
Electronic Communications of the EASST
Volume 30 (2010)

International Colloquium on Graph and Model
Transformation - On the occasion of the 65th birthday of

Hartmut Ehrig
(GraMoT 2010)

Towards Theorem Proving Graph Grammars using Event-B

Leila Ribeiro, Fernando Luís Dotti, Simone André da Costa and
Fabiane Cristine Dillenburg

16 pages

Guest Editors: Claudia Ermel, Hartmut Ehrig, Fernando Orejas, Gabriele Taentzer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/270295513?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

Towards Theorem Proving Graph Grammars using Event-B∗

Leila Ribeiro1, Fernando Luís Dotti2, Simone André da Costa3 and
Fabiane Cristine Dillenburg4

1 leila@inf.ufrgs.br
4 fabiane.dillenburg@inf.ufrgs.br

Instituto de Informática
Universidade Federal do Rio Grande do Sul, Brazil

2 fernando.dotti@pucrs.br
Faculdade de Informática

Pontifícia Universidade Católica do Rio Grande do Sul, Brazil

3 simone.costa@ufpel.edu.br
Institudo de Física e Matermática

Universidade Federal de Pelotas, Brazil

Abstract: Graph grammars may be used as specification technique for different
kinds of systems, specially in situations in which states are complex structures that
can be adequately modeled as graphs (possibly with an attribute data part) and in
which the behavior involves a large amount of parallelism and can be described as
reactions to stimuli that can be observed in the state of the system. The verification
of properties of such systems is a difficult task due to many aspects: the systems in
many situations involve an infinite number of states; states themselves are complex
and large; there are a number of different computation possibilities due to the fact
that rule applications may occur in parallel. There are already some approaches to
verification of graph grammars based on model checking, but in these cases only
finite state systems can be analyzed. Other approaches propose over- and/or under-
approximations of the state-space, but in this case it is not possible to check arbitrary
properties. In this work, we propose to use the Event-B formal method and its the-
orem proving tools to analyze graph grammars. We show that a graph grammar can
be translated into an Event-B specification preserving its semantics, such that one
can use several theorem provers available for Event-B to analyze the reachable states
of the original graph grammar. The translation is based on a relational definition of
graph grammars, that was shown to be equivalent to the Single-Pushout approach to
graph grammars.

Keywords: Graph Grammars, Theorem Proving, Event-B

∗ Partially supported by CNPq/Brazil.

1 / 16 Volume 30 (2010)

mailto:leila@inf.ufrgs.br
mailto:fabiane.dillenburg@inf.ufrgs.br
mailto:fernando.dotti@pucrs.br
mailto:simone.costa@ufpel.edu.br

Towards Theorem Proving Graph Grammars using Event-B

1 Introduction

Graph grammars [Ehr79, Roz97] are a formal description technique suitable for the specification
of distributed and reactive systems. The basic idea of this formalism is to model the states of
a system as graphs and describe the possible state changes as rules (where the left- and right-
hand sides are graphs). The operational behavior of the system is expressed via applications of
these rules to graphs depicting the current states of the system. Graph grammars are appealing
as specification formalism because they are formal and based on simple, but powerful, concepts
to describe behavior. At the same time they also have a nice graphical layout that helps even
non-theoreticians to understand a specification. At the same time they also have a nice graphical
layout that helps even non-theoreticians to understand a specification.

The verification of graph grammar models through model-checking is currently supported
by various approaches. Although model checking is an important analysis method, it has as
disadvantage the need to build the complete state space, which can lead to the state explosion
problem. Much progress has been made to deal with this difficulty, and a lot of techniques have
increased the size of the systems that could be verified [CGJ+01]. Baldan and König proposed
[BK02] approximating the behavior of (infinite-state) graph transformation systems by a chain
of finite under- or over- approximations, at a specific level of accuracy of the full unfolding
[BCMR07] of the system. However, as [DHR+07] emphasizes, these approaches that derive the
model as approximations can result in inconclusive error/verification reports.

Besides model checking, theorem proving [RV01, CW96] is another well-established ap-
proach used to analyze systems. Theorem proving is a technique where both the system and
its desired properties are expressed as formulas in some mathematical logic. A logical descrip-
tion defines the system, establishing a set of axioms and inference rules. The verification process
consists in finding a proof of the required property from the axioms or intermediary lemmas of
the system. In contrast to model checking, theorem proving can deal directly with infinite state
spaces and it relies on techniques such as structural induction to construct proofs over infinite
domains. The use of this technique may require interaction with a human; however, via this
interactive process the user often gains very useful perceptions into the system or the property
being proved.

Each verification technique has arguments for and against its use, but we can say that model-
checking and theorem proving are complementary. Most of the existing approaches use model
checkers to analyze properties of computations, that is, properties over the sequences of steps a
system may engage in. Properties about reachable states are handled, if at all possible, only in
restricted ways. In this work, our main aim is to provide a means to prove properties of reachable
graphs using the theorem proving technique.

In previous work [CR09a] we proposed a relational approach to graph grammars, providing
an encoding of graphs and rules into relations. This enabled the use of logic formulas to express
properties of reachable states of a graph grammar. This encoding was shown to be equivalent to
the Single-Pushout approach to graph grammars, and was inspired by Courcelle’s research about
logic and graphs [Cou97].

Courcelle investigates in various papers [Cou94, Cou97, Cou04] the representation of graphs
and hypergraphs by relational structures as well as the expressiveness of their properties by log-
ical languages. In [Cou94] the description of graph properties and the transformation of graphs

Proc. GraMoT 2010 2 / 16

ECEASST

in monadic second-order logic is proposed. However, these works are not particularly interested
in effectively verifying the properties of graph transformation systems (GTSs). Since theorem
provers, in general, works efficiently with specifications in relational style, we extended the re-
lational representation of graphs to graph grammar models and use such representation for the
formal analysis of reactive systems through the theorem proving technique. Other authors have
investigated the analysis of GTSs based on relational logic or set theory. Baresi and Spoletini
[BS06] explore the formal language Alloy to find instances and counterexamples for models and
GTSs. With Alloy, they only analyze the system for a finite scope, whose size is user-defined.
Strecker [Str08], aiming to verify structural properties of GTSs, proposes a formalization of
graph transformations in a set-theoretic model. His goal is to obtain a language for writing graph
transformation programs and reasoning about them. Nevertheless, the language has only two
statements, one to apply a rule repeatedly to a graph, and another to apply several rules in a
specific order to a graph. Until now, the work just presents a glimpse of how to reason about
graph transformations.

In this paper we use Event-B to analyze properties of graph grammars. Event-B [AH07]
is a state-based formal method closely related to Classical B [Abr05]. It has been success-
fully used in several applications, and there is tool support for both model specification and
analysis. There are a series of powerful theorem provers that can be used to analyze event-B
specifications[ABHV06, DEP]. Due to the similarity between event-B models and graph gram-
mar specifications, specially concerning the rule-based behavior, in this paper we propose to
translate graph grammar specifications in event-B structures, such that it is possible to use the
event-B provers to demonstrate properties of a graph grammar. This translation is based on the
relational definition of graph grammars.

The paper is organized as follows. Section 2 presents the relational approach of graph gram-
mars. Section 3 briefly introduces the event B formalism. Section 4 shows how a graph grammar
can be translated into an Event-B program. Section 5 contains some final remarks.

2 Relational Approach to Graph Grammars

Graph Grammars are a generalization of Chomsky grammars from strings to graphs suitable for
the specification of distributed, asynchronous and concurrent systems. The basic notions behind
this formalism are: states are represented by graphs and possible state changes are modeled by
rules, where the left- and right-hand sides are graphs.

We use a relational and logical approach for the description of Graph Grammars: graphs and
graph morphisms are described as relational structures [CR09a, CR10], that is, they are defined
as tuples formed by a set and by a family of relations over this set. Proofs about the well-
definedness of these definitions were detailed in [CR09b].

Definition 1 (Relational Structures) Let R be a finite set of relation symbols, where each R∈R
has an associated positive integer called its arity, denoted by ρ(R). An R-structure is a tuple
S = 〈DS,(RS)R∈R〉 such that DS is a possible empty set called the domain of S and each RS

is a ρ(R)-ary relation on DS, i.e., a subset of Dρ(R)
S . R(d1, . . . ,dn) holds in S if and only if

(d1, . . . ,dn) ∈ RS, where d1, . . . ,dn ∈ DS.

3 / 16 Volume 30 (2010)

Towards Theorem Proving Graph Grammars using Event-B

A relational graph |G| is a tuple composed of a set, the domain of the structure, representing
all vertices and edges of |G| and by two finite relations: a unary relation, vert G, defining the set
of vertices of |G| and a ternary relation incG representing the incidence relation between vertices
and edges of |G|. The uniqueness edge condition assures that the same edge doesn’t connect
different vertices.

Definition 2 (Relational Graph) Let Rgr = {vert, inc} be a set of relations, where vert is unary
and inc is ternary. A relational graph is a Rgr-structure |G|= 〈DG, (RG)R∈Rgr〉, where:

• DG = VG∪EG is the union of sets of possible vertices and edges of |G|, respectively (we
always assume that VG∩EG =∅);

• vertG ⊆VG, with vertG(x) iff x is a vertex of |G|;

• incG ⊆ EG×VG×VG, with incG(x,y,z) iff x is a directed edge that links vertex y to vertex
z in |G|.

such that the following condition is satisfied:

• Uniqueness Edge Condition. ∀x,y,z,y′,z′,
[incG(x,y,z)∧ incG(x,y′,z′)⇒ y = y′∧ z = z′].

A relational graph morphism |g| from a relational graph |G| to a relational graph |H| is ob-
tained through two binary relations: one to relate vertices (gV) and other to relate edges (gE). The
type consistency conditions state that if two vertices are related by gV then the first one must be a
vertex of |G| and the second one a vertex of |H|, and if two edges are related by gE , then the first
one must be an edge of |G| and the second one an edge of |H|. The (morphism) commutativity
condition assures that the mapping of edges preserves the mapping of source and target vertices.

Definition 3 (Relational Graph Morphism) Let |G| = 〈VG ∪ EG,{vertG, incG}〉 and |H| =
〈VH ∪EH ,{vertH , incH}〉 be relational graphs. A relational graph morphism |g| from |G| to
|H| is defined by a set |g|= {gV ,gE} of binary relations where:

• gV ⊆VG×VH is a partial function that relates vertices of |G| to vertices of |H|;

• gE ⊆ EG×EH is a partial function that relates edges of |G| to edges of |H|;

such that the following conditions are satisfied:

• Type Consistency Conditions. ∀x,x′,
[gV (x,x′)]⇒ vertG(x)∧ vertH(x′); and
[gE(x,x′)]⇒∃y,y′,z,z′[incG(x,y,z)∧ incH(x′,y′,z′)];

• Morphism Commutativity Condition. ∀x,y,z,x′,y′,z′,
[gE(x,x′)∧ incG(x,y,z)∧ incH(x′,y′,z′)⇒ gV (y,y′) ∧ gV (z,z′)].

|g| is called total/injective if relations gV and gE are total/injective functions.

A relational typing morphism is a relational graph morphism that has the role of typing all
elements of a graph |G| over a graph |T |.

Proc. GraMoT 2010 4 / 16

ECEASST

Definition 4 (Relational Typing Morphism) Let |G| and |T | be relational graphs. A relational
typing morphism from |G| over |T | is defined by a total relational graph morphism |tG| =
{tG

V , tG
E } from |G| to |T |.

A relational typed graph is defined by two relational graphs together with a relational typing
morphism. A relational typed graph morphism between graphs typed over the same graph is
defined by a relational graph morphism. A (typed morphism) compatibility condition assures
that the mappings of vertices and edges preserve types.

Definition 5 (Relational Typed Graph, Relational Typed Graph Morphism) A relational typed
graph is given by a tuple |GT | = 〈|G|, |tG|, |T |〉 where |G| and |T | are relational graphs and
|tG| = {tG

V , tG
E } is a relational typing morphism from |G| over |T |. A relational (typed) graph

morphism from |GT | to |HT | is defined by a relational graph morphism |g|= {gV ,gE} from |G|
to |H|, such that the typed morphism compatibility condition is satisfied:

• (Typed Morphism) Compatibility Condition. ∀x,x′,y,
[gV (x,x′)∧ tG

V (x,y)⇒ tH
V (x′,y)]; and

[gE(x,x′)∧ tG
E (x,y)⇒ tH

E (x′,y)].

A relational rule specifies a possible behaviour of the system. It consists of a left-hand side
|LT |, describing items that must be present in a state to enable the application of the rule and a
right-hand side |RT |, expressing items that will be present after the application of the rule. We
require that rules do not collapse vertices or edges (are injective) and do not delete vertices.

Definition 6 (Relational Rule) A relational rule α is given by a tuple 〈|LT |, |α|, |RT |〉 where:

• |LT |= 〈|L|, |tL|, |T |〉 and |RT |= 〈|R|, |tR|, |T |〉 are relational typed graphs;

• |α| = {αV ,αE} is an injective relational typed graph morphism from |LT | to |RT |, such
that αV is a total function on the set of vertices.

A relational graph grammar is composed by a relational type graph, characterizing the types
of vertices and edges allowed in a system, an initial relational graph, representing the initial state
of a system and a set of relational rules, describing the possible state changes that can occur in a
system.

Definition 7 (Relational Graph Grammar) Let RGG = {vertT , incT , vertG0, incG0, tG0
V , tG0

E ,
(vertLi, incLi, tLi

V , tLi
E ,vertRi, incRi, tRi

V , tRi
E , αiV , αiE)i∈{1,...,n}} be a set of relation symbols. A

relational graph grammar is a RGG-structure |GG|= 〈DGG,(r)r∈RGG〉 where

• DGG = VGG ∪EGG is the set of vertices and edges of the graph grammar, where: VGG ∩
EGG =∅, VGG =VT ∪VG0∪ (VLi∪VRi)i∈{1,...,n} and EGG = ET ∪EG0∪ (ELi∪ERi)i∈{1,...,n}.

• |T |= 〈VT ∪ET ,{vertT , incT}〉 defines a relational graph (the type of the grammar).

• |G0T |= 〈|G0|, |tG0|, |T |〉, with |G0|= 〈VG0∪EG0,{vertG0, incG0}〉 and |tG0|= {tG0
V , tG0

E },
defines a relational typed graph (the initial graph of the grammar).

5 / 16 Volume 30 (2010)

Towards Theorem Proving Graph Grammars using Event-B

• Each collection (vertLi, incLi, tLi
V , tLi

E , vertRi, incRi, tRi
V , tRi

E , αiV , αiE) defines a rule:

– |LiT |= 〈|Li|, |tLi|, |T |〉, with |Li|= 〈VLi∪ELi,{vertLi, incLi}〉 and |tLi|= {tLi
V , tLi

E }, de-
fines a relational typed graph (the left-hand side of the rule).

– |RiT | = 〈|Ri|, |tRi|, |T |〉, with |Ri| = 〈VRi ∪ERi,{vertRi, incRi}〉 and |tRi| = {tRi
V , tRi

E },
defines a relational typed graph (the right-hand side of the rule).

– 〈|LiT |, |αi|, |RiT |〉, with |αi|= {αiV ,αiE}, defines a relational rule.

Given a relational rule and a state, we say that this rule is applicable in this state if there is a
match, that is, an image of the left-hand side of the rule in the state. The operational behaviour
of a graph grammar is defined in terms of applications of the rules to some state graph.

Definition 8 (Relational Match) Let 〈|LT |, |α|, |RT |〉 be a relational rule, with |LT |= 〈|L|,{tL
V ,

tL
E}, |T |〉 and |RT |= 〈|R|,{tR

V , t
R
E}, |T |〉. Let |GT |= 〈|G|, |tG|, |T |〉 be a relational typed graph with

tG = {tG
V , tG

E }. A relational match |m| of the given rule in |GT | is defined by a total relational
typed graph morphism |m|= {mV ,mE} from |LT | to |GT |, such that the following conditions are
satisfied:

• mE is injective;

• Match Compatibility Condition. ∀x,x′,y
[mV (x,x′)∧ tL

V (x,y)⇒ tG
V (x′,y)],

[mE(x,x′)∧ tL
E(x,y)⇒ tG

E (x
′,y)].

Since we restrict our approach to injective rules that can not delete vertices and matches that
can no identify edges, the application of a given rule to a match in a state essentially removes
from the state all elements that are in the left-hand side of the rule that are not mapped to the
right-hand side, and creates in the state all new elements of the right-hand side of the rule. The
rest of the state remains unchanged.

Given a rule 〈|LiT |, |αi|, |RiT |〉 of a graph grammar and a corresponding match |m|= {mV ,mE}
in the initial state of the graph grammar, formulas θvertG′ , θincG′ , θtG′

V
, θtG′

E
described below define

the graph resulting of the rule application. The elements that satisfy the stated formulas θrel
are those that define the relations rel of the resulting typed graph |G′T |. Table 1 presents the
explanations for the notation used in θ specifications.

θvertG′ (x) = vertG0(x) ∨ nvertRi(x)

θincG′ (x,y,z) = nincG0(x,y,z) ∨ nincRi(x,y,z).

θtG′
V
(x, t) = nvertG0(x, t) ∨

[
nvertRi(x) ∧ tRi

V (x, t)
]
.

θtG′
E
(x, t) = ntG0

E (x, t) ∨ tRi
E (x, t).

This construction is described by a first-order definable transduction (i.e., by a tuple of first-
order formulas) on relational structures associated to graph grammars. Details can be found in
[CR09a].

Proc. GraMoT 2010 6 / 16

ECEASST

Table 1: Formulas used in θ specifications

Notation Formula Intuitive Meaning

vertG0(x) vertG0(x) x is a vertex of graph |G0|.
tRi
V (x,y) tRi

V (x,y) x is a vertex of |Ri| of type y.
tRi
E (x,y) tRi

E (x,y) x is an edge of graph |Ri| of
type y.

nvertRi(x) vertRi(x)∧@y
(

αiV (y,x)
)

x is a vertex of graph |Ri| cre-
ated by rule |αi|.

nincG0(x,y,z) incG0(x,y,z)∧@w
(

mE(w,x)
)

x is an edge of graph |G0| that
is not image of the match.

n(r,y) {
∃v
(

αiV (v,r)∧mV (v,y)
)

if r 6= y

@v αiV (v,r) if r = y

n relates vertices r and y if (i)
r = y and r is created by rule
|αi|, or (ii) there is a vertex v
preserved by the rule whose
images in Ri and G0 are r and
y, resp.

nincRi(x,y,z) ∃r,s
[
incRi(x,r,s)∧n(r,y)∧n(s,z)

]
x is an edge created by rule
|αi| (connecting existing or
newly created vertices.

nvertG0(x, t) vertG0(x)∧ tG0
V (x, t) x is a vertex of |G0| of type t.

nvertRi(x, t) vertRi(x)∧ tRi
V (x, t) x is a vertex of |Ri| of type t.

ntG0
E (x, t) ∃y,z

(
incG0(x,y,z)

)
∧ @w

(
mE(w,x)

)
∧

∧ tG0
E (x, t)

x is an edge of graph |G0| of
type t that is not image of the
match.

7 / 16 Volume 30 (2010)

Towards Theorem Proving Graph Grammars using Event-B

3 Event-B

Event-B [AH07] is a state-based formalism closely related to Classical B [Abr05] and Action
Systems [BS89].

Definition 9 (Event-B Model, Event) An Event-B Model is defined by a tuple EBModel =
(c,s,P,v, I,RI,E) where c are constants and s are sets known in the model; v are the model
variables1; P(c,s) is a collection of axioms constraining c and s; I(c,s,v) is a model invariant
limiting the possible states of v s.t. ∃c,s,v ·P(c,s)∧ I(c,s,v) - i.e. P and I characterise a non-
empty set of model states; RI(c,s,v′) is an initialisation action computing initial values for the
model variables; and E is a set of model events.

Given states v,v′ an event is a tuple e = (H,S) where H(c,s,v) is the guard and S(c,s,v,v′) is
the before-after predicate that defines a relation between current and next states. We also denote
an event guard by H(v), the before-after predicate by S(v,v′) and the initialization action by
RI(v′).

An event-B model is assembled from two parts, a context which defines the triple (c,s,P) and
a machine which defines the other elements (v, I,RI,E).

Model correctness is demonstrated by generating and discharging a collection of proof obliga-
tions. The model consistency condition states that whenever an event on an initialisation action is
attempted, there exists a suitable new state v′ such that the model invariant is maintained - I(v′).
This is usually stated as two separate proof obligations: a feasibility (I(v)∧H(v)⇒∃v′ ·S(v,v′))
and an invariant satisfaction obligation (I(v)∧H(v)∧ S(v,v′)⇒ I(v′)). The behaviour of an
Event-B model is the transition system defined as follows.

Definition 10 (Event-B Model Behaviour) Given EBModel = (c,s,P,v, I, RI,E), its behaviour
is given by a transition system BST = (BState,BS0,→) where: BState = {〈v〉|v is a state}∪
Unde f , BS0 =Unde f , and→⊆ BState×BState is the transition relation given by the rules:

start
RI(v′)∧ I(v′)
Unde f → 〈v′〉

transition
∃(H,S) ∈ E · I(v)∧H(v)∧S(v,v′)∧ I(v′)

〈v〉 → 〈v′〉

According to rule start the model is initialized to a state satisfying RI ∧ I and then, as long as
there is an enabled event (rule transition), the model may evolve by firing an enabled event and
computing the next state according to the event’s before-after predicate. Events are atomic. In
case there is more than one enabled event at a certain state, the choice is non-deterministic. The
semantics of an Event-B model is given in the form of proof semantics, based on Dijkstra’s work
on weakest preconditions [Dij76].

An extensive tool support through the Rodin Platform makes Event-B especially attractive
[DEP]. An integrated Eclipse-based development environment is actively developed, and open
to third-party extensions in the form of Eclipse plug-ins. The main verification technique is

1 For convenience, as in [Abr05], no distinction is made between a set of variables and a state of a system.

Proc. GraMoT 2010 8 / 16

ECEASST

theorem proving supported by a collection of theorem provers, but there is also some support for
model checking.

4 Verification of Graph Grammars using Event-B

The behavior of an event-B model is similar to a graph grammar: there is a notion of state (given
by a set of variables in event-B, and by a graph in a graph grammar) and a step is defined by
an atomic operation on the current state (an event that updates variables in event-B and a rule
application in a graph grammar). Each step should preserve properties of the state. In event-B,
these properties are stated as invariants. In a graph grammar, the properties that are inherently
guaranteed to be preserved are related to the graph structure (only well-formed graphs can be
generated).

Now, we present a way to model each structure of a graph grammar GG in event-B such that
it is possible to use the event-B provers to demonstrate properties of a graph grammar. We will
use an example to describe how graphs, typed graphs and rules can be defined in Event-B. The
example is depicted in Figure1.

Vertex1 Vertex2
Edge2

Edge1

(a) Type Graph T

Vertex2
Edge2

Edge1

G

T

tG

1
1

Vertex1

(b) Start Graph GT

e1_R1v1_R1v1_L1

e1_L1

v2_R1

(c) Rule α1

Figure 1: Example of Graph Grammar

Graphs: According to Def. 2 and Def. 7, sets VGG and EGG contain all possible vertices and
edge names that may appear in graphs of this relational structure. We will define these sets
as

VGG = vertT ∪N, where vertT is the set of names used as vertex types in GG (we assume

9 / 16 Volume 30 (2010)

Towards Theorem Proving Graph Grammars using Event-B

that vertT ∩N=∅);

EGG = edgeT ∪N, where edgeT is the set of names used as edge types in GG (we assume
that edgeT ∩N=∅).

Moreover, we assume that vertT ∩ edgeT =∅.

The type graph T is defined in an event-B context as described in Figure 2, where we
define all vertex and edge types as constants. In the axioms, we define these sets explicitly
(for example, axiom axm1 means that vertT = {Vertex1,Vertex2}). We also define the
functions sourceT and targetT that respectively designate the source and target vertex of
each edge. Text after a // is a comment. Here, instead of using the ternary inc relation
we used a set of edges and two binary relations (source and target) to define the edges of
a graph. This is an equivalent formulation that is convenient to use in Event-B because it
eases the proof of some proof obligations.

CONTEXT ctx_GG
SETS

vertT // (Type Graph) Vertices
edgeT // (Type Graph) Edges

CONSTANTS
Vertex1 Vertex2

Edge1 Edge2

sourceT // (Type Graph) Source Function
targetT // (Type Graph) Target Function

AXIOMS
axm1 : partition(vertT,{Vertex1},{Vertex2})
axm2 : partition(edgeT,{Edge1},{Edge2})
axm3 : sourceT ∈ edgeT→ vertT
axm4 : partition(sourceT,{Edge1 7→ Vertex1},{Edge2 7→ Vertex1})
axm5 : targetT ∈ edgeT→ vertT
axm6 : partition(targetT,{Edge1 7→ Vertex1},{Edge2 7→ Vertex2})

END

Figure 2: Event-B Type Graph

Instances of vertices and edges that appear in graphs representing states will be described
by natural numbers. It is not necessary to have distinct numbers for vertices and edges: a
graph may have a vertex with identity 1 as well as an edge with identity 1, these elements
will be different because one will be mapped to a vertex type and the other to an edge type.

A graph typed over a type graph T is modeled by a set of variables describing its set of
vertices, set of edges, source, target and typing functions. It is possible to state the com-
patibility conditions of types and source and target of edges (stated in Def. 3) as invariants.
However, since we will always generate well-formed graphs (the start graph is well-formed
and events implement the single-pushout construction), we will skip these invariants (each
invariant that is used generates proof obligations and therefore it is advisable to use only
the necessary ones). Figure 3 shows the definition of a graph G typed over T . Invariants

Proc. GraMoT 2010 10 / 16

ECEASST

are used to define the types of the variables (for example, tG_V is a total function from
vertG to vertT and tG_E is a total function from edgeG to edgeT).

MACHINE mch_GG
SEES ctx_GG
VARIABLES

vertG // (Graph) Vertices
edgeG // (Graph) Edges
sourceG // (Graph) Source Function
targetG // (Graph) Target Function
tG_V // Typing of vertices
tG_E // Typing of edges

INVARIANTS
inv_vertG : vertG ∈ P(N)
inv_incG : edgeG ∈ P(N)
inv_sourceG : sourceG ∈ edgeG→ vertG
inv_targetG : targetG ∈ edgeG→ vertG
inv_tG_V : tG_V ∈ vertG→ vertT
inv_tG_E : tG_E ∈ edgeG→ edgeT

EVENTS
Initialisation

begin
act1 : vertG := {10}
act2 : edgeG := {20}
act3 : sourceG := {20 7→ 10}
act4 : targetG := {20 7→ 10}
act5 : tG_V := {10 7→ Vertex1}
act6 : tG_E := {20 7→ Edge1}

end

Figure 3: Event-B Graph G

There is special event in an event-B model that is executed before any other. This is the
initialization event. In our encoding, this event will be used to create the start graph of a
graph grammar. This is done by assigning initial values to the variables that correspond
to graph G (see Figure 3). Within an event, the order in which attributions occur in non-
deterministic.

Rules: Left- and right-hand sides of rules are graphs, and thus will have representations as
defined previously. Additionally, we have to define the partial morphism (αV ,αE) that
maps elements from the left- to the right-hand side of the rule. The Event-B enconding
of ule α1 depicted in Figure 1 is shown in Figure 4. Since rules do not change during
execution, their structures will be defined as constants.

The behavior of a rule is described by an event (for the example, by event al pha1 in
Figure 5). Whenever there are concrete values for variables mV , mE, newV and newE that
satisfies the guard conditions, the event may occur. Guard conditions grd1, grd2 and grd5
to grd7 assure that the pair (mV,mE) is actually a match from the left-hand side of the

11 / 16 Volume 30 (2010)

Towards Theorem Proving Graph Grammars using Event-B

SETS
vertL1

edgeL1

vertR1

edgeR1

CONSTANTS
v1_L1 // vertex of LHS
e1_L1 // edge of LHS
v1_R1 v2_R1 // vertices of RHS
e1_R1 // edge of RHS
sourceL1

targetL1

sourceR1

targetR1

tL1_V // (Rule 1) Typing vertices of LHS
tL1_E // (Rule 1) Typing edges of LHS
tR1_V // (Rule 1) Typing vertices of RHS
tR1_E // (Rule 1) Typing edges of RHS
alpha1V // (Rule 1) Rule morphism: mapping vertices
alpha1E // (Rule 1) Rule morphism: mapping edges

AXIOMS
// GRAPH L1:

axm7 : partition(vertL1,{v1_L1})
axm8 : partition(edgeL1,{e1_L1})
axm9 : sourceL1 ∈ edgeL1→ vertL1
axm10 : partition(sourceL1,{e1_L1 7→ v1_L1})
axm11 : targetL1 ∈ edgeL1→ vertL1
axm12 : partition(targetL1,{e1_L1 7→ v1_L1})
axm13 : tL1_V ∈ vertL1→ vertT
axm14 : partition(tL1_V,{v1_L1 7→ Vertex1})
axm15 : tL1_E ∈ edgeL1→ edgeT
axm16 : partition(tL1_E,{e1_L1 7→ Edge1})

// GRAPH R1:
axm17 : partition(vertR1,{v1_R1},{v2_R1})
axm18 : partition(edgeR1,{e1_R1})
axm19 : sourceR1 ∈ edgeR1→ vertR1
axm20 : partition(sourceR1,{e1_R1 7→ v1_R1})
axm21 : targetR1 ∈ edgeL1→ vertR1
axm22 : partition(targetR1,{e1_R1 7→ v2_R1})
axm23 : tR1_V ∈ vertR1→ vertT
axm24 : partition(tR1_V,{v1_R1 7→ Vertex1},{v2_R1 7→ Vertex2})
axm25 : tR1_E ∈ edgeR1→ edgeT
axm26 : partition(tR1_E,{e1_R1 7→ Edge2})

// Rule morphism alpha1:
axm27 : alpha1V ∈ vertL1→ vertR1
axm28 : partition(alpha1V,{v1_L1 7→ v1_R1})
axm29 : alpha1E ∈ edgeL1 7→ edgeR1
axm30 : alpha1E =∅

END

Figure 4: Event-B Rule Strucure

Proc. GraMoT 2010 12 / 16

ECEASST

rule to the state graph G (see Def. 8). Guard conditions grd3 and grd4 assure that newV
and newE are new fresh elements (a new vertex and a new edge identifier, not belonging
to graph G). The actions update the state graph (graph G) according to the rule. In this
example one loop edge is deleted and a new vertex and a new edge are created. A vertex
newV with type Vertex2, and an edge newE with type Edge2 are generated. The source
of this new edge is the image of the only vertex in the left-hand side of the rule in G
and the target is the newly created vertex. The relational operators2 used in the definition
of the actions implement the formulas that define rule application in Sect. 2. This is an
encoding of rule α1, there is a concrete choice for identifiers of elements created by the
rule (newV and newE). For this reason and to obtain a more efficient encoding, we did
not use explicitly the functions sourceR1, targetR1, al pha1V and al pha1E to define this
event (but they were implicitly used to define the actions). For example, to obtain the set
of vertices of the resulting graph we used the existing set of vertices vertG and added a set
containing newV , instead of taking a vertex of R1 that was not in the image of al pha1V
(there is a vertex of R1 that is not in the image of al pha1V , that is v2_R2, and by giving
it the name newV in the generated graph we assure that this name did not occur already in
vertG). Note that this choice of representation was dependent on the Event-B language,
if we were to translate graph grammars to a different language, other encodings of the
relational representation might be more suitable.

Proving Properties: Once the start graph and all rules are represented in the event-B model,
the property to be proved can be stated as an invariant. For example, we could add the
invariant card(edgeG)≤ 2, meaning that no reachable graph can have more than 2 edges.
For the given example, this property is true, and this can be easily proven automatically by
the Rodin platform.

5 Final Remarks

In this paper we have defined an event-B model that faithfully describes the behavior of a given
graph grammar. To define this model, we used the relational definition of graph grammars,
that was proven to be equivalent to the SPO approach. Now, it is possible to use the existing
theorem provers for event-B to prove properties of graph grammars, for example, using the
Rodin platform.

This is an initial work in using event-B to help proving properties of graph grammars. Be-
sides implementation, case studies are necessary to evaluate and improve the proposed approach.
Another interesting topic for further research is to investigate to which extent the theory of re-
finement, that is very well-developed in event-B, can be used to validate a stepwise development
based on graph grammars.

2 The relational operators used to define this event are: \ (minus), ∪ (union), C− (domain subtraction).

13 / 16 Volume 30 (2010)

Towards Theorem Proving Graph Grammars using Event-B

EVENTS
Event alpha1 =̂

any
mV
mE
newV
newE

where
grd1 : mV ∈ vertL1→ vertG // total on vertices
grd2 : mE ∈ edgeL1� edgeG // total and injective on edges
grd3 : newV ∈ N\ vertG // newV is a fresh vertex name
grd4 : newE ∈ N\ edgeG // newE is a fresh edge name
grd5 : ∀v·v ∈ vertL1⇒ tL1_V(v) = tG_V(mV(v))

// vertex type compatibility
grd6 : ∀e·e ∈ edgeL1⇒ tL1_E(e) = tG_E(mE(e))

edge type compatibility
grd7 : ∀e·e ∈ edgeL1⇒mV(sourceL1(e)) = sourceG(mE(e))∧mV(targetL1(e)) = targetG(mE(e))

source/target compatibility
then

act1 : vertG := vertG∪ {newV}
act2 : edgeG := (edgeG\{mE(e1_L1)})∪ {newE}
act3 : sourceG := ({mE(e1_L1)}C− sourceG)∪ {newE 7→ mV(v1_L1)}
act4 : targetG := ({mE(e1_L1)}C− targetG)∪ {newE 7→ newV}
act5 : tG_V := tG_V ∪ {newV 7→ Vertex2}
act6 : tG_E := ({mE(e1_L1)}C− tG_E)∪ {newE 7→ Edge2}

end
END

Figure 5: Event-B Rule Event

Proc. GraMoT 2010 14 / 16

ECEASST

Bibliography

[ABHV06] J.-R. Abrial, M. J. Butler, S. Hallerstede, L. Voisin. An Open Extensible Tool En-
vironment for Event-B. In Liu and He (eds.), ICFEM. Lecture Notes in Computer
Science 4260, pp. 588–605. Springer, 2006.

[Abr05] J. R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 2005.

[AH07] J.-R. Abrial, S. Hallerstede. Refinement, Decomposition, and Instantiation of Dis-
crete Models: Application to Event-B. Fundam. Inform. 77(1-2):1–28, 2007.

[BCMR07] P. Baldan, A. Corradini, U. Montanari, L. Ribeiro. Unfolding semantics of graph
transformation. Inf. Comput. 205(5):733–782, 2007.
doi:http://dx.doi.org/10.1016/j.ic.2006.11.004

[BK02] P. Baldan, B. König. Approximating the behaviour of graph transformation systems.
In Proceedings of ICGT ’02 (International Conference on Graph Transformation).
LNCS 2505, pp. 14–29. Springer, 2002.

[BS89] R.-J. Back, K. Sere. Stepwise Refinement of Action Systems. In Snepscheut (ed.),
Proceedings of the International Conference on Mathematics of Program Construc-
tion, 375th Anniversary of the Groningen University. Pp. 115–138. Springer, Lon-
don, UK, 1989.

[BS06] L. Baresi, P. Spoletini. On the Use of Alloy to Analyze Graph Transformation Sys-
tems. In Corradini et al. (eds.), ICGT. LNCS 4178, pp. 306–320. Springer, 2006.

[CGJ+01] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith. Progress on the State Explo-
sion Problem in Model Checking. In Informatics - 10 Years Back. 10 Years Ahead.
Pp. 176–194. Springer, London, UK, 2001.

[Cou94] B. Courcelle. Monadic Second-Order Definable Graph Transductions: A Survey.
Theoretical Computer Science 126(1):53–75, 1994.

[Cou97] B. Courcelle. The Expression of Graph Properties and Graph Transformations in
Monadic Second-Order Logic. Pp. 313–400 in [Roz97].

[Cou04] B. Courcelle. Recognizable Sets of Graphs, Hypergraphs and Relational Structures:
A Survey. In Calude et al. (eds.), Developments in Language Theory. LNCS 3340,
pp. 1–11. Springer, 2004.

[CR09a] S. A. da Costa, L. Ribeiro. Formal Verification of Graph Grammars using Math-
ematical Induction. Electronic Notes Theoretical Computer Science 240:43–60,
2009.
doi:http://dx.doi.org/10.1016/j.entcs.2009.05.044

[CR09b] S. A. da Costa, L. Ribeiro. Relational and Logical Approach to Graph Grammars.
Technical report 359, Porto Alegre: Instituto de Informática/UFRGS, 2009.

15 / 16 Volume 30 (2010)

http://dx.doi.org/http://dx.doi.org/10.1016/j.ic.2006.11.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.entcs.2009.05.044

Towards Theorem Proving Graph Grammars using Event-B

[CR10] S. A. da Costa, L. Ribeiro. Formal Verification of Graph Grammars using Mathe-
matical Induction. Science of Computer Programming, 2010.
doi:http://dx.doi.org/10.1016/j.scico.2010.02.006

[CW96] E. M. Clarke, J. M. Wing. Formal methods: state of the art and future directions.
ACM Computing Surveys 28(4):626–643, 1996.
doi:http://doi.acm.org/10.1145/242223.242257

[DEP] DEPLOY. Event-B and the Rodin Platform. http://www.event-b.org/ (last accessed
16 March 2010). Rodin Development is supported by European Union ICT Projects
DEPLOY (2008 to 2012) and RODIN (2004 to 2007).

[DHR+07] M. B. Dwyer, J. Hatcliff, R. Robby, C. S. Pasareanu, W. Visser. Formal Software
Analysis Emerging Trends in Software Model Checking. In FOSE ’07: 2007 Future
of Software Engineering. Pp. 120–136. IEEE Computer Society, 2007.
doi:http://dx.doi.org/10.1109/FOSE.2007.6

[Dij76] E. Dijkstra. A Discipline of Programming. Prentice-Hall International, 1976.

[Ehr79] H. Ehrig. Introduction to the algebraic theory of graph grammars. In 1st Interna-
tional Workshop on Graph Grammars and Their Application to Computer Science
and Biology. Lecture Notes in Computer Science 73, pp. 1–69. Springer-Verlag,
Germany, 1979.

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

[RV01] J. A. Robinson, A. Voronkov (eds.). Handbook of Automated Reasoning (in 2 vol-
umes). Elsevier and MIT Press, 2001.

[Str08] M. Strecker. Modeling and Verifying Graph Transformations in Proof Assistants.
Electronic Notes in Theoretical Computer Science 203(1):135–148, 2008.
doi:http://dx.doi.org/10.1016/j.entcs.2008.03.039

Proc. GraMoT 2010 16 / 16

http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2010.02.006
http://dx.doi.org/http://doi.acm.org/10.1145/242223.242257
http://dx.doi.org/http://dx.doi.org/10.1109/FOSE.2007.6
http://dx.doi.org/http://dx.doi.org/10.1016/j.entcs.2008.03.039

	Introduction
	Relational Approach to Graph Grammars
	Event-B
	Verification of Graph Grammars using Event-B
	Final Remarks

