
Electronic Communications of the EASST
Volume 072 (2015)

Proceedings of the
15th International Workshop on

Automated Verification of Critical Systems (AVoCS 2015)

Automated Verification of Asynchronous Communicating Systems with
TLA+

Florent Chevrou, Aurélie Hurault, Philippe Quéinnec

15 pages

Guest Editors: Gudmund Grov, Andrew Ireland
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Electronic Communications of the EASST (European Association of Software Science and Technology)

https://core.ac.uk/display/270295486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/


ECEASST

Automated Verification of Asynchronous Communicating Systems
with TLA+

Florent Chevrou, Aurélie Hurault, Philippe Quéinnec

firstname.lastname@enseeiht.fr
IRIT – Université de Toulouse

2 rue Camichel
F-31000 Toulouse, France

http://www.irit.fr

Abstract:

Verifying the compatibility of communicating peers is a crucial issue in critical dis-
tributed systems. Unlike the synchronous world, the asynchronous world covers a
wide range of message ordering paradigms (e.g. FIFO or causal) that are instrumen-
tal to the compatibility of peer compositions. We propose a framework that takes
into account the variety of asynchronous communication models and compatibility
properties. The notions of peer, communication model, system and compatibility
criteria are formalized in TLA+ to benefit from its verification tools. We present
an implemented toolchain that generates TLA+ specifications from the behavioral
descriptions of peers and checks compatibility of the composition with respect to
given communication models and compatibility criteria.

Keywords: aynchronous communication, peer composition, compatibility check-
ing, TLA+

1 Introduction

Building systems through assembling and coordinating off-the-shelf components is a thriving
software production principle. The formal verification of the correctness of the composition of
a set of peers is crucial to this approach when it comes to critical systems. In this setting, the
interaction model can directly impact the properties of the global system. In distributed algo-
rithms research, it has long been known that the properties of the communication, and especially
the order of message delivery, is essential to the correctness of the algorithms. For instance,
the Chandy-Lamport snapshot algorithm [CL85] requires that the communication between two
processes is FIFO, and Misra’s termination detection algorithm [Mis83] works with a ring con-
taining each node once if the communication ensures causal delivery, but requires a cycle visiting
all network edges if communication is only FIFO.

Although the question of characterizing the properties of a set of combined services has been
extensively studied for quite a long time (e.g. [BZ83, LW11]), existing works are restricted, to
the best of our knowledge, to a specific interaction model (either synchronous or asynchronous,
or coupling via bounded buffers), to which their formalization and verification framework are
dedicated. Moreover the diversity of asynchronous communication models is generally ignored.

1 / 15 Volume 072 (2015)

mailto:firstname.lastname@enseeiht.fr
http://www.irit.fr


Automated Verification of Asynchronous Communicating Systems with TLA+

We present a framework and a ready-to-use automated toolchain, based on TLA+, that en-
ables to check LTL properties on distributed systems. A system is the conjunction of peers and
communications models (TLA+ modules) that interact through channels. Unlike many existing
approaches, explicit senders and receivers are not required which allows for a greater variety of
specifications. Although several communication models and compatibility LTL properties are
supplied, the framework can be extended at will with additional ones thanks to its modular struc-
ture and transition system base. These additions can be generic or fulfill system-specific needs
(case-by-case adaptation). Finally, it integrates well with other tools: peer specification helpers,
not part of the core framework, are provided in the presented toolchain.

The outline of this paper is the following. Section 2 introduces our views on asynchronous
communication and the choices made to model interaction. Several classic communication mod-
els are then presented. They highlight the diversity of asynchronous communication. Section 3
presents the core framework and an automated toolchain where peers are specified with transi-
tion systems derived from CCS terms. Section 4 presents a use case example and a performance
benchmark. Section 5 provides an overview of the conceptual background of this work and,
eventually, the conclusion draws perspectives after summing up this work.

2 Asynchronous communication

2.1 Intuition

Communication consists in exchanging messages whose content is not relevant outside the scope
of peers’ internal behavior. Messages are sent on channels. Channels do not have explicit sender
and receiver and are not limited to one sender/one receiver. They are nevertheless a point-to-point
communication abstraction: a given message has exactly one sender and is received only once.
Loose channels allow for richer and more elegant system specifications, where the reception of
a message can occur on a peer that depends on the communication medium’s state.

From the traditional distributed systems viewpoint, the communication medium controls the
messages deliveries. Peers cannot impose a delivery order. However, a peer specifies which
channels it listens to in order to prevent the delivery of a message it is not and never will be
concerned about. For instance, a peer that only expects to receive a message from channel a
followed by a message from channel b cannot impose the reception order (the communication
model will have to if this is essential to compatibility), but it can specify it only listens to channels
a and b, thus preventing the communication medium from imposing a message from another
channel.

2.2 Communication Models

We describe seven asynchronous communication models in table 1 and provide instance imple-
mentations, often based on queues, to illustrate them. They enforce an order of message recep-
tions in relation with the order of their emissions. For instance, in Mn−1, each peer has a unique
mailbox which is FIFO-ordered. Messages are delivered to this peer in their absolute send order-
ing, whatever the sending peers are. This contrasts with M1−1 where a queue is present between
every couple, and no order is imposed between two messages coming from different peers.

Proc. AVoCS 2015 2 / 15



ECEASST

Table 1: Communication Models Description

Model Specification Intuitive Implementation
Masync Fully asynchronous. No order

on message delivery is imposed.
A bag from which messages
are non-deterministically re-
trieved.

async

?
×1

Mn−n Global ordering. Messages are
delivered in their send order.

A unique FIFO queue where
all messages are put in and re-
trieved from.

n n

×1

M1−n Messages from the same peer
are delivered in their send order.

An output queue for each peer
(outbox) from which mes-
sages are instantly retrieved.

1 n

×n

Mn−1 On a given peer, messages are
received in their send order.

An input queue for each peer
(mailboxes) where messages
are instantly deposited.

n 1

×n

M1−1 Messages between two desig-
nated peers are delivered in their
send order.

A FIFO queue between each
couple of peers.

1 1

×n2

Mcausal Messages are delivered accord-
ing to the causality of their emis-
sion [Lam78].

Using causal histo-
ries [SM94] or logical
matrix clocks [RST91].

MRSC Messages are immediately deliv-
ered after their send [CMT96].

A 1-slot unique buffer shared
by all peers.

RSC

×1

Bounded Implementations Some variations also include the possibility to count and/or limit
the number of in transit messages, locally (peer) or globally. A counter of in transit messages
is updated at send and receive events. It is used in a threefold manner. First, an enforced limit
models a bounded network where the emission of a message is not always enabled. Secondly, the
state space is reduced, thus making its exploration quicker. Thirdly, for a correct finite system,
the maximal value of the counter is the highest number of in transit messages.

Composite Models We also consider composite communication models made up of several
other models. Each one of them manages communication on its own subset of channels. This
makes it possible to ensure different ordering properties on these channel groups.

3 A Framework for the Verification of Asynchronously Communi-
cating Peers

This section presents a framework aimed at checking compatibility properties over a composition
of a set of peers and a communication model (possibly composite). Peers and communication
models are both specified using transition systems. Interactions between them are represented by

3 / 15 Volume 072 (2015)



Automated Verification of Asynchronous Communicating Systems with TLA+

CCS term
Transition

system

Completed
transition
system

TLA module
Composition

Peer Other peers

System
Compatibility

result
Counter-
example

TLA module
Communication Model

LTL properties
Compatibility Criteria

Figure 1: Main Steps Performed by the Framework

a synchronous product. These notions are translated into TLA+ specifications where this product
appears as a conjunction of actions. The choice of TLA+ as the specification language arises
from the high-level structures (such as sets, tuples and functions) it offers. This paves the way
for evolved communication models implementations that for instance rely on nested message
histories. The "actions as predicates" approach also eases the synchronous product operation.

Figure 1 provides an overview of the different implemented steps to perform the automatic
verification of a composition. They are detailed in the following sections.

3.1 TLA+ Specification Language

TLA+ [Lam03] is a formal specification language based on untyped Zermelo-Fraenkel set theory
for specifying data structures, and on the temporal logic of actions (TLA) for specifying dynamic
behaviors. Expressions rely on standard first-order logic, set operators, and several arithmetic
modules. System properties are specified using TLA which is a variant of linear temporal logic
(LTL).

The dynamic behavior of a system is expressed as a transition system whose specification is
usually written as Init ∧2[Next ]vars ∧F , where Init is a predicate specifying the initial states,
Next is the transition relation, usually expressed as a disjunction of actions, and F expresses
fairness conditions. Weak fairness WFv (A) means that either infinitely many A steps occur or
A is infinitely often disabled. An action formula describes the changes of state variables after a
transition. In an action formula, x denotes the value of a variable x in the origin state, and x ′

denotes its value in the destination state. UNCHANGED x means that x ′ = x .
Functions are primitive objects in TLA+. The application of function f to an expression e is

written as f [e]. [x ∈ X 7→ e] denotes the function that maps any x ∈ X to e , and [f EXCEPT ![e1] =
e2] is a function which is equal to f except at point e1, where its value is replaced with e2. Tuples
(a.k.a. sequences) are functions with domain 1..n . Tuples are written 〈a1,a2,a3〉. 〈〉 is the empty
sequence. Modules are used to structure complex specifications. They can extend other mod-
ules, importing all their declarations and definitions, or be an instantiation of another module.
MI ∆

= INSTANCE M WITH q1← e1,q2← e2 . . . is an instantiation of M , where each symbols qi
is replaced by the expression ei . MI !x references x in the instantiated module.

3.2 System Model

A system is composed of a set of indexed peers P1, . . . ,Pn and a communication model M (pos-
sibly composite). They are specified using transition systems labelled by communication events.

Proc. AVoCS 2015 4 / 15



ECEASST

Communication occurs when matching transitions in M and one of the Pi are synchronized and
the Pj (j 6= i) stutter. Internal actions τ can occur without synchronization. Since delivery is
stable in our models described in table 1, a minimal progress property (weak fairness in TLA+)
prevents infinite stuttering.

Channels are used instead of explicit sender and receiver. Thus, peer transitions are only char-
acterized by the nature of the communication (send "!" or receive "?") and the concerned channel
(e.g. c!−→). Peer states are characterized by program counters in TLA+ modules (e.g. figure 2).
The state of a composition P1, . . . ,Pn is an array of program counters which carries Pi ’s state
at index i . As for M , a send (resp. receive) transition accounts for a peer that has sent (resp.
received) a message. However, unlike peers, M also requires information about the identity of
the peer concerned by the communication operation to guarantee interesting ordering properties.

For instance,
3,c!−−→ in M is to be synchronized with a c!−→ transition in P3. A TLA+ module cor-

responding to a communication model is specified using state variables and transition predicates
that implement the rules of message ordering. The notion of listened channels mentioned in 2.1
is also taken into account as additional information in the case of receive transitions, both in

the peers and communication models. For instance, in M ,
2,a?,{a,b,e}−−−−−−−→ accounts for the recep-

tion of a message on channel a by P2 in a context where P2 listens to channels a , b, and e. It

is to be synchronized with a
a?,{a,b,e}−−−−−−→ transition in P2. Although the inner functioning of the

peers is often irrelevant when it comes to checking the compatibility of a composition, modeling
data passing can be of interest and easily handled by additional fields on the transitions. Such
cases include lifting indeterminism, creating, or transmitting channels. Peers would have to be
specified accordingly in a more complex manner than with basic program counters.

Figure 2 shows an example of a system composed of two peers. The module instantiates the
causal communication model to get the send and receive actions. The two peers are respectively
initialized in states 11 and 14. Two transitions departs from state 14, depending on the reception
channel.

3.3 Causal Commununication Model (Mcausal ) Implementation

As an example, figure 3 shows the TLA+ module corresponding to an implementation of the
causal communication model Mcausal . The causal order [Lam78] is the weakest partial order
which contains both the peer local order and the send-receive order. Message histories are used
to keep track of this order. The state variables are net the set of in transit messages, and H the
array composed of a history (message set) for each peer. A message consists of a channel, the
sender id, and a snapshot of the sender’s history at send1. The reception predicate requires that
no in transit message (whose channel is listened to) appears in the history snapshot of the to-be-
received message. Thus it garantees that messages are not received in an order that would violate
the causality of their emission. The local history of each peer is updated in a way that describes
the causal ordering: at send and receive, the message is added in the peer local history (see
"∪{message}" at α and "∪{〈c1,p1,h1〉}" at β ); the link between send and receive is performed
when merging the message’s history to the receiver’s local history (see "∪h1" at β ).

1 Messages are unique because a peer history is strictly increasing.

5 / 15 Volume 072 (2015)



Automated Verification of Asynchronous Communicating Systems with TLA+

MODULE composition
EXTENDS Naturals, peermanagement
CONSTANTS N
VARIABLES net
Vars ∆

= 〈peers, net〉
Com ∆

= INSTANCE causal WITH CHANNEL←{“a”, “b”}

Init ∆

= Com !Init ∧peers = 〈11, 14〉 Initial states: First peer: state11 Second peer: state14

First peer: a!.b!

t1(peer) ∆

= trans(peer , 11, 12)∧Com !send(peer , “a”) First peer: state11
a!−→ state12

t2(peer) ∆

= trans(peer , 12, 13)∧Com !send(peer , “b”) First peer: state12
b!−→ state13

Second peer: a?.b?

t3(peer) ∆

= trans(peer , 14, 15)∧Com !receive(peer , “a”, {“b”, “a”}) Second peer: state14
a!−→ state15

t4(peer) ∆

= trans(peer , 15, 16)∧Com !receive(peer , “b”, {“b”}) Second peer: state15
b?−→ state16

t5(peer) ∆

= trans(peer , 14, 17)∧Com !receive(peer , “b”, {“b”, “a”}) Second peer: state14
b?−→ state17

Fairness ∆

= ∀ i ∈ 1 . . N : (WFVars(t1(i))∧WFVars(t2(i))∧WFVars(t3(i))∧WFVars(t4(i))∧WFVars(t5(i)))
∧WFVars(Com ! internal ∧UNCHANGED peers)

Next ∆

= ∃ i ∈ 1 . . N : (t1(i)∨ t2(i))∨ t3(i))∨ t4(i))∨ t5(i))∨ (Com ! internal ∧UNCHANGED peers)
Spec ∆

= Init ∧2[Next ]Vars ∧Fairness

Figure 2: Generated TLA+ Module: a! // b! // Composed with a? //

b? ((
b? //

3.4 Compatibility

We define two universal peer states: 0 the terminal state, and ⊥ the faulty state. 0 characterizes a
peer that has reached a point where the tasks it was supposed to perform are done. ⊥ is reached
after an unexpected reception (that is to say a reception, imposed by the communication model,
that is not correctly handled by a peer). Whether a transition leads to 0, ⊥, or another state is
part of the peer specification. A compatibility property is given as an LTL formula. We denote
si the state of peer i and the following predicates are defined:

0∀
∆

= ∀i ∈ 1..n : si = 0 peers are all in the terminal state
0i

∆

= si = 0 termination of peer i
⊥∃

∆

= ∃i ∈ 1..n : si =⊥ an unexpected message has been delivered

The following compatibility properties are defined:
System Termination The system always reaches a terminal state. System |= ♦�0∀
Peer Termination Peer i always reaches a terminal state. System |= ♦�0i
No faulty receptions No unexpected reception ever occurs. System |=�¬⊥∃
No forever blocking communication At any time, at least one communication event
is possible (except if terminated or after a faulty reception).
System |=�(0∀∨⊥∃∨ ENABLED(R)) where R is the system transition relation.

In the figure 2 example: if we replace states 13 and 16 by 0, and 17 by ⊥, Mcausal makes it
impossible to reach ⊥ and the four mentioned compatibility properties hold.

Proc. AVoCS 2015 6 / 15



ECEASST

MODULE causal
EXTENDS Naturals, FiniteSets
CONSTANTS CHANNEL, N The channels managed by the model and the number of peers
VARIABLES net , H
Init ∆

= ∧net = {}∧H = [i ∈ 1 . . N 7→ {}] Network and histories are initially empty

send(peer , chan) ∆

= Emission from peer of a message on channel chan
LET message ∆

= 〈chan, peer , H [peer ]〉IN Message content: channel, sender, and sender current history
∧ net ′ = net ∪{message} The message is added to the network
∧ H ′ = [H EXCEPT ! [peer ] = H [peer ]∪{message}] α : This send is made part of the peer history

receive(peer , chan, listened) ∆

= Reception, on peer, of a message on chan
∃〈c1, p1, h1〉 ∈ net : There is an in transit message such that
∧c1 = chan The channels match
∧¬(∃〈c2, p2, h2〉 ∈ net : c2 ∈ listened ∧〈c2, p2, h2〉 ∈ h1) No in transit message of interest is in conflict
∧net ′ = net \〈c1, p1, h1〉 It is retrived from the in transit messages
∧H ′ = [H EXCEPT ! [peer ] = H [peer ]∪h1∪{〈c1, p1, h1〉}] β : The peer history is updated

Figure 3: TLA+ Module Associated to the Causal Communication Model

3.5 User Friendliness

Explicitly defining even quite simple peer transition systems can be cumbersome. One may
want to step back and provide more abstract specifications. The proposed framework provides
alternate ways to assist peers specification.

3.5.1 Peer Alternative Specification

A peer can alternatively be defined by a process specified with a CCS term. The peer transition
system is derived from the CCS term using the standard CCS rules [Mil99, p.39] and excluding
the synchronous communication rule. The translation from a CCS term to a transition system
is achieved through the Edinburgh Concurrency Workbench [CPS93]. On-the-fly construction
of the transition systems would make incompatibility detection more efficient as the complete
transition system may be unnecessary for a counter-example, but proving compatibility would
still require the entire peers transitions. PlusCal specifications, for instance, could also offer
practical alternatives to CCS and the explicit generation of transitions.

3.5.2 Faulty Reception Completion

The faulty receptions completion (FRC) consists in revealing the unexpected receptions in a
peer and mark them as faulty by adding a corresponding transition toward ⊥. It makes peers
fit the intuitive viewpoint where the communication medium impose messages: if a peer is not
interested in a channel at a given time, it will never be later.

For each state s where a receive transition exists, the future channels of s is the set of channels
corresponding to possible future receptions. For each channel c in the future channels that is not
already specified as an alternative choice in this state, such a choice is provided by a transition
towards ⊥ and labeled by c? : s c?−→⊥. These are called faulty receptions.

7 / 15 Volume 072 (2015)



Automated Verification of Asynchronous Communicating Systems with TLA+

{a,b,c}

{a,b,c}

a?

b?a?

b? c?
{b,c} {c}

{a,b,c}

{a,b,c}

a?

b?a?

b? c?
{b,c} {c}

⊥
c? c?

b?

c?

⊥

⊥

⊥

Figure 4: Faulty Receptions Completion Example

Student

Secretary

Teacher

Supervisor

studentname

studentname

resit

ok

examreq

materials

exam
answers

mark

studentname

studentname

resit

ko

cancel

mark

Student

Secretary

Teacher

Supervisor

Figure 5: Expected Executions Examples

For instance, let us consider the peer represented on the left in figure 4. The future channels
are indicated next to each state. When there is no departing reception of a future channel, a
faulty transition is added which results in the peer represented on the right. When composed
with a peer a! · b! · c! ·0 and M1−1, the faulty receptions are impossible (because the send order
must be respected) and the peer always ends up in the far-right state (which may be of interest;
e.g. 0 the terminal state). This cannot be guaranteed with Masync for example.

4 Experiments and Results

This section presents a concrete example which illustrates the interest of a diversity of asyn-
chronous models, and some benchmark results which show the usability of the framework for
larger systems.

Proc. AVoCS 2015 8 / 15



ECEASST

Supervisor ∆

= studentname! · studentname! · resit! · (ok? ·0+ ko? · cancel ! ·mark ! ·0)
Secretary ∆

= studentname? ·mark? ·0
Student ∆

= resit? · (τ · ko! ·0+ τ ·StudentOK )
StudentOK ∆

= ok ! · examreq! ·materials? · exam? ·answers! ·0
Teacher ∆

= studentname? · (cancel? ·0+ examreq? ·TeacherExam)
TeacherExam ∆

= materials! · exam! ·answers? ·mark ! ·0

Figure 6: Supervisor-Secretary-Student-Teacher Specification

4.1 Practical Example

Let us consider an examination management system composed of a student, a supervisor, a
secretary, and a teacher. When the supervisor notices that a student has failed and can resit, he
sends the name of the student to the teacher and the secretary, and the resit information to the
student. If the student chooses to resit, he answers ok and asks the teacher for the exam. The
teacher then sends the needed materials and then the exam, after which the student sends back
his answers, then the teacher sends a mark to the secretary. If the student declines to resit, he
informs the supervisor who sends a cancel message to the teacher and the former mark to the
secretary. Sample executions are depicted in figure 5 and the system is specified in figure 6.

We consider the models defined in table 1 and the composite model Mcomp :

Mcomp =


Mcausal {studentname,resit ,examreq ,cancel ,mark}
M1−1 {materials,exam}
Masync {ok ,ko,answers} (no constraint)

In this example, studentname is a channel over which two messages are sent and from which
they are received by different services (teacher and secretary). In addition, mark is a channel
over which only one message is to transit, but it may be emitted by different services (supervisor
and teacher). Therefore, compatibility, especially termination of the secretary service, is not
trivial. Consequently, in addition to the generic compatibility properties defined in 3.4, we also
consider the termination of the secretary and we check if all messages have been received upon
full termination.

Consider the properties needed to make this work as intended. There is a causal dependency
between the studentname message and the examreq message (the request for the exam must
not arrive before the student name). This causal dependency comes from the resit message,
which follows the studentname message and is the cause of the examreq message. Causal
communication is thus required. Moreover, if a cancel message is sent, it should be received
after the student’s name by the teacher. Therefore, cancel is part of this causal group. The
same holds for the mark channel, since the secretary first expects a studentname. Finally, the
materials and the exam are sent in two separate messages and are not expected to be received
in the reverse order by the student.

Figure 7 presents the results. It confirms that causality is needed to ensure compatibility of the
composition but not required over the whole set of channels. The considered composite model is
restrictive enough. In this example, with that composite communication model, model checking

9 / 15 Volume 072 (2015)



Automated Verification of Asynchronous Communicating Systems with TLA+

Mn−n M1−n Mn−1 Mcausal M1−1 Masync Mcomp
Termination 4 4 4 4 5 5 4

Termination with an empty network 4 4 4 4 5 5 4

Partial termination (secretary) 4 4 4 4 5 5 4

No faulty receptions 4 4 4 4 5 5 4

No forever blocking communication 4 4 4 4 5 5 4

Figure 7: Compatibility Results

 0
 50

 100
 150

 200
 250

 300

 0 10 20 30 40 50 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

t 
(s

ec
)

Async - Bag implementation

M

N

t 
(s

ec
)

 0
 50

 100
 150

 200
 250

 300

 0 50 100 150 200 250 300 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600
t 

(s
ec

)

FIFO - queue implementation

M

N

t 
(s

ec
)

Figure 8: Runtime for the Studied System

generates 135 distinct states.

4.2 Benchmarking

Studied system We study the composition of two peers derived and completed from the fol-
lowing CCS terms: (a1! · . . . ·aN !.b?)M and ((a1?‖ . . .‖aN ?) ·b!)M . It consists in transmitting M
series of N messages (emitted in the same order and that can be received in any order) separated
by a synchronization message. We check for termination and observe the number of generated
states and runtime. This benchmark is relevant to study looping systems consisting in sections
where ordering may be crucial, explicitly sequenced by synchronization points. Depending on
the communication model, results are expected to vary. Indeed, without constraint (Masync), all
the reception interleavings are possible, while other models like M1−1 impose a single path that
corresponds to the send order. These are two extreme cases. We rely on a bag-based implemen-
tation for Masync and a sequence-based implementation for M1−1. The tests ran on a machine
with 2×4 cores Intel Xeon CPU E5-2690 v3 at 2.60GHz and 23GiB of RAM.

Results The results are presented in figures 8 and 9. They show that the number of states and
runtime increase linearly with M the number of critical sequences. They increase exponentially
when it comes to N because it accounts for the maximum number of in transit messages at a given
time and all the possible receptions that have to be tried during model-checking. M corresponds

Proc. AVoCS 2015 10 / 15



ECEASST

 0
 50

 100
 150

 200
 250

 300

 0 10 20 30 40 50 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

st
at

es

Async - Bag implementation

M

N

st
at

es

 0
 50

 100
 150

 200
 250

 300

 0 50 100 150 200 250 300 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

st
at

es

FIFO - queue implementation

M

N
st

at
es

Figure 9: Number of Distinct States in the Studied System

to the number of repetitions of the scenario, thus the linear profile. These results show that in
practice, systems should scale up well because high degrees of chaos, for instance when more
than 20 messages are to transit on a communication medium at the same time (N & 20), are
seldom met.

5 Related Work

5.1 Compatibility Checking

Compatibility of services / software components has largely been studied, with two main goals:
Can services communicate and provide more complex services? And can one service be replaced
by another one (substitutability)?

These two notions of compatibility are different. In the first case, the services must be com-
plementary, whereas in the second case they should provide the same functionality. Classically,
either the notion of simulation (as in [ADF08]) or the notion of trace inclusion (as in [CLB08]) is
used to express this sameness. In this taxonomy, we can also include different models of failure
traces [GGH+10], where refusal sets may be used to model (preservation of) process receiving
capabilities and therefore absence of forever pending messages. We are mainly interested in
the first problem. Many approaches exist to verify behavioral compatibility of web services or
software components.

Different formalisms are used to represent the services: finite-state machines [DOS12, CLB08,
BCT04, FUMK04], process algebra [DWZ+06, BCPV04, CPT01], Petri nets [LFS+11, TFZ09,
Mar03]. Different criteria are used to represent compatibility: deadlock freedom [DOS12,
FUMK04], unspecified receptions [BZ83, DOS12], at least one execution leads to a terminal
state [DOS12, BCT04, DWZ+06, LFS+11], all the executions lead to a terminal state [BCT04,
BCPV04], no starvation [FUMK04], divergence [BCPV04]. Domain application conditions are
also used [CLB08, CPT01]. The communication models used are synchronous [DOS12, BCT04,
FUMK04, DWZ+06, BCPV04, CPT01] or FIFO n-1 [BBO12, OSB13].

11 / 15 Volume 072 (2015)



Automated Verification of Asynchronous Communicating Systems with TLA+

On the specific point of faulty reception completion (section 3.5.2), this is reminiscent of
Brand and Zafiropulo’s unspecified reception approach [BZ83]. In their work, if a state can
receive a given message, then a successor state (accessible via send events) must also accept this
message. In other words, for a system to be correct w.r.t. unspecified reception (and thus for
compatibility), if a message can be received at a given state, its reception must also be specified
at later states. In our work, we reverse the proposition: if a message can be received at a given
state, the communication model may deliver it earlier and the system must expect this situation.
The faulty reception completion ensures that fault transitions are introduced to get this property.

To sum up, although some works use several compatibility criteria, all of them are dedicated to
one communication model, mostly the synchronous model. None of them proposes a verification
parameterized by both the compatibility criteria and multiple communication models. Moreover,
only a few approaches provide a tool to automatically check the composition. Compared to these
works, we propose a unified formalization of several communication models and compatibility
criteria, and a framework which makes it possible to check the correctness of a composition in a
unified manner, using any combination of the communication models. Lastly, the prototype tool
returns an invalid execution counterexample when a compatibility criterion is not met.

5.2 System Description

5.2.1 IO Automata

Input/output automata [Lyn96] provide a generic way to describe components that interact with
each other thanks to input and output actions. Those actions are partitioned into tasks over
which fairness properties can be defined in the same way fairness properties can be set over
TLA+ actions. Components can either describe processes or communication channels. They
can also be composed and some output actions can be made internal (hiding) in order to specify
complex systems. IO automata can model asynchronous systems in a broad sense. IO automata
provide a powerful framework to describe distributed systems, but are less practical to verify
properties about them. Furthermore, few tools have been developed to make use of IO automata
and perform modeling and property checking.

5.2.2 Process Calculi

One of the interest of process calculi is their algebraic representation which is simple, concise
and powerful. The processes are described by a term under an algebra. They are constructed
from other processes thanks to composition operators (parallel composition, sequence, alterna-
tive. . . ). The basic processes represent elementary actions, which are most often communication
operations (send or receive).

CCS [Mil82] is an early and seminal calculus that we chose for its simplicity. Its main disad-
vantage for our work is that communications are synchronous, so we had to adapt its semantics.
Milner also defined the π-calculus [Mil99]. The main difference is the introduction of param-
eters: channels can be communicated through channels themselves. This can describe systems
with dynamic configurations. Still, the π-calculus is also synchronous.

Richer process calculi exist, such as the Join-calculus [FG96] (and its extension to mobil-
ity [FGL+96]) based on the reflexive CHAM (CHemical Abstract Machine) [BB92] and also

Proc. AVoCS 2015 12 / 15



ECEASST

the Ambient calculus [CG98]. They can describe separated membranes/domains, where pro-
cesses interact with each other within a domain or perform explicit actions to move into or out
of domains. These calculi are mainly used to model mobility, distribution, firewalls and security
properties. But they are not fitted to our concerns for two reasons. Firstly, modelling distribu-
tion is not straightforward (usually a mix of local communications and moves between domains)
whereas we want to keep it as simple as possible, as distribution is at the core of our concerns.
Secondly, they are not parameterized over communication models and directly encoding them
would also be cumbersome.

6 Conclusion and Perspectives

This paper presents a framework to check the compatibility of asynchronously communicating
peers. It provides a general approach on the diversity of asynchronous communication and takes
part in our current study and comparison of the asynchronous communication models. Their
differences indeed play a major role in the compatibility of peer compositions as highlighted
by the studied use case. The framework enables one to check concrete examples that hint at
similarity between different models or reveal their differences.

In the considered approach, point-to-point asynchronous communication occurs between peers
through channels without explicit sender and receiver. A communication model manages the
communication events and induces properties on the transmission. Being able to associate chan-
nels of a peer composition to different communication models makes it possible to study which
setup and which implementations, for given peers and compatibility properties, offer the lowest
overhead or the fewest constraints. Formalizing and studying these notions is part of an ongoing
work which also aims at automating the process. Extending the asynchronous models by intro-
ducing broadcast (analogous to a message consumed by more than one peer) and communication
failures (mainly message loss) is planned too.

Finally, thanks to its modular conception and the reliance on transition systems, the framework
is easily extensible and adaptable. Alternative ways to ease peer specification using CCS terms
and a completion step on the derived transition system have been integrated to the automated
toolchain. It accounts for the flexibility and adaptability of the developed tool. Benchmarking
results also shows that the tool scales up well.

Bibliography

[ADF08] A. Ait-Bachir, M. Dumas, M.-C. Fauvet. BESERIAL: Behavioural Service Anal-
yser. In Business Process Management International Conference. Demo session.
Pp. 374–377. 2008. LNCS 5240.

[BB92] G. Berry, G. Boudol. The Chemical Abstract Machine. Theoretical Computer Sci-
ence 96(1):217–248, 1992.

[BBO12] S. Basu, T. Bultan, M. Ouederni. Synchronizability for Verification of Asyn-
chronously Communicating Systems. In 13th International Conference on Veri-

13 / 15 Volume 072 (2015)



Automated Verification of Asynchronous Communicating Systems with TLA+

fication, Model Checking, and Abstract Interpretation. VMCAI’12, pp. 56–71.
Springer-Verlag, 2012.

[BCPV04] A. Brogi, C. Canal, E. Pimentel, A. Vallecillo. Formalizing Web Service Choreogra-
phies. Electronic Notes in Theoretical Computer Science 105:73–94, Dec. 2004.

[BCT04] B. Benatallah, F. Casati, F. Toumani. Analysis and Management of Web Service
Protocols. In Conceptual Modeling – ER 2004. Lecture Notes in Computer Sci-
ence 3288, pp. 524–541. Springer, 2004.

[BZ83] D. Brand, P. Zafiropulo. On Communicating Finite-State Machines. Journal of the
ACM 30(2):323–342, Apr. 1983.

[CG98] L. Cardelli, A. D. Gordon. Mobile Ambients. In First International Conference
on Foundations of Software Science and Computation Structure. FoSSaCS ’98,
pp. 140–155. Springer-Verlag, 1998.

[CL85] K. M. Chandy, L. Lamport. Distributed Snapshots: Determining Global States of
Distributed Systems. ACM Transactions on Computer Systems 3(1):63–75, Feb.
1985.

[CLB08] H. S. Chae, J.-S. Lee, J. H. Bae. An Approach to Checking Behavioral Compat-
ibility between Web Services. International Journal of Software Engineering and
Knowledge Engineering 18(2):223–241, 2008.

[CMT96] B. Charron-Bost, F. Mattern, G. Tel. Synchronous, Asynchronous, and Causally
Ordered Communication. Distributed Compututing 9(4):173–191, Feb. 1996.

[CPS93] R. Cleaveland, J. Parrow, B. Steffen. The Concurrency Workbench: A Semantics-
based Tool for the Verification of Concurrent Systems. ACM Transactions on Pro-
gramming Languages and Systems 15(1):36–72, Jan. 1993.

[CPT01] C. Canal, E. Pimentel, J. M. Troya. Compatibility and inheritance in software archi-
tectures. Science of Computer Programming 41(2):105–138, Oct. 2001.

[DOS12] F. Durán, M. Ouederni, G. Salaün. A Generic Framework for N-protocol Compati-
bility Checking. Science of Computer Programming 77(7-8):870–886, July 2012.

[DWZ+06] S. Deng, Z. Wu, M. Zhou, Y. Li, J. Wu. Modeling Service Compatibility with Pi-
calculus for Choreography. In 25th International Conference on Conceptual Mod-
eling. Conceptual Modeling - ER 2006, pp. 26–39. Springer-Verlag, 2006.

[FG96] C. Fournet, G. Gonthier. The Reflexive CHAM and the Join-calculus. In 23rd ACM
Symposium on Principles of Programming Languages. POPL ’96, pp. 372–385.
1996.

[FGL+96] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, D. Rémy. A Calculus of Mobile
Agents. In Montanari and Sassone (eds.), CONCUR. Lecture Notes in Computer
Science 1119, pp. 406–421. 1996.

Proc. AVoCS 2015 14 / 15



ECEASST

[FUMK04] H. Foster, S. Uchitel, J. Magee, J. Kramer. Compatibility Verification for Web Ser-
vice Choreography. In IEEE International Conference on Web Services. Pp. 738–.
2004.

[GGH+10] P. Gardiner, M. Goldsmith, J. Hulance, D. Jackson, B. Roscoe, B. Scattergood,
P. Armstrong. FDR2 User Manual. Technical report, Oxford University, Nov. 2010.

[Lam78] L. Lamport. Time, Clocks and the Ordering of Events in a Distributed System. Com-
munications of the ACM 21(7):558–565, July 1978.

[Lam03] L. Lamport. Specifying Systems. Addison Wesley, 2003.

[LFS+11] X. Li, Y. Fan, Q. Z. Sheng, Z. Maamar, H. Zhu. A Petri Net Approach to Analyzing
Behavioral Compatibility and Similarity of Web Services. IEEE Transactions on
Systems, Man and Cybernetics 41(3):510–521, May 2011.

[LW11] N. Lohmann, K. Wolf. Decidability Results for Choreography Realization. In 9th
International Conference on Service-Oriented Computing. ICSOC’11, pp. 92–107.
Springer-Verlag, 2011.

[Lyn96] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1996.

[Mar03] A. Martens. On Compatibility of Web Services. Petri Net Newsletter, pp. 12–20,
2003.

[Mil82] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1982.

[Mil99] R. Milner. Communicating and Mobile Systems: The π-calculus. Cambridge Uni-
versity Press, New York, NY, USA, 1999.

[Mis83] J. Misra. Detecting Termination of Distributed Computations Using Markers. In
Proceedings of the Second Annual ACM Symposium on Principles of Distributed
Computing. PODC ’83, pp. 290–294. ACM, 1983.

[OSB13] M. Ouederni, G. Salaün, T. Bultan. Compatibility Checking for Asynchronously
Communicating Software. In International Symposium on Formal Aspects of Com-
ponent Software (FACS 2013). LNCS 8348, pp. 310–328. 2013.

[RST91] M. Raynal, A. Schiper, S. Toueg. The causal ordering abstraction and a simple way
to implement it. Information Processing Letters 39:343–350, Oct. 1991.

[SM94] R. Schwarz, F. Mattern. Detecting Causal Relationships in Distributed Computa-
tions: In Search of the Holy Grail. Distributed Computing 7(3):149–174, June 1994.

[TFZ09] W. Tan, Y. Fan, M. Zhou. A Petri Net-Based Method for Compatibility Analysis
and Composition of Web Services in Business Process Execution Language. IEEE
Transactions on Automation Science and Engineering 6(1):94–106, 2009.

15 / 15 Volume 072 (2015)


	Introduction
	Asynchronous communication
	Intuition
	Communication Models

	A Framework for the Verification of Asynchronously Communicating Peers
	TLA+ Specification Language
	System Model
	Causal Commununication Model (Mcausal) Implementation
	Compatibility
	User Friendliness
	Peer Alternative Specification
	Faulty Reception Completion


	Experiments and Results
	Practical Example
	Benchmarking

	Related Work
	Compatibility Checking
	System Description
	IO Automata
	Process Calculi


	Conclusion and Perspectives

