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A Bayesian method for cluster detection with application to five 
cancer sites in Puget Sound

Albert Kim1 and Jon Wakefield2

1Mathematics Department, Reed College, Portland, OR 97202

2Departments of Statistics and Biostatistics, University of Washington, WA 98112

Abstract

Cluster detection is an important public health endeavor and in this paper we describe and apply a 

recently developed Bayesian method. Commonly-used approaches are based on so-called scan 

statistics and suffer from a number of difficulties including how to choose a level of significance 

and how to deal with the possibility of multiple clusters. The basis of our model is to partition the 

study region into a set of areas which are either “null” or “non-null”, the latter corresponding to 

clusters (excess risk) or anti-clusters (reduced risk). We demonstrate the Bayesian method and 

compare with a popular existing approach, using data on breast, brain, lung, prostate and 

colorectal cancer, in the Puget Sound region of Washington St ate. We address the important issues 

of sensitivity to the priors, and the incorporation of covariates. The approach is implemented 

within the freely-available R package SpatialEpi.

Introduction

Cluster detection has a long and controversial history in epidemiology. Unfortunately, only 

very rarely have etiological insights been made as a result of investigations into clustering 

and clusters1 which has led Rothman2 to call this endeavor into question. Neutra,3 in a 

response to Rothman, agreed with a number of his conclusions but believed that 

investigation of putative clusters was a necessary part of the public health response; cluster 

detection can aid in identification of areas in need of resources or interventions such as 

public awareness campaigns and screening.

In this paper, we describe a new approach to cluster detection, based on a Bayesian model, 

and describe the use of the method for cluster detection for five cancers in the Puget Sound 

region of Washington State. First, we briefly review a number of the previous approaches to 

cluster detection that have been proposed. The most popular approaches are based on scan 
statistics, in which a circular window is passed over the study region and the significance of 

the observed number of cases in the window is determined. Different proposals base the 

circle size on distance,4 the number of cases5 and on the population.6 The latter method has 

been extensively refined and forms the basis of the method implemented in the SatScan 

software (http://www.satscan.org/.7) The model behind this approach assumes circular 

clusters are centered on each of the n area centroids. Circles with varying radii, up to a 

maximum that gives a circle with no more than a certain proportion of the total population 

(20% is a common choice) are considered. We refer to the circles as (single) zones. Hence, 
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any one area will typically fall within a large number of potential zones. Hypothesis testing 

is used to determine the significance of clusters by comparing the observed and expected 

numbers of disease under the null hypothesis. In the version relevant to the application 

considered here, a Poisson likelihood is assumed and a likelihood ratio statistic is calculated 

for each zone, with the null corresponding to no clusters. This approach clearly leads to a 

large number of dependent tests, and the multiplicity problem is circumvented by evaluating 

the significance of only the maximum of the likelihood ratio statistics over all circles, using 

a Monte Carlo p-value. The Monte Carlo p-value is computed by comparing the observed 

test statistic to a simulated null distribution. Each instance of the simulated null distribution 

is constructed by randomly assigning cases to locations under the null hypothesis of no 

clusters and computing the test statistic.

There are a number of drawbacks to the SatScan method. First, as with all frequentist testing 

procedures, a fundamental problem is how to interpret the resultant p-value and in particular 

choose a threshold below which “significance” should be declared. These difficulties are 

well-documented.8–10 A specific problem with p-values is that their interpretation critically 

depends on the power of the study. In the context of cluster detection, α = 0.05 was used in 

both Kulldorff et al.11 and Jemal et al.12 In the former, breast cancer was examined over 245 

counties of the North East of the US with 58,943 deaths and a population of 29,535,216. In 

the latter, prostate cancer was examined in males in the United States in 1970–1989 with 

71,692 black deaths and 382,204 white deaths amongst the total US male population. 

Consequently, the power is very different in the two studies but there is no explicit 

consideration of power in the calculation and interpretation of p-values; stated more bluntly, 

there is no balancing of type I and type II errors. Intuitively, the p-value significance 

threshold should decrease as the sample size increases since the power is increasing, i.e. the 

type II error is decreasing, and so the type I error should be decreasing also. A Bayesian 

approach to inference acknowledges that the type I and type II errors should go to zero and 

provides the machinery to avoid these problems. The standard Bayesian way to evaluate the 

evidence in the data for particular null and alternative hypotheses H0 and HA is the Bayes 

factor, given by p(data|H0)/p(data|HA). The numerator and denominator of the Bayes factor 

represent, respectively, the probability density of the data under the null and alternative 

hypotheses, and these calculations depend on the assumed model. The Bayes factor accounts 

for power through its denominator, and type I and type II errors are naturally balanced in the 

numerator and denominator.9;10;13

A second difficulty with the SatScan method is how to deal with the possibility of multiple 

clusters. The original version of the Kulldorff method, simply compared the p-values of the 

second, third, etc. most significant zones using the reference distribution for the maximum 

(most likely) cluster, after discarding those with overlap with the first cluster. This approach 

is therefore not using the correct reference distribution. The most recent multiple cluster 

version of the Kulldorff method14 removes the significant zone, and then repeats the 

procedure now using a new reference distribution, until no more significant zones are found. 

A deficiency of this approach is that the p-values are not directly comparable since they are 

based on different sample sizes and hence have different power. Also, since the procedure 

removes significant clusters from the study region at each iteration, the significance of 

secondary clusters must be interpreted as conditional on all previously identified significant 
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clusters and not as standalone measures as is desired. Furthermore, one should also consider 

the multiple testing aspect of the multiple comparisons that are being made but it would be 

very difficult to determine the appropriate error rate of the overall sequential procedure just 

described.14

We briefly describe previous approaches to Bayesian cluster detection. The usual smoothing 
of rates or relative risks, as implemented in common disease mapping models,15 is not a 

good idea, as clusters may be attenuated due to the shrinkage of these models.16 We have 

previously described our model for cluster detection17 and illustrated its use with the classic 

upstate New York leukemia dataset.18

In this paper we make some modest extensions to the methodology and demonstrate the 

approach in a more extensive application. Specifically, we apply the models to data on 

female breast, brain, lung, male prostate, and colorectal cancer, collected in the Puget Sound 

region of Washington State between 1996–2005. We choose breast, lung, prostate and 

colorectal because they are relatively common, while brain is relatively rare and so was 

picked to give an example of the methodology for a rarer cancer. Geographical analyses have 

also revealed excess brain cancer mortality in the northwest of the United States,19;20 a 

region that contains our study region. The results for breast cancer require careful 

interpretation and so we detail these in the main paper, while for brain cancer interpretation 

is more straightforward, and we include this in the paper as a contrast. The results for the 

remaining three cancer sites are presented in the Supplementary Materials. Our approach is 

most similar to that described by Gangnon and Clayton21–23 though with differences 

described elsewhere.17 We have implemented our method in the R computing environment 

within the SpatialEpi package.

Brain and Breast Cancer in Western Washington

Study Details

The Cancer Surveillance System (CSS) collects population-based data on cancer incidence 

and survival in n = 887 census tracts in 13 counties in western Washington State: Clallam, 

Grays Harbor, Island, Jefferson, King, Kitsap, Mason, Pierce, San Juan, Skagit, Snohomish, 

Thurston, and Whatcom counties. The CSS is a project of the Program in Epidemiology, 

Division of Public Health Sciences, at the Fred Hutchinson Cancer Research Center 

(FHCRC) and is part of the Surveillance, Epidemiology, and End Results (SEER)24 program 

of the National Cancer Institute which monitors cancer incidence and survival in 

approximately 26% of the US population. The CSS also provides data to the Washington 

State Cancer Registry, which monitors cancer incidence in the entire state of Washington.25 

In Figure 1 we present a map of the study region with the Seattle and Tacoma metropolitan 

regions highlighted with solid and dashed lines respectively and the city of Mount Vernon 

marked with a dot. All subsequent maps will include focused maps of both Seattle and 

Tacoma. Furthermore all values in legends are grouped by the Jenks natural breaks 

classification method which maximizes the variance between the group means while 

minimizing the within-group variance of values.26
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One must bear in mind that two of the chief reasons for carrying out a cluster detection 

endeavor are to discover previously unknown exposures or risk factors that are linked with 

clusters, or to detect areas with high risks (perhaps due to inaccessibility to health care) in 

order to prioritize public health resources and interventions (encouragement of screening, for 

example). If we are interested in the former, then adjustment for as many known risk factors 

as possible is merited. If we are interested in the latter, then we would not want to adjust for 

area-level variables such as income, since this will mask important differences. In the study 

we present here, we are interested in detecting areas with high residual (i.e. after adjustment 

for risk factors) risk and we report results with and without adjustment for an area-level 

measure of income.

As notation we will use yij to represent the disease count in each area i = 1, …, n and 

confounder stratum j = 1,…, J, with Nij the corresponding population size. For each cancer 

site, counts of disease incidence yij were obtained for each census tract i = 1,…, 887 

stratified by j = 1,…, 180 strata: age (18 age bands: 0–4, 5–9, 10–14, …, 75–79, 80–84, 

85+), race (5 categories: White, Black, Asian/Pacific Islander, American Indian and other 

including those of two or more races) and gender for brain, lung, and colorectal cancers, 

while we only consider women for breast cancer and men for prostate cancer. These disease 

counts were combined across years and paired with corresponding population counts Nij 

obtained from the 2000 Decennial Census. For each of the five cancer sites, we calculate two 

sets of expected numbers in area i, denoted Ei, using internal standardization, at the level of 

the census tract. In one set we adjust for age, race, and gender (when required) and in the 

other set we additionally adjust for income by quintile. We consider 1999 per capita income 

as reported by the American Community Survey at the census tract level only, since age, 

race, and gender stratified income data are not available. Our analysis will consider income 

through the quintiles defined by cutoffs $18,478, $21,661, $24,825, and $30,161. The 

income adjusted reference rates of disease for census tract i are based on disease and 

population counts from census tracts in the same income bracket. The Standardized 

Morbidity Ratio (SMR) in census tract i is calculated as SMRi = yi/Ei. The SMR is an area-

based summary and an estimate of the relative risk in an area, when compared to the 

reference rates that were used to construct the expected numbers.

Table 1 displays summaries of the aggregated disease counts yi for all 5 cancers, along with 

expected numbers Ei and standardized morbidity ratios SMRi, across areas i = 1,…, n, 

unadjusted and adjusted for income. Breast is the most common cancer, followed by 

prostate, lung, colorectal, and brain. We now present detailed analyses for brain and breast 

cancer, with lung, colorectal and prostate discussed in the Supplementary Materials.

Initial Analysis for Brain Cancer

Before a cluster detection exercise is carried out it is important to have knowledge of known 

risk factors, but the cause of many brain cancer cases is unknown (http://www.cancer.gov/

cancertopics/types/breast). Previously, there was evidence of excess brain cancer mortality in 

the northwest United States, as revealed in a cancer mortality atlas,19 and this was followed 

up with a formal study of brain cancer mortality across the United States from 1986–1995 
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using, amongst other statistical techniques, SatScan.20 This study reported evidence of a 

cluster in Washington State.

For our study the expected numbers for brain cancer incidence are displayed in Figure 2, 

with the left and right columns being unadjusted and adjusted for income, respectively. The 

corresponding SMRs are displayed in Figure 3. Compared to the other cancers the expected 

numbers are relatively small, but the SMRs show large variability, which may of course be 

attributed to sampling variability due to the relatively small expected numbers for many 

census tracts. A plot of (log) SMRs versus income quintile (both with and without 

adjustment for income), provided in the Supplementary Materials, shows very little evidence 

of a census tract level association between relative risk and income.

We present results of the multiple cluster Kulldorff method14 using both income unadjusted 

and adjusted expected counts. We set the highest proportion of the population a zone can 

contain at 15%, the α-cutoff to declare significance at α = 0.05 and simulate 9,999 Monte 

Carlo realizations under the null hypothesis of no clusters. The results are presented in 

Figure 4. For both income unadjusted and adjusted expected counts, there are no clusters 

that are significant at the 5% level.

Initial Analysis for Breast Cancer

We first briefly summarize the risk factors for breast cancer, leaning heavily on http://

www.cancer.gov/cancertopics/types/breast. The lifetime risk for developing breast cancer for 

women in the United States is approximately 1 in 8. Risk factors for breast cancer include 

genetic alterations, dense breasts, exposure to estrogen (early menstruation, late menopause, 

no pregnancy or late pregnancy), family history of breast cancer, alcohol, race (breast cancer 

is diagnosed more in white women) and obesity. Protective factors for breast cancer include 

less exposure to estrogen (for example through early pregnancy, breast-feeding, increased 

number of births and increased duration of breast feeding) and exercise.

The geographical distribution of breast cancer risk has received a reasonable amount of 

interest with Kulldorff et al.11 providing an early example of the application of a scan 

statistic to breast cancer, with numerous other studies following. For example, scan statistics 

have been used to detect clusters for breast cancer in Massachusetts,27 Texas,28 

Connecticut,29 and across all counties in the United States30. An interpretation of 

geographical variation across the United States has also been carried out,31 with a major 

conclusion being that at large scales at least, there are differences in presentation (i.e. stage) 

by region and by race. A large number of geographical analyses have examined the 

association between clusters and environmental pollution sources (see for example Jacquez 

and Greiling32 and references there-in). Interest in cluster detection for breast cancer extends 

beyond the United States, for example, breast cancer has been examined geographically in 

Japan, using the Kulldorff scan statistic.33

The expected numbers for breast cancer are displayed in Figure 5 with the SMRs displayed 

in Figure 6. The expected numbers for breast cancer are far greater than for brain and while 

the SMRs for breast cancer have roughly the same range as with brain, the former are more 

accurately estimated given the larger expected counts. In the Supplementary Materials we 
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plot the (log) SMRs (without adjustment for income) versus income quintiles, and we see 

that there is a negative association, with areas in higher income quintiles having higher 

relative risks. This is not unexpected given the above risk factors for breast cancer since we 

would expect women living in areas with low average income to have more and earlier 

pregnancies and a greater duration of breast feeding.

Figure 7 gives the results of the scan statistic both without and with adjustment for income. 

Without income there is one very large cluster in Seattle that has a significance level < 

0.0001, with three additional clusters, one to the west of Seattle, one in Tacoma and a single 

census tract near Mt Vernon in the north of the study region. With adjustment for income 

there are three areas, two in Tacoma with estimated relative risks of 5.671 and 2.320, and a 

third consisting of the single census tract near Mt Vernon with an estimated relative risk 

1.146.

A Bayesian Cluster Detection Model

As with the scan statistic method, suppose the study region is partitioned into i = 1,…, n 
areas, which are typically administrative subdivisions of a region such as census tracts, zip 

codes, or counties. Let θi be the relative risk in area i, where relative is with respect to the 

reference rates for disease that were used to construct the expected numbers. The 

Supplementary Materials contain a mathematical description of our model; here we give an 

explanation in heuristic terms.

Configurations as Data Models

Following Kulldorff6 we define what we refer to as single zones: contiguous collections of 

areas that form “jagged circles.” We create the list of single zones by sequentially 

aggregating neighboring areas, by taking each area in turn, and continually adding the areas 

whose centroids are closest to the area center. This procedure is continued until the zone’s 

population reaches a pre-specified maximum allowable proportion of the total study region’s 

population, typically under 50%. Our cluster detection model treats each of the N1 resulting 

single zones as a potential cluster (region of high residual risk) or anti-cluster (region of low 

residual risk).

First, suppose that there exists no more than one cluster/anti-cluster in the study region. We 

assume the data can be explained by N1 + 1 possible configurations, where each 

configuration can be viewed as a model for y1,…, yn. The first is a null configuration of no 

clusters/anti-clusters which assumes that all areas in the study region have “null” relative 

risks that are close to 1. The remaining N1 configurations assume that one and only one 

single zone is a cluster/anti-cluster where within a single zone all areas share a common 

“non-null” relative risk, i.e., elevated or lowered risk, while all areas outside the single zone 

have null relative risks. In null areas we do not force the relative risks to be exactly 1, but 

rather assume that the relative risks arise from a “narrow” distribution that is concentrated 

close to 1, reflecting the fact that even with true null risk unmeasured confounders and data 

anomalies can still yield some variability around 1. In contrast, for non-null areas within a 

single zone, we assume they share a common relative risk that arises from a “wide” 

distribution that is more diffuse, though still centered around 1. An illustrative example of 
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null/narrow and non-null/wide relative risk distributions using two gamma distributions is 

given in Figure 8 where the respective 95% intervals are marked with dashed lines. We 

discuss the specification of the gamma distribution parameters in the next section.

We now describe how the framework is extended to allow for the possibility of more than 

one cluster/anti-cluster. Let Nj for j = 2,…, J be the number of combinations of j single 

zones that do not overlap, up to a pre-specified maximum of non-null regions J (hence, the 

maximum number of clusters/anti-clusters is J). For our examples in this paper we specify a 

maximum of J = 7 clusters/anti-clusters in the study region. Given that we only consider 

non-overlapping single zones, we assume that the relative risks in non-overlapping single 

zones are independent and arise from the wide distribution and, as with the single cluster/

anti-cluster case, all areas not included in a single zone have null relative risks. These 

configurations are the (discrete) unknown parameter of our cluster detection model; we 

denote this parameter c. The null configuration is denoted c = {0, 1} and c = {j, k} denotes a 

non-null configuration k consisting of j single zones for k = 1,…, Nj. An example of a 

configuration consisting of j = 2 single zones can be found in the Supplemental Materials. 

The posterior probability Pr(c|y1,…, yn) for all configurations c is a summary of interest of 

our model and is computed using Bayes theorem.

There are 1 + N1 + N2 + … + NJ possible configurations, that is models for the data, to 

consider. This value is very large in typical applications. For example, for the SEER data 

there are n = 887 census tracts and N1 = 117, 006 single zones. The number of multiple 

single zone configurations then grows quickly and we can only estimate, rather than 

enumerate, these quantities. For example , , and 

. Hence, it is not computationally feasible to enumerate all possible 

configurations and compute their exact posterior probabilities. Therefore, as an alternative 

we search through the space of all possible configurations using a Markov chain Monte 

Carlo (MCMC) algorithm to approximate all posterior probabilities. Details of the 

computation are in the Supplementary Materials, and the method is implemented within the 

SpatialEpi package within the R computing environment.

Likelihood and Prior

A typical choice of model for rare diseases is to assume, for a generic region with count y, y|
θ ~ Poisson(Eθ) where θ is the relative risk associated with the region and E is the expected 

number of disease.34 By assuming a conjugate Gamma(a, b) prior on θ with shape and rate 

parameters (a, b) the marginal likelihood Pr(y) is Negative Binomial . As 

previously described we have two specifications of the Gamma parameters (a, b) 

corresponding to the null and non-null distribution of relative risks described earlier: a 

narrow specification (an, bn) and a wide specification (aw, bw). These values are chosen by 

specifying two θ points with a pair of characteristics. In particular, we set the mode of the 

distribution to be θ = 1, a value reflecting no increased nor decreased risk, and we specify 

the 95th percentile of the distribution (see the Supplementary Materials for further 

discussion). For example, specifying 95th percentiles of 1.03 and 4, we have Gamma 

parameters of (an, bn) = (2976.30, 2977.30) and (aw, bw) = (2.31, 1.31) respectively, and 
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these are the choices shown in Figure 8. Furthermore the points (θL, θH) at which the two 

gamma distributions intersect are used as thresholds to declare an area’s relative risk as 

being elevated/reduced since outside the interval defined by these two points the wide 

specification has higher density. For the above choices of gamma priors the crossover points 

are (θL, θH) = (0.949, 1.052). For the null configuration c = {0, 1} all disease counts yi are 

independent with relative risks θi from the narrow specification for i = 1,…, n. For all non-

null configurations c = {j, k}, since the j single zones are independent, the likelihood for the 

data is the product of the likelihoods associated with the j single zones and the likelihoods of 

all remaining null areas.

We require a prior on the configurations c = {j, k}, with the number of clusters/anti-clusters 

being j, and k indexing the configurations for that j. We assign a mass of π0 = Pr(c = {0, 1}) 

for the prior on the null, with a typical figure being 0.95 or 0.99, since a priori we expect the 

chance of clusters to be small. The remaining mass of 1 − π0 needs to be spread over the 

remaining configurations c = {j, k} for j = 1,…, J, k = 1,…, Nj. Within each j, i.e. for each 

number of clusters/anti-clusters, we take each configuration to be equally likely, i.e. 

, where τ is the number of clusters/anti-clusters. It only remains to 

distribute 1 − π0 over j = 1,…, J. Recall that each set of j clusters within a particular 

configuration must be non-overlapping. For a particular j, let qj be the probability that a 

randomly selected set of j clusters are non-overlapping. For example, for j = 2, q2 is the 

probability that two of the randomly selected N2 possible single zones are non-overlapping. 

One may then take

so that the marginal prior on the number of clusters/anti-clusters is implied by our choice of 

the prior on the null, and the set of decreasing probabilities on increasing numbers of 

clusters/anti-clusters. This produces a set of prior probabilities that decrease monotonically 

from J = 1, in a relatively natural fashion. As an illustration, with the Puget Sound study 

geography, the probabilities for j = 0,…, J we obtain from this prescription are 0.950, 0.034, 

0.013, 0.003, 2.941 × 10−4, 1.993 × 10−5, 1.027 × 10−6, and 3.029 × 10−8. There are many 

ways we could specify the set of J + 1 probabilities, and we encourage examining the 

sensitivity of the results to different choices (see later for examples). For example, we may 

also spread the probability of a non-null configuration 1 − π0 equally over j = 1,…, J.

Posterior Probabilities

Each configuration c = {j, k} for j ≥ 1 is made up of j single, non-overlapping zones. The 

posterior probability for the null configuration is simply
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For j ≥ 1:

where i ∈ c denotes all the areas included in any of j single zones that form configuration c = 

{j, k}. In other words, all areas included in any of the single zones follow the non-null model 

where areas within a common single zone share a common relative risk from the wide prior 

and all remaining areas are independent with relative risks from the narrow prior. See 

Supplementary Materials for more details on this derivation.

It is difficult to make statements on the occurrence of clusters/anti-clusters based on the 

posterior probabilities of individual configurations given the large number of configurations 

to consider, many of which are only minor variations of each other. As an alternative 

measure, we may calculate the posterior probability of cluster membership for each area i. 
For a non-null configuration c = {j, k} with area i included in one of the j single zones, we 

evaluate the posterior probability of that single zone’s relative risk being “elevated”, where 

elevated indicates higher than the high crossover point θH. Analogously we can define the 

posterior probability of anti-cluster membership for area i using the lower crossover point 

θL. Furthermore, before seeing the data we can evaluate the prior probability of cluster 

membership for each area i using the prior distribution of the relative risk. Another summary 

measure of interest is the posterior probability of the number of clusters/anti-clusters in the 

data. For τ = j clusters/anti-clusters we have

which sums the posterior probabilities of all configurations with τ single zones. Of particular 

interest will be the τ = 0 case corresponding to no clusters/anti-clusters.

Results

Bayesian Analysis for Brain Cancer

We perform the Bayesian analyses with the maximum proportion of the population a single 

zone can contain being 15%, wide (aw, bw) = (2.31, 1.31) and narrow (an, bn) = (2976.30, 

2977.30) specifications of the Gamma parameters, as shown in Figure 8, a prior probability 

π0 = 0.95 of no clusters/anti-clusters, and a maximum number of clusters/anti-clusters of J = 

7.

In Figure 9 we present the results for brain cancer using the income unadjusted expected 

counts in the left column and income adjusted expected counts in the right column. The 

results are not inconsistent with the multiple cluster scan statistic results, with both analyses 

giving very little evidence of brain cancer clusters, with the highest posterior probabilities of 

cluster membership being less than 0.006. In Figure 10 we present a barplot of the prior 

probabilities of clusters/anti-clusters for j = 0,…, 7, along with the posteriors probabilities 
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with and without adjustment for income. The posterior probability of no clusters/anti-

clusters is approximately 0.99 in both cases, which is higher than the prior probability of π0 

= 0.95. In Figure 11 we present a plot of the sensitivity of the posterior probabilities on the 

number of clusters/anti-clusters as a function of the specification for π0, the prior mass 

placed on the null configuration. The calculations for this plot can be carried out without re-

running the analysis (for details, see Supplemental Materials). Tracing horizontal lines 

across the plot give the set of posterior probabilities for that π0 value. There is a relative 

insensitivity to π0 in both plots, with only very low (and unrealistic) values of π0 giving even 

a single cluster/anti-cluster. In the Supplementary Materials we further investigate prior 

sensitivity to the specification of the narrow/wide components and an alternative prior on the 

number of clusters/anti-clusters (uniform on 1,…, J). There is little sensitivity to the 

different priors, and for brain cancer we conclude there is little evidence for clusters in the 

Puget Sound region, at the geographical scale at which we have data available.

Bayesian Analysis for Breast Cancer

In Figure 12 we present the results for breast cancer using the income unadjusted expected 

counts in the left column and income adjusted expected counts in the right column. We 

observe a large number of areas with high posterior probability of cluster membership in 

Seattle and the Kirkland, Redmond, and Bellevue suburbs. These probabilities diminish in 

magnitude when using the income adjusted expected counts, indicating that a large 

component of the high relative risks in these areas has been absorbed by income. As we see 

in Figure 13, there is a large mass of posterior probability (94%) of j = 4, 5 clusters/anti-

clusters when ignoring income information that shifts towards j = 0 once income 

information is incorporated. After adjustment there is 73% posterior probability on the null, 

with the majority of the remaining probability falling on 1 or 2 clusters/anti-clusters. There 

remains a single area in Tacoma with a relatively high posterior probability of 0.201. The 

second and third clusters indicated by the scan statistic method (Figure 7) do not have high 

posterior probabilities associated with them. The heat map in Figure 14 illustrates the 

sensitivity of the posterior on the number of clusters/anti-clusters to the prior on the null, π0. 

In the case of breast cancer adjusted for income, the results are almost entirely insensitive to 

the choice of π0. After incorporating income however, the posterior probabilities now vary 

more depending on the choice of π0. Since higher values of π0 correspond to higher prior 

skepticism at the existence of clusters/anti-clusters, the bulk of the posterior probabilities 

shifts towards j = 0. Additional summaries under different priors are given in the 

Supplementary Materials.

As discussed earlier, there are many well-documented risk factors for breast cancer, and we 

would expect many of these risk factors to have geographical structure. Unfortunately, as is 

usually the case in studies such as this based on aggregated count data, information on these 

risk factors is not available. Many of these risk factors will be associated with income, which 

explains why the number of clusters decreased when an area-level measure of income was 

included. This adjustment is clearly very crude and further analyses of breast cancer 

incidence in our study region would preferably be carried out using individual-level data 

with information on risk factors. Another important issue for breast cancer is screening. 

Screening rates vary geographically and we would expect those areas with high screening 
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rates to have more breast cancer diagnoses even if the underlying risk is the same as areas 

with lower screening rates. This is supported by a plot of SMR versus screening rate (at the 

county level), included in the Supplementary Materials.

Discussion

Much like the multiple cluster Kulldorff method,6 our Bayesian model constructs a set of 

single zones and treats each of them as potential clusters/anti-clusters. However, our method 

allows us to formally model the existence of more than one cluster by combining a number j 
of single zones to form configurations. These configurations, in particular the null 

configuration of no clusters/anti-clusters, are used as models to explain the observations and 

are the unknown parameters of our model to which we associate prior and posterior 

probabilities. By taking a Bayesian approach, our model accounts for sample size and 

power.9;10;13

While our method yields qualitatively similar results as the multiple cluster Kulldorff 

method, since our model allows for simultaneous modeling of more than one cluster/anti-

cluster we obtain probabilities of cluster membership which are directly comparable 

between areas. This is in contrast to the multiple cluster Kulldorff method which considers 

only the most significant cluster, drops (if any) the most significant cluster, and iterates the 

procedure. The resulting p-values are difficult to interpret as they are sequential in nature 

and all resulting claims of significance based on them do not incorporate notions of sample 

size or power.

The computation for the Bayesian model is far greater than that for typical scan statistics, 

but the biggest difficulty in routinely using the Bayesian approach we have described is the 

need to specify prior distributions. In practice, as we have illustrated for brain and breast 

cancer, one should carry out sensitivity to the prior distribution. We would encourage the use 

of Kulldorff’s scan statistic, in particular at the early stages of a cluster detection exercise, 

but we believe that the Bayesian approach we have described provides valuable additional 

information, foremost explicit posterior probabilities of cluster membership for each area, 

and a coherent way of handling multiple clusters.

The methods described in the paper is implemented in the R package SpatialEpi. An 

example of its application to the often studied upstate New York leukemia dataset can be 

found at https://github.com/rudeboybert/SpatialEpi.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study region with Seattle (solid line) and Tacoma (dashed line) metropolitan regions 

highlighted and the city of Mount Vernon marked with a dot.
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Figure 2. 
Maps of income unadjusted (left column) and income adjusted (right column) expected 

counts of brain cancer.
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Figure 3. 
Maps of income unadjusted (left column) and income adjusted (right column) standardized 

morbidity ratios for brain cancer.
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Figure 4. 
Maps of income unadjusted (left column) and income adjusted (right column) multiple 

cluster scan statistic results for brain cancer.
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Figure 5. 
Maps of income unadjusted (left column) and income adjusted (right column) expected 

counts of breast cancer.
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Figure 6. 
Maps of income unadjusted (left column) and income adjusted (right column) standardized 

morbidity ratios for breast cancer.
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Figure 7. 
Maps of income unadjusted (left column) and income adjusted (right column) multiple 

cluster scan statistic results for breast cancer.
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Figure 8. 
Wide and narrow distributions on the relative risk. Under the null (no clusters/anti-clusters), 

relative risks θ are assumed to arise from the narrow prior, so that there is still a small 

amount of “wobble” about 1. Under the alternative (at least one cluster/anti-cluster), the 

relative risks are assumed to arise from the wide prior, so that there is greater variation. Note 

that the θ scale is logarithmic.
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Figure 9. 
Maps of income unadjusted (left column) and income adjusted (right column) posterior 

probabilities of brain cancer cluster membership.
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Figure 10. 
Prior/posterior probabilities of the number of brain cancer clusters/anti-clusters.
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Figure 11. 
Sensitivity of posterior probabilities of the number of brain cancer clusters/anti-clusters to 

π0. Tracing horizontal lines across the plot give the set of posterior probabilities for that π0 

value.
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Figure 12. 
Maps of income unadjusted (left column) and income adjusted (right column) posterior 

probabilities of breast cancer cluster membership.
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Figure 13. 
Prior/posterior probabilities of the number of breast cancer clusters/anti-clusters.
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Figure 14. 
Sensitivity of posterior probabilities of the number of breast cancer clusters/anti-clusters to 

π0. Tracing horizontal lines across the plot give the set of posterior probabilities for that π0 

value.
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