects via different 

adrenoreceptors at low and high levels of NA raise the possibility that levels of NA itself may 

influence patterns of synchrony (Fernández‐Pastor & Meana, 2002; Murugaiah & O'Donnell, 

1995; Ramos & Arnsten, 2007). In particular, low‐level activity in one hemisphere may have an 

inhibitory effect on contralateral LC neurons via α2 adrenoreceptors (Fernández‐Pastor & 

Meana, 2002) while high‐level activity may stimulate the contralateral LC via β‐adrenoreceptors 

(Murugaiah & O'Donnell, 1995).  

5 CONCLUSION 

We developed three new transgenic strains of zebrafish larvae under the endogenous NET 

(slc6a2) promoter using the CRISPR/Cas9 system. These strains show high‐fidelity to 

noradrenergic neurons, most easily observed in the locus coeruleus. Using these strains in 

combination with advanced light microscopy, we were able to see developmental patterning of 

the NA system itself and reveal some striking relationships with known columnar patterning of 
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cell types in hindbrain. These raise the possibility of targeted roles of NA in shaping the 

development and function of particular classes of neurons. Our functional imaging of the entire 

LC population showed physiological heterogeneity amongst LC neurons bilaterally for smaller‐

amplitude events and homogeneity for large‐amplitude events, suggesting that LC has both 

global and lateralized responses. The new transgenic lines and our baseline work on 

development, structure and function reveal some new features of the NA system and open the 

zebrafish model to a deeper exploration of both the NA system and new questions raised by our 

work.  
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Supplementary Figure 1: Identification of calcium spikes by algorithmic prescreening. Simultaneous 

individual cell traces (multiple colors) were overlaid and a maximum intensity curve (black dashed line) 

was computed. This line was used to automatically screened events based on peak width and prominence. 

In this case, the middle two peaks (~0.2 ΔF/F0) were accepted while the ends (~0.05 and ~0.13) were 

rejected. Note that this approach was chosen to be conservative to only include events with clear 

fluorescence responses in at least one of the cells for comparison of synchrony among the cells.  It may 

be that some of the other fluorescence changes (like the right most one) are actually calcium signals as 

well. 
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Supplementary Figure 2: Template cell selection and amplitude identification. To determine cell 

synchrony in calcium spikes, simultaneous individual cell traces (multiple colors) were overlaid and the 

cell exhibiting the maximum value of ΔF/F0 was chosen as the template cell (bolded orange line; arrow). 

The peak value of this cell was used as the amplitude of the event (dashed line; in this case, ~0.21). The 

similarity metric was used to determine whether events were synchronous with the template cell in an 

intensity-independent way. In this particular case, all cells were determined to be synchronous. 
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