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Abstract:  

Volatility is an important variable in portfolio management. Generally, it is the level of 

risk in the market. The purpose of this article is to measure the impact of good and bad 

news on the evolution and risk associated with these securities in the financial market. 

To do so, we proceeded to use the EGARCH model (generalized autoregressive 

heteroskedasticity condition model), the data used in this study correspond to the 

portfolio Dow Jones Islamic Market 50 US. The results show that good and bad news has 

different impacts on assets. 
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1. Background of the Study 

 

Volatility is a main variable that characterize most financial instruments and plays a 

central role in many areas of finance. From an empirical point of view, it is important to 

carefully model any variation in the volatility process. Depending on the leverage effect, 

a reduction in the value of the shares would increase the debt ratio, thus increasing the 

risk of the company, as evidenced by the increase in future volatility. As a result, future 

volatility will be negatively related to the current share price performance. 

  In this paper, volatility will be estimated to mirror the insight that good and bad 

news affect the market in a different way, and that news in a bull market is different from 

that in a bear market. This article quantifies the asymmetric impact of good and bad news 

on the stock market, specifically the asymmetric response to news in a Bear and Bull 

market situation. In the case of a purchase strategy, investors only benefit from the up-

value of assets while the down value of assets is useless and vice versa, our goal is to 
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measure the impact of the good and bad news for the 50 stocks that make up the Dow 

Jones Islamic Market Titans 50 US portfolio. The distinction between asset characteristics 

as well as the dominant regime (bull or bear) for each asset can be a raw material for 

leading a portfolio management strategy that takes into account the effect of information 

asymmetry and the impact of shocks on the evolution of assets. After a brief introduction, 

the second section will deal with literature review. The third section will contain the 

methodology, data and a presentation of the model for our analysis. Then the fourth 

section will contain the results and interpretations for our management model. Finally, 

the last section will be devoted to the conclusion. 

 

2. Literature Review 

 

Volatility is a latent variable derived from the returns of the securities or deducted from 

the market prices of derivative instruments. In well-developed equity markets that 

operate "normally", the volatility of the equities may serve as a forecaster of future 

fluctuations. These measures give the statistical difference (these differences are also 

weighted) to the extent to which returns deviate daily from their average over a given 

period. Generally, stock market returns are heavy and prone to outliers are basic 

knowledge of finance Poon and Granger (2003); Clements and Hendry (2008). However, 

a chart of market returns shows that volatility is not constant. There are periods of 

serenity in markets where volatility seems constant. Similarly, there are times when 

markets are turbulent and volatility can rise and remain at a level for a long time on what 

the markets call volatility clustering. Thus, the use of historical estimates to capture these 

regimes will underestimate the volatility of ex-ante decisions, regardless if it is the pricing 

of the multitude of financial instruments, stock selection decisions or calculation of risk 

measures in modern risk management. On the other hand, the implied volatility derived 

from the trading of derivative contracts on inventories using a model. One of these 

models is the Black-Scholes for call and put options Black & Scholes (1973). When such 

data is available, derivative volatility reflects current market sentiment and expectations. 

Implied volatility is generally not flat, because it reflects buying and selling decisions of 

market participants, which can be influenced by a variety of factors. We know that market 

players have difficulty deciphering the true meaning of these factors in most cases. 

Indeed, Jorion (1995) found ample evidence that implicit volatility derived from models 

can have significant bias. Fleming (1998) also documents biases in the estimation of 

implied volatility in the price volatility forecasts of the S&P index options. Fleming (1998) 

also, documents biases in the estimation of implied volatility in the price volatility 

forecasts of derivatives of S&P index. However, other researchers have criticized implicit 

volatility as model-dependent, Choi and Wohar (1992); Britten-Jones and Neuberger 

(2000); Christensen and Hansen (2002).  

 There are therefore potential problems with using implied volatility to make ex-

ante investment decisions. Historical volatility and implied volatility may therefore not 

work properly when markets are nervous. In calm market conditions, both will likely 
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lead to the same result. But in a situation where markets are disrupted, historical 

volatility is likely to underestimate the actual level of volatility, while implied volatility 

is more than likely to overestimate the pace of the market. The presence of significant 

noise inevitably confuses real signals related to the actual behavior of asset prices Black 

(1986). Price declines can lead to alternating wild volatility between much higher and 

lower levels. For example, geopolitical developments may lead to greater volatility in the 

short run than in the long run. Underestimating this short-term volatility in equity 

markets may result in undervaluation of risks, which may result in positions that have 

significant consequences for the investor, De Goede (2001); MacKenzie (2003); Carmassi 

et al. (2009).  

 In general, this period of heightened volatility is reflected in a series of clusters on 

the time series plot of returns. Such behavior is best modeled using the autoregressive 

conditional heteroscedasticity (GARCH) proposed by Engle (1982) and generalized by 

Bollerslev (1986). Alexander (2008) argues that GARCH models provide short and 

medium-term volatility forecasts based on econometric models that are "correctly" 

specified. The GARCH model is interested in the evolution of "standard deviation". 

Unlike historical and implied volatility, the GARCH model doesn't assume that returns 

are independent and distributed identically. This essential feature is at the heart of the 

time-varying volatility that the GARCH model seeks to capture. It is observed empirically 

that significant negative returns tend to increase volatility relative to positive returns of 

the same magnitude. The ARCH model and its various extensions have proved very 

effective tools in this direction.  

 The stock market is driven by the news (information). Good news, in a good day, 

lead the market to the rise. The bad news, in a good day, restrains growth. The effect is 

not symmetrical. Good news has less influence on the market than bad news. This 

phenomenon has a plausible economic explanation. This is the leverage effect suggested 

by Black (1976) and further elaborated by Christie (1982). The GARCH linear model (p, 

q) is not able to capture this type of dynamic model since the conditional variance is only 

related to past conditional variances and squared innovations. So, the sign of returns 

plays no role in volatility. This limitation of the standard ARCH formulation is one of the 

main motivations of the EGARCH model developed by Nelson (1991), while the latter 

model detects the effect of information on the evolution of the financial markets, several 

studies have largely underestimated the impact of good and bad news on volatility and 

price evolution Ewing, Ewing & Malik (2017) The empirical results of their work suggest 

that it is preferable to include both asymmetric effects and structural breaks in a model 

in order to accurately estimate the dynamics of price volatility. Also, the work of Korkpoe 

end al. (2018) explains that in the emerging markets deprived of information, investors 

may be surprised by the news, the reaction of the market to positive news has only a 

small effect on market volatility.  

 Investors are concerned about the brutal reactions to the negative news that 

characterizes the data. The market will attract uninformed traders at this stage of its 
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development. These traders are probably generating what will appear to be a high 

reaction to the news as they try to reduce their losses at the first signs of trouble.  

Veronesi (1999) and DeLong et al. (1988) have documented this phenomenon extensively 

in their studies. Investors may be forced to protect themselves from this "noise" in the 

market, as this could hurt their previous earnings. While the work of Korkpoe and al. 

(2018) on the Johannesburg Stock Exchange has incorporated the explicit impact of the 

information in the analysis of the variable volatility of returns. 

 

3. Material and Methods 

 

The data used originated from the financial market, they correspond to Dow Jones 

Islamic Market Titans 50 US portfolio. We use daily data of the 53 stocks that make up 

the portfolio for a 2-years period, 504 observations from January 1, 2015 to December 31, 

2016, to cover as many regimes as possible. 

 
 r𝑖,𝑡 = ∆ log (𝑝𝑖) 

 

3.1. Descriptive statistics 

The following table represents the descriptive statistics of the shares making our 

portfolio. 

 

Table 1: DJIMT 50 US Portfolio Descriptive Statistics 
Assets Mean Max Min Std. Dev. Skewness Kurtosis ADF test Jarque-Bera Prob 

AAPL 0.00019 0.06294 -0.06797 0.01582 -0.18594 5.51179 -21.97744 135.1258 0 

ABBV -0.0001 0.09598 -0.10902 0.01886 -0.38583 7.92409 -22.81561 520.6486 0 

ABT -0.00022 0.04173 -0.09751 0.01459 -1.3938 10.05811 -22.57968 1206.942 0 

ACN 0.00065 0.06538 -0.06479 0.01316 -0.1606 7.08268 -23.07566 351.5012 0 

BIIB -0.00037 0.09682 -0.24949 0.02462 -1.93191 25.87208 -22.55874 11276.86 0 

BMY 0.00005 0.0588 -0.17418 0.01719 -2.45626 26.66662 -22.01242 12244.73 0 

CELG 0.00004 0.10179 -0.05958 0.02051 0.32991 5.05444 -22.85788 97.58378 0 

CL -0.00002 0.05831 -0.04775 0.0106 -0.20348 6.98362 -24.801 336.0639 0 

COP -0.00049 0.09257 -0.09664 0.02363 0.01877 4.49968 -21.38635 47.16594 0 

CVS -0.00031 0.05229 -0.12584 0.01319 -1.75767 19.80909 -25.86448 6180.674 0 

CVX 0.00026 0.06039 -0.05015 0.0161 0.15454 4.11569 -22.05728 28.09018 0 

DDPA 0.00017 0.04574 -0.05736 0.01265 -0.20541 5.57695 -16.35944 142.7151 0 

EBAY 0.00045 0.13033 -0.13299 0.01805 -0.38115 19.06227 -22.56877 5419.357 0 

EME 0.00098 0.06306 -0.03951 0.01434 0.26404 4.75847 -23.98376 70.65242 0 

EOG 0.00022 0.1035 -0.07775 0.02189 0.22109 4.70695 -23.41564 65.16346 0 

FB 0.00076 0.14429 -0.05986 0.01687 1.02172 14.13053 -21.01727 2684.016 0 

GILD -0.00049 0.05811 -0.09499 0.01741 -0.84277 7.3033 -22.64522 447.6577 0 

GOOG 0.00078 0.14887 -0.05465 0.01562 1.87812 20.77058 -20.64885 6914.214 0 

GOOGL 0.0008 0.15065 -0.05566 0.01544 1.83203 21.59186 -20.568 7525.772 0 

HAL 0.00069 0.10517 -0.06154 0.02151 0.40044 4.54747 -21.51324 63.63073 0 

HD 0.0006 0.04373 -0.04895 0.01226 -0.08941 4.49475 -22.19064 47.49668 0 

HON 0.00038 0.05541 -0.07796 0.0119 -0.18602 8.63568 -23.39699 668.5569 0 

IBM 0.00022 0.04913 -0.06038 0.01298 -0.7337 6.49045 -22.21969 300.4699 0 

INTC 0.00012 0.06188 -0.09543 0.01485 -0.60282 7.44454 -22.76032 444.4731 0 

JNJ 0.00019 0.0484 -0.03324 0.0095 0.27065 5.84784 -23.94903 176.1173 0 

KO 0.0001 0.02798 -0.04904 0.00902 -0.56675 5.57953 -22.91803 166.3846 0 

LLY 0.00022 0.06343 -0.11109 0.01618 -0.57302 9.78211 -24.51762 991.5475 0 

LOW 0.00016 0.05295 -0.06392 0.01345 -0.44978 5.32991 -23.29738 130.7316 0 

http://oapub.org/soc/index.php/EJEFR


Moghar Adil, Hamza Faris 

ASYMMETRIC INFORMATION AND SHOCK AS PORTFOLIO SELECTION CRITERIA:  

CASE OF THE DJIM 50 US PORTFOLIO 

 

European Journal of Economic and Financial Research - Volume 3 │ Issue 5 │ 2019                                                       180 

MA01 0.0004 0.06497 -0.04531 0.01313 -0.0396 5.20752 -23.41667 102.264 0 

MCD 0.00066 0.07811 -0.04569 0.01087 0.64008 10.31284 -22.43374 1155.15 0 

MDT 0.00008 0.05369 -0.04843 0.01315 0.17592 5.23198 -22.34549 107.0029 0 

MMM 0.00006 0.04605 -0.09061 0.01272 -0.78471 8.76258 -23.16054 747.5927 0 

MON 0.00027 0.05108 -0.06216 0.01056 -0.24136 7.10954 -25.92045 358.8338 0 

MRK -0.00017 0.08219 -0.08093 0.01487 0.27551 9.33592 -22.07741 847.7119 0 

MSFT 0.00019 0.09901 -0.05365 0.01341 0.87467 10.62299 -23.48582 1282.024 0 

NKE 0.00067 0.09941 -0.0971 0.01607 0.23587 11.7364 -21.9474 1604.303 0 

ORCL 0.00021 0.08521 -0.05115 0.01416 0.34898 6.38801 -22.45163 250.7818 0 

OXY -0.00023 0.04036 -0.05223 0.01286 -0.43156 5.09359 -24.26344 107.476 0 

PCLN -0.00008 0.05789 -0.05512 0.01642 0.0917 4.06914 -23.09647 24.66172 0 

PEP 0.0005 0.10655 -0.1207 0.01789 -0.55919 12.6526 -19.68265 1978.957 0 

PFE 0.00032 0.0313 -0.04701 0.00913 -0.31839 5.22362 -22.41604 112.1262 0 

PG 0.00021 0.06828 -0.04295 0.01215 0.59595 5.87464 -20.96722 202.9634 0 

QCOM -0.00002 0.03561 -0.04089 0.00956 -0.24515 5.12758 -22.5461 99.9077 0 

SLB -0.00013 0.07105 -0.16547 0.01904 -2.04204 18.6527 -23.0577 5484.52 0 

TSM 0.00007 0.05953 -0.04963 0.01604 0.25125 4.19185 -22.96142 35.06337 0 

TXN 0.00064 0.08333 -0.05538 0.01546 0.30124 5.46146 -23.31939 134.5897 0 

UNP 0.00072 0.11268 -0.07072 0.01522 0.54268 10.70758 -22.66086 1269.757 0 

UPS -0.00017 0.04637 -0.06905 0.01546 -0.27148 4.51868 -21.26289 54.51663 0 

V 0.00019 0.04943 -0.10434 0.01056 -1.74977 22.80064 -22.85026 8473.708 0 

WBA 0.00037 0.07179 -0.05414 0.01372 0.06796 5.6536 -24.06086 147.9673 0 

WMT 0.00017 0.06155 -0.1135 0.01545 -0.43696 9.50725 -23.13806 903.4711 0 

XOM -0.00032 0.09149 -0.10581 0.01266 -0.64305 17.74374 -23.17982 4590.542 0 

Note: ADF Test critical values: 1%; level t-Statistic =-3.443149. 

 

The stocks in this portfolio are characterized by asymmetric distributions (Skewness is 

different from 0), and fat tails (kurtosis greater than 3). Also, we can argue that daily 

returns are strongly non-Gaussian with the excess of Kurtosis and the existence of 

asymmetry.  

 Combined with the property on the tails, the Jarque-Bera test also leads to reject 

the assumption of a normal distribution (reject the null hypothesis). The zero probability 

of the Jarque-Bera statistic leads us to reject the hypothesis H0 of the normality of the 

distribution (Prob Jarque-Bera <0.05). 

  Also, the ADF test of stationarity shows that all the series of stocks are stationary 

within the critical values of 1% with all probability values is less than 5%. 

 

3.2. Heteroscedasticity test: 

With this test, we will conform if our series of returns is homoscedasticity or 

heteroscedastic, all that based on the ARCH test. 

  
Table 2: Heteroskedasticity Test: ARCH 

Assets 

ARCH effect 

F-statistic Obs*R² Probability 

AAPL 5.984407 5.937283 0.0148 

ABBV 18.20585 17.63650 0.0000 

ABT 5.250813 5.217029 0.0224 

CL 16.52200 16.05748 0.0001 

COP 31.75696 29.97985 0.0000 

CVS 4.518595 4.496038 0.0340 

CVX 46.67921 42.86419 0.0000 
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DDPA 9.547597 9.406174 0.0021 

HD 12.81732 12.54695 0.0004 

JNJ 8.449779 8.342592 0.0038 

KO 6.382670 6.327429 0.0118 

MA01 5.205787 5.172754 0.0229 

MDT 11.34322 11.13596 0.0008 

MMM 5.378339 5.342386 0.0208 

MRK 7.313797 7.237190 0.0071 

MSFT 4.279737 4.260389 0.0391 

ORCL 6.563918 6.504780 0.0107 

PFE 24.42048 23.37643 0.0000 

PG 41.52423 38.49350 0.0000 

QCOM 6.121657 6.071804 0.0137 

TSM 4.683324 4.658424 0.0309 

WBA 5.198926 5.166006 0.0230 

WMT 23.04737 22.11995 0.0000 

Note: F-statistic and Obs*R² have the same probability value. 

 

Heteroskedasticity test ARCH shows that correspond probability value is less than 5%, 

so we reject null hypothesis (H0: our model is homoscedastic) and we can accept the 

alternative hypothesis (hypothesis H1: our model is heteroscedastic). Only 23 of our 

assets are heteroscedastic, the rest of the assets will be excluded from our studies. 

 

3.4. Asymmetric information modeling 

After testing the return's stationarity of our portfolio. The ADF test confirm the 

stationarity of the returns of all series,  

 The GARCH model (p, q): 

 

              𝜎𝑡
2 =  𝜔 + 𝛼(𝐿)𝜀𝑡

2 + 𝛽(𝐿)𝜎𝑡−1
2 . 

 

 This simple structure imposes significant limitations on GARCH models. The 

negative correlation between stock returns and changes in the volatility of returns, ie 

volatility tends to increase in response to "bad news" (excess returns below expectations) 

and fall in response to "good news "(excess returns exceeding expectations).  

 The GARCH models assume, however, that only the magnitude and not the 

positivity or negativity of the unexpected excess returns determine the characteristic 𝜎𝑡
2 

,If the distribution of 𝑧𝑡 is symmetric, the variance change in (t + 1) is conditionally 

uncorrelated with the excess returns in (t) Nelson (1991). 

 If we write 𝜎𝑡
2 as a function of lagged 𝜎𝑡

2 . Or 

 

 𝜀𝑡
2 = 𝑧𝑡

2𝜎𝑡
2 

 

 𝜎𝑡
2 =  𝜔 + ∑ 𝛼𝑗

𝑞
𝑖=1 𝑧𝑡−𝑗

2 𝜎𝑡−𝑗
2 + ∑ 𝛽𝑖𝜎𝑡−𝑖

2𝑝
𝑖=1  
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 It is obvious that the conditional variance is invariant to the changes of sign of the 

𝑧𝑡  moreover, the innovations  𝑧𝑡−𝑗
2 𝜎𝑡−𝑗

2  Are not independently and identically distributed. 

Another limitation of the GARCH models results from the constraints of no negativity on 

𝜔∗ and 𝜙𝑘  In the following equation. 

 

 𝜎𝑡
2 = (1 − ∑ 𝛽𝑖𝐿𝑖

𝑝
𝑖=1 )

−1
[𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑗

2𝑞
𝑗=1 ] = 𝜔∗ + ∑ 𝜙𝑘𝜀𝑡−𝑘−1

2∞
𝑘=0  

 

 It is two imposed parameters to ensure that 𝜎𝑡
2 Remains non-negative for all t with 

a probability equal to 1. These constraints imply that the increase of  𝑧𝑡
2 in any period 

increases 𝜎𝑡+𝑚
2  for all 𝑚 ≥ 1, excluding the behaviors of the random oscillations in the 

process 𝜎𝑡
2. The GARCH models are not able to explain the observed covariance between 

𝜀𝑡
2 and   𝜀𝑡−𝑗. This is only possible if the conditional variance is expressed as an 

asymmetric function of   𝜀𝑡−𝑗. 

 In the GARCH model (1,1), shocks can persist in one norm and disappear into 

another, so that the conditional moments of GARCH (1,1) can explode even when the 

process is strictly stationary and ergodic.  

 GARCH models essentially specify the behavior of squared data. In this case, 

broad observations may dominate the sample asymmetric models provide an 

explanation for leverage, i.e. an unexpected price decreases increase volatility more than 

an unexpected price increase. The EGARCH (p, q) model (Exponential GARCH (p, q)) 

put forward by Nelson (1991) provides a first explanation of  𝜎𝑡
2 Which depends on both 

size and sign and delayed residues.  

 This is the first example of an asymmetric model: 

  

 ln (𝜎𝑡
2) =  𝜔 + ∑ 𝛽𝑖  ln (𝜎𝑡−𝑖

2 )
𝑝
𝑖=1 + ∑ 𝛼𝑗

𝑞
𝑖=1 [𝜙 𝑧𝑡−𝑗

2 + 𝜓(|𝑧𝑡−𝑖| − Ε|𝑧𝑡−𝑖|] 

 

 𝛼1 ≡ 1, Ε|𝑧𝑡| = (2
𝜋⁄ )

1
2⁄  Of which, 𝑧𝑡~(0, 1)  

 

and where the parameters 𝜔, 𝛽𝑖, 𝛼𝑖, are not limited to being non-negative. 

 
 𝑔(𝑧𝑡) ≡ 𝜙𝑧𝑡 + 𝜓[|𝑧𝑡| − Ε|𝑧𝑡|] 
 

 By construction {𝑔(𝑧𝑡)}𝑡=−∞
∞  Has a null means, and it is independently and 

identically distributed. The components of 𝑔(𝑧𝑡) are 𝜙𝑧𝑡  𝑎𝑛𝑑  𝜓[|𝑧𝑡| − Ε|𝑧𝑡|] Each with 

zero means.  

  If the distribution of 𝑧𝑡 Is symmetric, the components are orthogonal, although 

they are not independent. 0 < 𝑧𝑡 < +∞, 𝑔(𝑧𝑡) is linear in 𝑧𝑡 with the slope given by 𝜙 +

𝜓,  and for     −∞ < 𝑧𝑡 < 0, 𝑔(𝑧𝑡) is linear with the slope given by  𝜙 − 𝜓.  

 Thus, 𝑔(𝑧𝑡) allows the conditional variance process {𝜎𝑡
2} to respond 

asymmetrically to increases and decreases in the share price. The term 𝜓[|𝑧𝑡| − Ε|𝑧𝑡|] 

Represents an effect of amplitudes. If 𝜓 > 0 𝑎𝑛𝑑 𝜙 = 0, innovation in ln (𝜎𝑡
2) is positive 

(negative) when the amplitude of  𝑧𝑡 is greater (smaller) than its expected value.  
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 If 𝜓 = 0  and 𝜙 < 0,, the innovation in the conditional variance is now positive 

(negative) when the innovations are negative (positive).  

 A negative shock on yields, which would increase the debt ratio and therefore 

increase the uncertainty of future returns, could be taken into account when 𝛼𝑖 > 0 and 

𝜙 < 0. In the EGARCH model, ln (𝜎𝑡+1
2 ) is homoscedastic conditional on  𝜎𝑡

2, and the 

partial correlation between 𝑧𝑡 and ln (𝜎𝑡+1
2 ) is constant conditional on  𝜎𝑡

2. A possible 

alternative specification of the news impact curve is as follows Bollerslev, Engle and 

Nelson (1994). 

 

             𝑔(𝑧𝑡, 𝜎𝑡
2) = 𝜎𝑡

−2𝜃0 𝜃1

1+𝜃2|𝑧𝑡|
+ 𝜎𝑡

−2𝛾0 [
𝛾1|𝑧𝑡|𝑝

1+𝛾2|𝑧𝑡|𝑝  − 𝛦𝑡 (
𝛾1|𝑧𝑡|𝑝

1+𝛾2|𝑧𝑡|𝑝)] 

 

 Parameters 𝛾0 and 𝜃0 allow both the conditional variance of ln (𝜎𝑡+1
2 ) and its 

conditional correlation with 𝑧𝑡  to vary with the level of  𝜎𝑡
2. If 𝜃1 < 0 then 

Corr𝑡(ln (𝜎𝑡+1
2 ), 𝑧𝑡) <0: is the leverage effect. The constraints of the EGARCH model 𝛾0 =

𝜃0 = 0, so that the conditional correlation is constant, as well as the conditional variance 

of ln (𝜎𝑡
2). The parameters 𝜌, 𝛾2, and 𝜃2 give the model the flexibility of the weight to be 

attributed to the tail observations: for example, 𝛾2 > 0, 𝜃2 > 0, the model has |𝑧𝑡| Widely 

in low weight. 

 

3.5. The impact curve news 

The information has asymmetrical effects on volatility. In asymmetric volatility models, 

good and bad news has different predictability for future volatility. The impact curve of 

the information characterizes the impact of past yield shocks on the implied volatility of 

return in a volatility model. 

 By constantly keeping the information dated from ( 𝑡 − 2) and earlier, we can 

examine the implicit relation between   𝜀𝑡−1 and  𝜎𝑡
2 , with  𝜎𝑡−𝑖

2 = 𝜎2 with 𝑖 = 1, … , 𝑝. This 

curve is called, with all the delayed conditional variances evaluated at the level of the 

unconditional variance, the news impact curve because it relates past (information) yield 

shocks to current volatility. This curve measures how new information is incorporated 

into volatility estimates. 

 For the GARCH model, the News Impact Curve is centered at   𝜀𝑡−1 = 0. In the 

case of the EGARCH model, the curve has its minimum at   𝜀𝑡−1 = 0  and increases 

exponentially in both directions, but with different parameters. 

 

GARCH (1,1): 

 

 𝜎𝑡
2 = 𝜔+ 𝛼𝜀𝑡−1

2 +𝛽𝜎𝑡−1
2  

 

 The impact curve of the news to the following expression: 

 

 𝜎𝑡
2 = 𝐴+ 𝛼𝜀𝑡−1

2  
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 𝐴 ≡ 𝜔 + 𝛽𝜎² 

 

EGARCH (1,1): 

 

 ln (𝜎𝑡
2) =  𝜔 + 𝛽𝑖  ln (𝜎𝑡−𝑖

2 ) + 𝜙 𝑧𝑡−1 + 𝜓(|𝑧𝑡−1| − Ε|𝑧𝑡−1|] 

or 

 

 𝑧𝑡 =
𝜀𝑡

𝜎𝑡
. 

 

 The impact curve of the news is given by: 

 

 𝜎𝑡
2 = {

𝐴 𝑒𝑥𝑝 [
𝜙+𝜓

𝜎
𝜀𝑡−1] 𝑝𝑜𝑢𝑟  𝜀𝑡−1 > 0

𝐴 𝑒𝑥𝑝 [
𝜙−𝜓

𝜎
𝜀𝑡−1] 𝑝𝑜𝑢𝑟  𝜀𝑡−1 < 0

 

 

 𝐴 ≡ 𝜎2𝛽𝑒𝑥𝑝 [𝜔 − 𝜓√2 𝜋⁄ ] 

 
 𝜙 < 0   ,    𝜙 + 𝜓 > 0 
 

 The EGARCH model allows good news and bad news to have a different impact 

on volatility, unlike the GARCH model. The EGARCH model allows big news or 

information to have a bigger impact on volatility than the GARCH model.  

The EGARCH model would have higher variances in both directions because the 

exponential curve dominates the quadrature. 

 

4. Results and Discussions 

 

in this section, we will proceed to apply EGARCH model on the stocks which have shown 

the existence of the heteroscedasticity, all the parameters are giving in the following table 

(Table 3). 

 
Table 3: GARCH model parameter for our portfolio 

Assets 
Parameters 

ω α γ β 

AAPL 
Coefficient -0.4213 0.0917 -0.1308 0.9583 

Probability 0.0002 0.0041 0.0000 0.0000 

ABBV 
Coefficient -7.9429 0.0100 0.0100 0.0100 

Probability 0.6348 0.7552 0.6438 0.9962 

ABT 
Coefficient -0.1814 -0.0542 -0.1336 0.9735 

Probability 0.0000 0.0000 0.0000 0.0000 

CL 
Coefficient -2.5544 0.4217 -0.0656 0.7561 

Probability 0.0000 0.0000 0.1096 0.0000 

COP 
Coefficient -0.2107 0.1582 -0.0804 0.9886 

Probability 0.0048 0.0000 0.0045 0.0000 
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CVS 
Coefficient -13.1482 0.4313 0.0299 -0.4710 

Probability 0.0000 0.0000 0.5235 0.0000 

CVX 
Coefficient -0.2552 0.1479 -0.0943 0.9840 

Probability 0.0056 0.0006 0.0001 0.0000 

DDPA 
Coefficient -16.6594 0.1117 0.0669 -0.8858 

Probability 0.0000 0.0000 0.0000 0.0000 

HD 
Coefficient -0.9327 0.1438 -0.1845 0.9077 

Probability 0.0000 0.0002 0.0000 0.0000 

JNJ 
Coefficient -0.3756 0.0752 -0.1395 0.9664 

Probability 0.0000 0.0049 0.0000 0.0000 

KO 
Coefficient -5.0097 0.3682 -0.0489 0.4997 

Probability 0.0066 0.0000 0.3286 0.0089 

MA01 
Coefficient -0.7365 0.1236 -0.1679 0.9270 

Probability 0.0008 0.0108 0.0000 0.0000 

MMM 
Coefficient -1.0089 0.1366 -0.2191 0.8972 

Probability 0.0001 0.0078 0.0000 0.0000 

MRK 
Coefficient -0.4342 0.2400 -0.1037 0.9697 

Probability 0.0000 0.0000 0.0000 0.0000 

MSFT 
Coefficient -0.5313 -0.0363 -0.1907 0.9358 

Probability 0.0000 0.0402 0.0000 0.0000 

ORCL 
Coefficient -2.1713 0.1923 -0.1419 0.7631 

Probability 0.0007 0.0072 0.0004 0.0000 

PFE 
Coefficient -3.3401 0.3518 -0.1784 0.6767 

Probability 0.0004 0.0000 0.0006 0.0000 

PG 
Coefficient -1.0002 0.3024 -0.1309 0.9138 

Probability 0.0000 0.0000 0.0001 0.0000 

QCOM 
Coefficient -2.8316 0.2719 -0.1459 0.7193 

Probability 0.0022 0.0000 0.0024 0.0000 

TSM 
Coefficient -0.0769 0.0258 -0.1031 0.9932 

Probability 0.0234 0.0970 0.0000 0.0000 

WBA 
Coefficient -1.3498 0.1678 -0.2157 0.8591 

Probability 0.0021 0.0061 0.0000 0.0000 

MDT 
Coefficient -0.5129 0.1866 -0.0957 0.9582 

Probability 0.0005 0.0000 0.0003 0.0000 

 

After modeling with EGARCH model the asset ABBV will also be excluded from our 

study (probability value > 0.05). 

 The conditional volatility of each asset is giving by the following figure (Figure 1)  
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Figure 1: Conditional volatility of our assets  

based on EGARCH model 
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All of conditional volatility shows the existence of volatility clustering, the leverage effect 

suggested by Black (1976) suggesting that Good news has less influence on the market 

than bad news. This suggestion will be analyzed using the NIC (News Impact Curve).  

 The news impact curve based on the parameters of the EGARCH model indicates 

that the information in the market has different impacts for each asset, in the following 

figure the asset DDPA shows that the good news is almost the only factor that pushes 
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conditional volatility. Also, it is observable that there is a small impact for bad news, this 

indicates that in a good day in the market where values are rising, bad news (negative 

shocks) have a low impact on the asset and then cause less turbulence in the values during 

the day, in the other hand good news (positive shock) will trigger more volatility and 

more turbulence for DDPA assets. 

 

Figure 2: News impact curves of asset ‘DDPA’ 
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 The situation is different for the company Apple Inc 'AAPL', the news impact 

curve that the bad news only has an impact on the conditional volatility, while good news 

(positive shocks) have the ability to calm the market and lower conditional volatility. 

 
Figure 3: News impact curves of asset 'AAPL' 
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 The EGARCH model has given the opportunity to differentiate between the 

impact of news or information on the market. For investors this data is very important, 

the behavior of assets is one of the keys to a successful portfolio management, a 

management based only on the mean-variance criteria is very limited, the assumption of 

normality in the financial market is already criticized by a large number of studies, the 

existence of asymmetric returns as well as heteroscedasticity, are all big motivation for 

our use of the EGARCH model with News Impact Curve. These models provide investors 

with a good understanding of the behavior of each stock in the financial markets. 
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Figure 4: The News Impact Curve for our assets 
  A. News impact curves of asset ‘MDT’          B. News impact curves of asset ‘WBA’     C. News impact curves of asset ‘MSFT’ 
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D. News impact curves of asset ‘CL’             E. News impact curves of asset ‘ABT’           F. News impact curves of asset ‘COP’   
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G. News impact curves of asset ‘CVS’          H. News impact curves of asset ‘CVX’      I. News impact curves of asset ‘HD’   
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J. News impact curves of asset ‘JNJ’             K. News impact curves of asset ‘MA’       L. News impact curves of asset ‘MMM  
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 M. News impact curves of asset ‘MRK’        N. News impact curves of asset ‘ORCL’      O. News impact curves of asset ‘PFE’  
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P. News impact curves of asset ‘PG’           Q. News impact curves of asset ‘QCOM’      R. News impact curves of asset ‘TSM’ 
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5. Conclusion 

 

During this article we have applied EGARCH models to study the behavior of the DJIMT 

50 US Portfolio's return series. The model used the normal distribution to capture the 

behavior of the tail. We also examined how investors can adapt their portfolios to a 

changing risk environment in the presence of unexpected information or news. Our work 

integrates the explicit impact of the information in the analysis of the volatility of the 

returns. Investors are concerned about the brutal reactions to negative information. These 

traders are probably generating what will appear to be a high reaction to information as 

they try to reduce their losses at the first signs of trouble. Veronesi (1999) and De Long 

and al. (1988) have documented this fact extensively in their studies. Investors may be 
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forced to protect themselves from this "noise" in the market, as this could hurt their 

previous earnings. Our study has clarified the reaction of assets in the market, the action 

taken by investors will be different from asset to asset all according to their News Impact 

Curve, the measure of the impact of news on each asset will give investors more 

confidence in their choices. 
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