
Electronic Communications of the EASST
Volume 44 (2011)

Proceedings of the
Workshop on OCL and Textual Modelling

(OCL 2011)

An Architecture Description Language for Embedded Hardware
Platforms

Guillaume Savaton, Jean-Luc Béchennec, Mikaël Briday and Rola Kassem

16 pages

Guest Editors: Jordi Cabot, Robert Clariso, Martin Gogolla, Burkhart Wolff
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/270295517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

An Architecture Description Language for Embedded Hardware
Platforms

Guillaume Savaton1, Jean-Luc Béchennec2, Mikaël Briday3 and Rola Kassem4

1guillaume.savaton@eseo.fr, http://trame.eseo.fr
TRAME, Transformation de Modèles pour l’Embarqué

ESEO, Angers, France

2jean-luc.bechennec@irccyn.ec-nantes.fr, 3mikael.briday@irccyn.ec-nantes.fr,
4r.kassem@bau.edu.lb, http://www.irccyn.ec-nantes.fr/

Systèmes Temps Réel
IRCCyN, UMR CNRS 6597, Nantes, France

Abstract: Embedded software development relies on various tools – compilers,
simulators, execution time estimators – that encapsulate a more-or-less detailed
knowledge of the target hardware platform. These tools can be costly to develop
and maintain: significant benefits could be expected if they were automatically gen-
erated from models expressed in a dedicated modeling language.

In contrast with Hardware Description Languages (HDLs), that focus on the internal
structure and behavior of an electronic board of chip, Hardware Architecture De-
scription Languages consider hardware as a platform for software execution. Such
a platform will be described in terms of low-level programming interface (processor
instruction set), resources (processing elements, memory and peripheral devices)
and elementary services (arithmetic and logic operations, bus transactions).

This paper gives an overview of HARMLESS (Hardware ARchitecture Modeling
Language for Embedded Software Simulation), a new domain-specific language for
modeling embedded hardware platforms. HARMLESS and its associated tools fol-
low the Model-Driven Engineering philosophy: metamodeling and model transfor-
mations have been successfully applied to the automatic generation of processor
simulators.

Keywords: Model-Driven Engineering, Architecture Description Language, Com-
puter Architecture, Simulation

1 Introduction

Hardware designers have a long tradition of using models to represent the structure and behavior
of electronic circuits. These models are based on a wide range of paradigms and abstraction
levels: for instance, digital logic is usually described either structurally – as an interconnection of
gates, flip-flops, or more complex components – or behaviorally through equations, truth tables,
state machines. Since the 1980s, most of the digital hardware design is done using hardware
description languages (HDLs) such as VHDL[IEE00] and Verilog. Inspired by programming

1 / 16 Volume 44 (2011)

mailto:guillaume.savaton@eseo.fr
http://trame.eseo.fr
mailto:jean-luc.bechennec@irccyn.ec-nantes.fr
mailto:mikael.briday@irccyn.ec-nantes.fr
mailto:r.kassem@bau.edu.lb
http://www.irccyn.ec-nantes.fr/

An Architecture Description Language for Embedded Hardware Platforms

languages, HDLs allow to model hardware using similar concepts as those used in software:
algorithmic representation of sequential behaviors, process-based concurrency, etc.

However, today, most digital hardware architectures include one or more programmable pro-
cessors: an electronic chip or board is no longer a self-contained system, but is now considered as
a platform for running software. While HDLs are still useful for digital hardware synthesis, they
suffer from heavy limitations when used for system analysis and simulation, as soon as software
is involved. A partial solution to this problem is provided by System-Level Design Languages
(SLDLs) such as SystemC, that allows to mix hardware as well as software components in a
single model, providing abstractions for modeling concurrency and communications.

While an HDL-based model focuses on capturing the internal microarchitecture of a processor
– merely considering software as a set of binary data stored in a memory device –, an SLDL-
based model will capture the behavior of software components, regardless of the processors that
will execute them. As a consequence, the use of SLDLs still shows limitations in the context of
software execution analysis. In fact, early embedded software verification and test would benefit
from tools that would provide information such as: execution time, stack usage, exceptions such
as privilege violations, etc. When it comes to low-level software execution analysis, SLDL
models will not provide the needed information, while HDL models will provide excessively
detailed information with no straightforward relationship with the concerned software entities.

There is a need for a third kind of languages: hardware architecture description languages,
or rather hardware platform description languages, that would explicitly capture the software
execution mechanisms, in terms of low-level programming interface (processor instruction set),
resources (processing elements, memory and peripheral devices) and elementary services (arith-
metic and logic operations, bus transactions). As a possible solution, this paper presents a new
domain-specific language called HARMLESS (Hardware ARchitecture Modeling Language for
Embedded Software Simulation) that addresses the problem of modeling embedded computers at
an adequate abstraction level for software execution analysis. As the name implies, HARMLESS
models are primarily considered as a source for generating simulators, but other uses can emerge
as the project evolves.

This paper will focus on the most stable part of HARMLESS, that allows to model proces-
sor cores. Modeling microcontrollers and microcontroller-based systems – including processor
cores, on-chip and off-chip memory and peripheral devices –, and generating the corresponding
simulators, is work in progress. The pipeline definition constructs provided by HARMLESS are
presented in [KBB+08] and will not be described in detail in this paper.

2 Related Works

The idea of hardware architecture description languages and, more specifically, processor de-
scription languages is not new. Several research teams have proposed alternatives to the existing
HDLs, generally with the following concerns: automatic hardware synthesis from a higher ab-
straction level; automatic toolkit generation (assemblers, compilers); automatic simulator gen-
eration. As far as simulation is concerned, a distinction must be made between Instruction-Set
Simulators (ISS), that simulate only the functional behavior of the processor, and Cycle-Accurate
Simulators (CAS) that can also measure execution time. In order to generate a cycle-accurate

Proc. OCL 2011 2 / 16

ECEASST

simulator, the needed timing information will either be explicitly captured in the source model, or
inferred from a description of the internal concurrency and synchronization mechanisms used by
the processor. There are basically three kinds of hardware architecture description langugages:

• Structure-oriented languages such as MIMOLA[BBH+94] will model a hardware archi-
tecture as a set of interconnected components. This kind of languages is particularly suited
to automatic hardware synthesis, where the main goal of the modeler is to design and im-
plement a new computer. They often tend to resemble glorified HDLs that will suffer from
similar limitations.

• Instruction-set-oriented languages such as nML[Fre93] and ISDL[HHD97] will focus on
modeling the hardware/software interface (instruction set, memory and peripheral ad-
dress mapping), usually based on behavioral abstractions. Models produced with these
languages can have various uses: automatic generation of software development tools
[Bha01], and, in a limited way, automatic hardware synthesis[Bas01]. But the primary
goal of such models is to help software analysis.

• Mixed languages such as LISA[PHZM99] and EXPRESSION[HG99] will provide both
kinds of constructs. In fact, LISA is usually presented as a language for custom proces-
sor design, so that multiple concerns must be addressed: hardware synthesis as well as
compiler and simulator generation.

As far as software execution analysis is concerned, structure-oriented languages tend to require
too much information about the internal microarchitecture of the processor. While such structural
details can be useful to infer how much time will be spent along the datapath for each kind of
instruction, we believe that the same information can be captured in a more concise way.

The aforementioned instruction-set-oriented languages are well-suited to ISS generation. The
additional information required to infer timing and other properties must often be expressed
separately, e.g. in the form of hand-written C libraries. Therefore these language tend to be
tedious to use for modeling processors with complex pipelines – e.g. multiple-issue pipelines
with out-of-order execution.

3 Overview of HARMLESS

3.1 Information Needed for Software Execution

HARMLESS is based on the trivial observation that an instruction set is a language. As such,
modeling a processor can be closer from designing the grammar of a language than describing
interconnected components. To further illustrate this claim, we can observe that the databook
of a processor generally provides four kinds of information about the instruction set. For each
instruction or instruction class, we can get: its syntax in assembly language; its binary format;
its execution semantics; its timing information.

At this level of abstraction, it is important to notice that the assembly language syntax and the
binary format of instructions are just two different representations, human-readable and machine-
readable, of the very same information. From this observation, we can infer the existence of

3 / 16 Volume 44 (2011)

An Architecture Description Language for Embedded Hardware Platforms

a common “abstract syntax” for processor instructions, from which the assembly language and
machine language are just two possible concrete forms. The abstract syntax will capture the static
properties that define an instruction (which operation to perform, which registers or addressing
modes to use), regardless of any concrete (textual) syntax or binary encoding.

To expose the execution semantics of instructions, processor databooks generally provide min-
imal information about the processor’s hardware. This is generally known as the “programmer’s
view”, or “programmer’s model” of the processor. This programmer’s model usually provides
the list of registers and the memory organization as seen by the processor (address mapping,
endianness, access sizes, alignment constraints, etc), without detailing the busses and control
signals. Therefore the execution semantics of an instruction can be expressed in terms of ele-
mentary arithmetic and logic operations that modify the state of registers and memory cells.

Finally, depending on the processor family, the timing information is provided either as a
number of clock cycles needed to perform each basic operation, or as a description of the pipeline
organization.

3.2 A Grammar-Based Modeling Language

Like nML [Fre93], HARMLESS is based on the assumption that an instruction set is better
described as a grammar than a plain list of instructions. A grammar will provide a hierarchical
decomposition of the instruction set into “production rules” (also called “partial instructions”),
allowing to factorize properties and behaviors common to several instructions.

Unlike nML and Sim-nML, HARMLESS enforces a clean separation between different views
of a processor model: abstract syntax and behavior of instructions, assembly language syntax,
binary format, pipeline description. The main reasons for this separation are:

• Separation of concerns: the designer can focus on one view at a time while keeping his
model readable.

• Processors with multiple instruction sets: some processor families (ARM, MIPS) support
a default 32-bit instruction set and a “compact” 16-bit instruction set (“MIPS16”, “ARM
Thumb”).

• Processors with complicated instruction sets: the mapping between abstract syntax and bi-
nary format is not always straightforward (e.g. the same addressing mode can be encoded
differently depending on the instruction). This happens frequently in commercial proces-
sor families that have evolved through many versions of their architectures and instruction
sets while attempting to preserve backward compatibility.

3.3 Modeling and Code Generation Strategy

Like many domain-specific modeling languages, HARMLESS combines constructs specifically
related to the domain of computer modeling (e.g. instruction encoding, pipeline definitions) as
well as constructs from traditional programming languages (e.g. imperative constructs for mod-
eling instruction behavior). Depending on their technical background, beginners in HARMLESS
can feel disoriented; confusions may arise, that will lead to incorrect or inefficient models. A
successful use of HARMLESS will rely on the following steps (see Figure 1):

Proc. OCL 2011 4 / 16

ECEASST

Assembly

language

syntax

Binary

formats
Abstract

syntax

Execution

semantics

Storage and

computation

resources

Pipeline

1 2

3

4

5

Instruction

decoder

Instruction

Disassembler

Instruction set

simulator

Cycle−accurate

simulator

C source filesHARMLESS model

Figure 1: Processor views and simulator generation using HARMLESS

1. Preliminary analysis of the instruction set: an “abstract syntax” model is written in the
form of a grammar that captures the hierarchy of partial instructions and their static prop-
erties.

2. Description of the binary format(s) attached to each partial instruction.

3. Description of the assembly language syntax attached to each partial instruction.

4. Definition of the programmer’s model (registers, memory, behavior of the functional units)
and description of the behavior attached to each partial instruction.

5. Modeling of the pipeline.

Since a computer model can be complex, designers will wish to test their model incrementally.
In the aforementioned sequence of steps, each intermediate model can contribute to a part of the
generated simulator that can be tested separately. As shown in Figure 1, after step 2, an instruc-
tion decoder can be generated and tested; test vectors can also be automatically generated. Step
3 allows to generate a full disassembler, that can be tested against the same test vectors. After
step 4, the model contains all information required to generate an instruction set simulator (ISS).
After step 5, a full processor simulator is obtained, with clock-cycle-accurate timing information.

4 Processor Modeling with HARMLESS

This section exposes an extract of the HARMLESS metamodel, with examples written using
the concrete syntax of HARMLESS. The organization of this section follows the logical order
proposed in Subsection 3.3.

5 / 16 Volume 44 (2011)

An Architecture Description Language for Embedded Hardware Platforms

4.1 Analysis of the Instruction Set

The instruction set of the processor is modeled in the form of an abstract grammar composed of
a hierarchy of rules called partial instructions. Figure 2 shows a simplified view of the classes
involved in describing the abstract syntax of an instruction set. Partial instructions can fall into
two categories:

• An alternative partial instruction is an OR-type rule that describes a selection between
several choices.

• An aggregate partial instruction is an AND-type rule that describes a composition of
several other partial instruction instances.

PartialInstruction

name : String

AggregatePartialInstruction AlternativePartialInstruction

AggregatePartialInstructionElement

label : String[0−1]

AlternativePartialInstructionElement

PartialInstructionInstance

AlternativePartialInstruction

InstanceElement

AlternativePartialInstruction

LeafElement

name : String

elements[*] elements[*]

type
Field

fields[*]

DataElement

name : String

width : Integer

isSigned : Integer

Figure 2: Extract of the HARMLESS metamodel: instruction abstract syntax modeling

Both kinds of partial instructions can have fields that will hold the static data needed by the
instruction. A field is always of integer type, with a given width (number of bits) and signedness.

Figure 3 shows an extract of a simple, hypothetical, processor description. The first alternative
states that an instruction can be either a data processing instruction, a memory access instruction
or a branch instruction. The following aggregate defines a data processing instruction as a
composition of a source operand and a data processing operation. This aggregate has one field
that provides the index of the register that will receive the result of the operation. The last shown
alternative defines the set of available data processing operations: each operation is defined by
a terminal (leaf) symbol, syntactically identified by the “#” character.

Proc. OCL 2011 6 / 16

ECEASST

a l t e r n a t i v e I n s t r u c t i o n {
D a t a P r o c e s s i n g I n s t r u c t i o n
M e m o r y A c c e s s I n s t r u c t i o n
B r a n c h I n s t r u c t i o n

}

aggrega te D a t a P r o c e s s i n g I n s t r u c t i o n {
f i e l d u ’3 t a r g e t R e g −− T a r g e t r e g i s t e r number
SourceOperand
D a t a P r o c e s s i n g O p e r a t i o n

}

a l t e r n a t i v e SourceOperand {
R e g i s t e r
Immedia te

}

aggrega te R e g i s t e r {
f i e l d u ’3 r e g −− R e g i s t e r number

}

aggrega te Immedia te {
f i e l d s ’16 imm −− Immedia te v a l u e

}

a l t e r n a t i v e D a t a P r o c e s s i n g O p e r a t i o n {
#MOV
#NOT
#ADD
#SUB
#AND
#OR

}
. . .

Figure 3: HARMLESS example: abstract instruction set definition

7 / 16 Volume 44 (2011)

An Architecture Description Language for Embedded Hardware Platforms

4.2 Binary Formats

The binary encoding of instructions is defined as a set of formats attached to the partial instruc-
tions. First of all, a format defines how each field of a partial instruction is obtained from a set
of selected bits of the binary instruction word. For most aggregate partial instructions, no addi-
tional information needs to be provided, unless we are dealing with a variable-length instruction
set and we want to enforce a precise ordering of the contained elements as they are expected to be
fetched and decoded. For an alternative partial instruction, the associated formats will expose
the mapping between each possible choice and the corresponding values of a selection of bits in
the instruction words. Figure 4 illustrates how these concepts are captured in the HARMLESS
metamodel.

The listing shown on Figure 5 provides the set of formats associated with data processing
instructions in our example processor. It is important to notice that it is not mandatory to provide
a format for each partial instruction: contrarily, the designer will focus on selecting a minimal
set of formats that unambiguously specify the encoding of all available instructions.

4.3 Assembly Language Syntax

The syntax of instructions is defined in a similar way as the binary formats (Figure 6). A syntax
element describes a mapping between a partial instruction and a corresponding textual rep-
resentation. For an aggregate partial instruction, the textual representation is provided as an
expression that specifies how the text should be built using the partial instruction’s contents. For
an alternative partial instruction, each choice is mapped onto a similar expression; optionally, a
prefix and a suffix expression can be provided, common to all choices. In both kinds of partial
instructions, an expression must be provided for each field.

The metamodel classes for expressions used in syntax definitions are not shown on Figure 6.
They are better illustrated on the example given on Figure 7. Five kinds of expressions are shown
in this example: literal character strings ("R", "MOV"); field values, in decimal (\d), hexadeci-
mal (\x) or binary (\b); insertion of the text for a given field (reg, imm); insertion of the text for
a given partial instruction (DataProcessingOperation(), SourceOperand()); con-
catenation of two or more expressions, listed between delimiters << and >>; the + operator
indicates that no space should be inserted between two consecutive expressions.

Proc. OCL 2011 8 / 16

ECEASST

Format

AggregateFormat AlternativeFormat

AggregateFormatElement

AlternativeFormatElement

PartialInstruction

elements[*, ordered]

elements[*]

partialInstruction

FieldFormatField
field

AlternativePartialInstruction

Element

AggregatePartialInstruction

Element

partialInstructionElement

partialInstructionElement

BasedLiteralExpression

literals[*]

FetchVariable

parameters

[1−*, ordered]

variable

Range

range

FetchVariableRefExpression
fieldFormats[*]

expressions[1−*, ordered]

matchExpressions

[1−*, ordered]

Figure 4: Extract of the HARMLESS metamodel: instruction binary format modeling

f e t c h var u ’16 i n s t r

aggrega te format D a t a P r o c e s s i n g I n s t r u c t i o n (i n s t r) {
t a r g e t R e g = i n s t r {1 0 . . 8}

}

a l t e r n a t i v e format D a t a P r o c e s s i n g O p e r a t i o n (i n s t r) match i n s t r {1 4 . . 1 2} {
#MOV i s \b ” 000 ”
#NOT i s \b ” 001 ”
#ADD i s \b ” 010 ”
#SUB i s \b ” 011 ”
#AND i s \b ” 100 ”
#OR i s \b ” 101 ”

}

a l t e r n a t i v e format SourceOperand (i n s t r) match i n s t r {11} {
R e g i s t e r i s \b ” 0 ”
Immedia te i s \b ” 1 ”

}

aggrega te format R e g i s t e r (i n s t r) {
r e g = i n s t r {2 . . 0}

}

aggrega te format Immedia te (i n s t r) {
imm= i n s t r {7 . . 0}

}
. . .

Figure 5: HARMLESS example: binary format definition

9 / 16 Volume 44 (2011)

An Architecture Description Language for Embedded Hardware Platforms

Syntax

AggregateSyntax AlternativeSyntax

AlternativeSyntaxElement

PartialInstruction

elements[*]

partialInstruction

FieldSyntaxField
targetField

AlternativePartialInstruction

Element

partialInstructionElement

SyntaxExpression

SyntaxParameter
parameters[1−*, ordered]

fields[*]

expression
expression

expression

prefix[0−1]

suffix[0−1]

Figure 6: Extract of the HARMLESS metamodel: assembly language syntax

aggrega te syntax D a t a P r o c e s s i n g I n s t r u c t i o n {
t a r g e t R e g = << ”R” + \d >>
emit << D a t a P r o c e s s i n g O p e r a t i o n () t a r g e t R e g

+ ” , ” SourceOperand () >>
}

aggrega te syntax R e g i s t e r {
r e g = << ”R” + \d >>
emit r e g

}

aggrega te syntax Immedia te {
imm = << ” # ” + \x >>
emit imm

}

a l t e r n a t i v e syntax D a t a P r o c e s s i n g O p e r a t i o n {
#MOV i s ”MOV”
#NOT i s ”NOT”
#ADD i s ”ADD”
#SUB i s ”SUB”
#AND i s ”AND”
#OR i s ”OR”

}
. . .

Figure 7: HARMLESS example: assembly language syntax definition

Proc. OCL 2011 10 / 16

ECEASST

4.4 Execution Semantics

The execution semantics of an instruction set relies on a programmer’s model of the processor,
where the storage elements (registers, memory) and the computation units are defined. Storage
elements are modeled as global variables of the model while computation units are modeled
as components that provide operations (see the corresponding metamodel classes on Figure 8).
The detailed behavior attached to each operation or partial instruction is defined in the form
of sequences of statements similar to the imperative statements found in most programming
languages: variable assignments, operation calls, conditional and loop constructs. In partial
instructions, local variables and parameters represent the dynamic data that are needed or com-
puted when their behavior is executed.

PartialInstruction

name : String

PartialInstructionInstance

Component

name : String

Parameter

isOutput : Boolean

Statement

Operation

name : String

Expression

statements

[*, ordered]

statementsBefore

[*, ordered]

statementsAfter

[*, ordered]

parameters

[*, ordered]

parameters

[*, ordered]

arguments

[*, ordered]

type

LocalVariable

variables[*]

variables[*]

operations[*]

GlobalVariable

isExternal : Boolean

cellCount : Integer[0−1]

addressWidth : Integer[0−1]

bigEndian : Boolean

DataElement

Figure 8: Extract of the HARMLESS metamodel: execution semantics of partial instructions

Figure 9 shows an example where a few global variables are defined, representing the internal
register bank of the processor, its status bits and its memory interface. An extract of an Arithmetic
and Logic Unit (ALU) component is provided, with a sample operation add that computes the
sum of its arguments and updates the status bits accordingly.

Figure 10 is a completed version of Figure 3, with behavior information added to the partial
instructions. In aggregate DataProcessingInstruction, it is noticeable that the ordering of the
instanciated partial instructions DataProcessingOperation and SourceOperand does not affect
the actual execution ordering, which is automatically inferred from the data dependencies.

11 / 16 Volume 44 (2011)

An Architecture Description Language for Embedded Hardware Platforms

var u ’16 R[8] −− The r e g i s t e r bank
var u ’1 N −− ” N e g a t i v e ” s t a t u s b i t
var u ’1 Z −− ”Zero” s t a t u s b i t

−− E x t e r n a l memory , w i t h 8− b i t da ta and 16− b i t a d d r e s s e s
e x t e r n a l var u ’8 Memory<16> big endian

component ALU {
s ’16 add (s ’16 a , s ’16 b) {

var s ’16 r e s u l t
r e s u l t := a + b

N := r e s u l t < 0
Z := r e s u l t = 0
re turn r e s u l t

}
. . .

}
. . .

Figure 9: HARMLESS example: storage and computation resource definition

aggrega te D a t a P r o c e s s i n g I n s t r u c t i o n {
f i e l d u ’3 t a r g e t R e g
var s ’16 s o u r c e V a l
D a t a P r o c e s s i n g O p e r a t i o n (R[t a r g e t R e g] , R[t a r g e t R e g] , s o u r c e V a l)
SourceOperand (s o u r c e V a l)

}

a l t e r n a t i v e SourceOperand (out s ’16 d a t a) {
R e g i s t e r (d a t a)
Immedia te (d a t a)

}

aggrega te R e g i s t e r (out s ’16 r e g V a l u e) {
f i e l d u ’3 r e g
do { r e g V a l u e := R[r e g] }

}

aggrega te Immedia te (out s ’16 immValue) {
f i e l d s ’16 imm
do { immValue := imm }

}

a l t e r n a t i v e D a t a P r o c e s s i n g O p e r a t i o n (out s ’16 r e s u l t , s ’16 a , s ’16 b) {
#MOV { r e s u l t := ALU. mov (b) }
#NOT { r e s u l t := ALU. n o t (b) }
#ADD { r e s u l t := ALU. add (a , b) }
#SUB { r e s u l t := ALU. sub (a , b) }
#AND { r e s u l t := ALU. and (a , b) }
#OR { r e s u l t := ALU. o r (a , b) }

}
. . .

Figure 10: HARMLESS example: instruction behavior definition

Proc. OCL 2011 12 / 16

ECEASST

5 Model-Driven Simulator Generation

The HARMLESS modeling environment is based on Eclipse and the AMMA platform, including
the following technologies: EMF (Eclipse Modeling Framework) for model data management,
TCS (Textual Concrete Syntax) for text-to-model and model-to-text transformation [JBK06] and
ATL (ATLAS Transformation Language) for model-to-model transformation [JK05]. Simulator
generation combines the following transformation steps (see Figure 11 and Figure 12):

1. Injection (text to model): the source processor description is parsed into an EMF model.
The user is informed of possible syntax errors in the source description.

2. Semantic analysis: this step is basically an ATL transformation that checks the source
HARMLESS model against a set of well-formedness rules [BJ05]. Conditions that source
elements must respect are expressed in OCL, and a “problem” element is generated (i.e. a
message with severity and location information) each time a condition fails. The AMMA
platform provides the “Problem” metamodel and an API to feed the “Problems” view of
the Eclipse workbench.

3. Preprocessing: this transformation puts the source HARMLESS model into a “canonical
form” in order to prepare the following transformation.

4. Simulator model generation: the Generic Procedural Programming Language metamodel
is a language-agnostic abstraction of programming languages such as C, Ada or Pascal.
While our concern is C code generation, this metamodel allows our transformation to
focus on the generic concepts required to model a simulator (data types, subprograms,
statements, etc), rather than C-specific concepts and syntax.

5. Extraction (model to text): C source code is generated from the intermediate generic pro-
cedural model. The resulting files are compiled using GCC.

HARMLESS

metamodel

Problem

metamodel

MOF

ARM processor

model

ARM problem

model

ARM processor

description

Inject

(text to model)

Semantic analysis

(model to model)

ARM problem

display

View

conforms to

conforms to

Figure 11: Semantic analysis of HARMLESS models and error reporting

13 / 16 Volume 44 (2011)

An Architecture Description Language for Embedded Hardware Platforms

HARMLESS

metamodel

MOF

ARM processor

model

ARM processor

model

ARM processor

description

Inject

(text to model)

Preprocess

(model to model)

conforms to

conforms to

ARM simulator

model

Procedural programming

language metamodel

ARM simulator,

C source files

Transform

(model to model)

Extract

(model to text)

Figure 12: Simulator generation from HARMLESS models

6 Results

Table 1 shows results for a few processor models. For each processor family, the following met-
rics are given: the number of partial instructions (PI) in the source (textual) processor descrip-
tion; the number of format definitions in the source description; the number of syntax definitions
in the source description; the number of lines of code (LoC) in the source description file; the
number of lines of C code in the generated simulator. In the case of the Freescale HCS12, the
source model does not contain behavior information: the generated C files do not constitute a
full simulator, but only a disassembler (instruction decoding and assembly code extraction).

Table 1: Examples of HARMLESS processor descriptions

Processor family PI Formats Syntaxes Src. LoC C LoC

ARM 25 24 22 980 8100
Renesas SH2 30 41 25 1724 11590
Freescale HCS12 54 74 59 1340 13320

The Renesas SH2 model was created collaboration with B2i Automotive Engineering1. The
work was carried out by a student in master’s degree of computer science and electronic engi-
neering, during a six-month internship. The student had received basic education in computer
architecture and had been trained in low-level hardware modeling with languages such as VHDL,
Verilog and SystemC. He had no prior knowledge of the HARMLESS project, and no previous
experience of the SH2 processor family. Table 2 gives the approximate time spent in each mod-
eling phase.

During this work, a significant part of the time was spent testing and debugging the proces-
sor model, and writing documentation. Currently, the on-going work consists in validating the
timing measurements given by the cycle-accurate simulator against a real SH2-based embedded
computer.

1 http://www.b2i-automotive.com

Proc. OCL 2011 14 / 16

http://www.b2i-automotive.com

ECEASST

Table 2: Renesas SH2 processor modeling tasks

Task Duration

Self-introduction to HARMLESS and the SH2 architecture 1 week

Instruction set modeling (partial instructions, formats, syntax)
Disassembler generation and test 1 month

Behavior modeling
Instruction-set simulator generation and test 2 months

Pipeline modeling
Cycle-accurate simulator generation 2 weeks

7 Conclusion and Future Work

This paper has given an overview of the main features provided by HARMLESS for processor
instruction set modeling. HARMLESS has proved to have a fast learning curve, even for users
non-expert in computer architecture: this is a strong advantage for a new language based on
concepts found neither in programming languages nor in hardware description languages. The
results show the benefits of using HARMLESS as a front-end for simulator generation.

HARMLESS and the associated tools are still under development and will soon provide a
full environment for modeling complex processors. Particularly, pipeline modeling and cycle-
accurate simulator generation are already showing promising results [KBB+08]. The generated
simulators will also benefit from the work presented in [BBT05], allowing to extract higher-
level information – such as stack usage and task scheduling analysis – from a low-level software
simulation. But obviously, modeling a processor core is not enough to capture all the useful
information related to a hardware platform. A preliminary study and implementation is under
way to complete HARMLESS models with abstractions of memory devices, peripherals and
busses.

Finally, HARMLESS has proved to be an interesting case study in Model-Driven Engineering.
Metamodeling and model transformation have had a strong positive impact on the development,
evolution and maintenance of the HARMLESS language and the simulator generator.

References

[Bas01] S. Basu. High Level Synthesis from Sim-nML Processor Specifications. Master’s
thesis, Dept. of Computer Science and Engineering, Indian Institude of Technology,
Kanpur, aug 2001.
citeseer.ist.psu.edu/basu99high.html

[BBH+94] S. Bashford, U. Bieker, B. Harking, R. Leupers, P. Marwedel, A. Neumann,
D. Voggenauer. The MIMOLA Language - Version 4.1. Technical report, Computer
Science Dpt., University of Dortmund, sep 1994.
citeseer.ist.psu.edu/bashford94mimola.html

15 / 16 Volume 44 (2011)

citeseer.ist.psu.edu/basu99high.html
citeseer.ist.psu.edu/bashford94mimola.html

An Architecture Description Language for Embedded Hardware Platforms

[BBT05] M. Briday, J.-L. Béchennec, Y. Trinquet. Task Scheduling Observation and Stack
Safety Analysis in Real Time Distributed Systems Using a Simulation Tool. In 10th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA’05). september 2005.

[Bha01] S. Bhattacharya. Generation of GCC Backend from Sim-nML Processor Descrip-
tion. Master’s thesis, Dept. of Computer Science and Engineering, Indian Institude
of Technology, Kanpur, jul 2001.
citeseer.ist.psu.edu/bhattacharya01generation.html

[BJ05] J. Bézivin, F. Jouault. Using ATL for Checking Models. In Proc.International Work-
shop on Graph and Model Transformation (GraMoT). 2005.

[Fre93] M. Freericks. The nML machine description formalism. Technical report TR SM-
IMP/DIST/08, TU Berlin CS Dept, 1993.

[HG99] A. Halambi, P. Grun. EXPRESSION: A language for architecture exploration
through compiler/simulator retargetability. In Proc. European Conference on De-
sign, Automation and Test (DATE). mar 1999.
citeseer.ist.psu.edu/halambi99expression.html

[HHD97] G. Hadjiyiannis, S. Hanono, S. Devadas. ISDL: an instruction set description lan-
guage for retargetability. In DAC’97: Proceedings of the 34th annual conference on
Design automation. Pp. 299–302. ACM Press, New York, NY, USA, 1997.
doi:http://doi.acm.org/10.1145/266021.266108

[IEE00] IEEE/DASC/VASG. Draft IEEE Standard VHDL Language Reference Manual.
Technical report, 2000. IEEE P1076.2000/D3.

[JBK06] F. Jouault, J. Bézivin, I. Kurtev. TCS: a DSL for the Specification of Textual Concrete
Syntaxes in Model Engineering. In Proc. fifth international conference on Genera-
tive programming and Component Engineering (GPCE). Pp. 249–254. 2006.

[JK05] F. Jouault, I. Kurtev. Transforming Models with ATL. In Proc. Model Transforma-
tions in Practice Workshop at MoDELS. 2005.

[KBB+08] R. Kassem, M. Briday, J.-L. Béchennec, Y. Trinquet, G. Savaton. Simulator Gener-
ation Using an Automaton Based Pipeline Model for Timing Analysis (submitted).
In Proc. International Workshop on Real Time Software (RTS). oct 2008.

[PHZM99] S. Pees, A. Hoffmann, V. Zivojnovic, H. Meyr. LISA – Machine Description Lan-
guage for Cycle-Accurate Models of Programmable DSP Architectures. In Design
Automation Conference. Pp. 933–938. 1999.
citeseer.ist.psu.edu/pees99lisa.html

Proc. OCL 2011 16 / 16

citeseer.ist.psu.edu/bhattacharya01generation.html
citeseer.ist.psu.edu/halambi99expression.html
http://dx.doi.org/http://doi.acm.org/10.1145/266021.266108
citeseer.ist.psu.edu/pees99lisa.html

	Introduction
	Related Works
	Overview of HARMLESS
	Information Needed for Software Execution
	A Grammar-Based Modeling Language
	Modeling and Code Generation Strategy

	Processor Modeling with HARMLESS
	Analysis of the Instruction Set
	Binary Formats
	Assembly Language Syntax
	Execution Semantics

	Model-Driven Simulator Generation
	Results
	Conclusion and Future Work

