
Electronic Communications of the EASST
Volume 4 (2006)

Guest Editors: Gabor Karsai, Gabriele Taentzer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the
Second International Workshop on
Graph and Model Transformation

(GraMoT 2006)

Model Instantiation and Type Checking in UMLX

Edward D.Willink

13 Pages

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/270295483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ECEASST

2 / 13 Volume 4 (2006)

Model Instantiation and
Type Checking in UMLX

Edward D.Willink

EdWillink@iee.org

Eclipse GMT Project

Abstract: OMG's MDA initiative encourages the use of meta-model based
transformations and re-usable specifications. We discuss how Graphical Transformation
Notations such as UMLX reduce opportunities for errors in this programming domain.

Keywords: MDA, Model Transformation, Graphical Transformation Notation

1 Introduction
Software technology has had made many advances since Fred Brooks' There is no silver bullet
[4]. Each advance has made certain types of errors hard, if not impossible, to make but sadly
fails to confound Fred Brooks' pessimistic viewpoint.

The Model Driven Architecture with its emphasis on transformation of models from
comparatively abstract Platform Independent Models to comparatively concrete Platform
Specific Models provides a further significant advance.

When the MDA approach is adopted enthusiastically to support progressive transformation
from very abstract Domain Specific (Visual) Language models to very concrete models in the
form of executable code, optimists may hope to finally make some inroads on software
portability, reliability and cost. Once models are sufficiently abstract to escape from portability
issues, sufficiently large to represent subsystems worthy of re-use, and sufficiently
parameterisable to adapt to a desired set of performance characteristics, we may be able to
define re-usable systems. Once transformations are sufficiently powerful and configurable we
may be able to synthesize efficient code for a particular market niche. Configuration of
transformations by mark models will be essential if we are to retain the ability for domain
experts to achieve subtle optimisations but avoid the need for the detailed low level manual
coding and optimisations of too many current developments.

UML, MOF and OCL already provide a useful although imperfect ability to define abstract
models for systems. Transformation technology has only just begun to rise to the challenge of
MDA with models for transformation between models.

In this paper we consider how meta-model based transformations can exploit MOF meta-
modelling to avoid many errors that arise with more traditional programming approaches. We
therefore first review the nature of errors in existing technologies, and then introduce the
UMLX notation highlighting similarities between UMLX and many other notations, but also
reviewing some of the more significant differences between notations. We then take an

Model Instantiation and Type Checking in UMLX

Proc. GraMoT 2006 3 / 13

example from the QVT FAS [12] to demonstrate how a tool with strong type checking could
avoid an unfortunate error in that example.

1.1 Errors
Errors are an unavoidable part of any human activity and their speedy elimination is very
desirable. Programming errors may be detected at edit-time, compile-time, link/load-time or
run-time. An edit-time error is detected almost instantly as soon as some construct is able to be
analysed. A compile-time error is only detected once some program module is presented for
analysis. Link or load-time errors must await until the possibly complete program is available
for analysis. Finally a run-time error is not detected until a test execution happens to take some
path that activates the error and an alert observer identifies the inappropriate behaviour. Delay
in detection of errors obviously enables the errors to remain unresolved for longer. At the
system level it has been estimated that delayed detection of a problem through each of the
analysis, development, production and maintenance phases may incur a ten-fold increase in
cost for each phase of delay.

In a conventional language such as C, type checking is able to find some programming
problems, but the limited degree of checking of pointers allows many errors to go undetected.
Limitations of the C syntax make provision of checking earlier than compile-time quite
difficult.

The powerful class definitions of a language such as C++ can be viewed as an opportunity to
define a customised compiler, and so user-defined types and the C++ language extensions can
provide a much stronger checking environment. However syntax complexities make type
checking earlier than compile-time hard, and the macro-like characteristics of templates make
even compile-time checking difficult.

A more modern language, such as Java, with a disciplined syntax, can support incremental
type checking as evidenced by the Eclipse JDT environment, where a concurrent thread
updates the editor screen with error markers within a second or two. Integration of program
understanding at edit time enables a wide variety of navigation, browsing, suggestion and
correction facilities to be provided. This helpful but not overpowering checking contributes
greatly to programmer productivity and satisfaction.

An extensible language such as XML supports only the most rudimentary syntax checking,
and so an XSD schema is essential to impose some form of discipline. This supports a much
improved editing environment, but only for a textual representation that should not be
regularly exposed for direct human manipulation.

An extensible programming language such as XSLT provides much needed model
transformation capabilities but subject to the dual handicaps of an unreadable textual
representation and an uncheckable expression format. It is only with the advent of schema-
awareness that XSLT can provide some checks on validity, but it is difficult to generate errors
for the many inadvertent but plausible expressions that select nothing. XSD schemas
unfortunately lack the relevance and precision of MOF models, potentially augmented by OCL
constraints.

 ECEASST

4 / 13 Volume 4 (2006)

1.2 Error Avoidance
Recent tooling innovations with incremental compilation have succeeded in accelerating
detection of many compile-time errors so that they are identified at edit-time. This is a major
benefit, but we can do better, by making as many errors as possible impossible; an error that
cannot be made needs no detection, diagnosis or correction. Thus few high level language
programmers worry about the subtleties of stack or condition code corruption that provide so
much entertainment for assembler programmers.

Certain classes of errors can be eliminated completely by use of a more powerful language or
environment in which the particular error is impossible. Unfortunately this more powerful
context is often more restrictive and less efficient. Consequently the more powerful context
may be unattractive if not unacceptable for some applications. Provision of this context
requires concepts that are more closely aligned to the programming intent if the benefits are to
outweigh the restrictions.

Strong type systems have been particularly successful in this respect by allowing the compiler
to be extended to support user-defined concepts. An MDA meta-model can be viewed as a
definition of a constrained group of related types and so a natural evolution of type systems
that enables programming tools to evolve to better align with a modelled domain and to
prohibit programming statements that are in conflict with that domain. Initially this higher
level of abstraction will no doubt result in even larger, even slower and even less efficient
code. However, conversion of highly abstract models to concrete code through a progression
of many transformations steered by a mark model provides an opportunity for re-usable
transformations. These can gradually improve and perhaps overtake what is practically
achievable by manual optimisations.

1.3 Transformation Notations
The basic concepts of transformations, rules and patterns of objects appear to be common to all
transformation notations; a transformation comprises a number of rules1 that each define a
relationship between a matched pattern of objects on the input side2 of the rule and a
corresponding pattern of objects on the output side. Cosmetic but ergonomically important
syntactical differences arise with respect to textual constructs or graphical presentation. More
significant semantic differences occur in the permitted complexity of a pattern and the context
in which a rule may be applied, although these differences have reduced as notations acquire
more widespread use. Fundamental philosophical differences may be found in the definition of
mappings from input to output patterns.

1.3.1 Semantic Differences

Early expositions of notations often support only patterns that match a single model element to
each pattern element, but necessarily evolve, as QVT[12] has, to provide some support for a
match to the collection of all elements that lie at the end of some association. UMLX extends
UML multiplicities to support sub-sets of those collections too, enabling a pattern to be
applied pair-wise or even combinatorially. This extension naturally supports a zero-wise match

1 relations in QVT and UMLX
2 domain in QVT and UMLX

Model Instantiation and Type Checking in UMLX

Proc. GraMoT 2006 5 / 13

that can only be true for an absence of elements; an empty collection. QVT introduces a {not}
keyword instead.

The first definition of UMLX [18] required the context of all input and output rule elements to
be bound by the invoking context. UMLX [17] now follows QVTrelation in allowing nested
rules (relations) to be bound and top level rules to be unbound. Conversely, ATL [9] originally
required all rules to apply universally. ATL now supports lazy and invoked rules that can be
bound to specific contexts.

How to handle a pattern of objects that satisfies more than one rule is another source of
semantic variation. ATL requires that no multiple match exist, whereas QVT applies to each
distinct match of each rule. In order to generalise to matching of sub-sets, UMLX defines that
each distinct pattern match should involve the largest possible number of elements and that
each distinct pattern match of each rule is applied exactly once.

Any attempt to implement the UML to RDBMS example soon reveals the need to synchronise
the behaviour of multiple matches across multiple rules. This ensures that the inputs are related
to equivalent outputs in each match.

1.3.2 Philosophy Differences

Fujaba [8], GReAT [2], MOLA [10], QVToperational [12] and VIATRA2 [3] use an
imperative semantics to define the mapping from input to outputs, while AGG [5], ATL [9],
Gmorph [14], MT [15], MTF [11], QVTrelation [12], Tefkat [7] and UMLX use a primarily
declarative semantics. Of these, Fujaba, GReAT, MOLA, VIATRA2, AGG, Gmorph,
QVTrelation and UMLX provide graphical notations.

Imperative transformations are inherently unidirectional, but declarative transformations may
be bi- or even multi-directional. ATL and Tefkat are practical transformation notations and so
restrict their aspiration to unidirectional behaviour. QVTrelation and UMLX are more abstract,
requiring, that amongst other things, their (potentially) multi-directional properties are
resolved to create a unidirectional transformation once the required transformation direction
has been established from its invocation context.

Graphical notations for imperative or procedural notations have not been particularly
successful when applied in the form of a Program Flow Chart, Schlaer-Mellor Data Flow
Diagram [13], or SDL. It is too early to tell whether modern tools and the more abstract meta-
model based constructs used for model transformations are sufficient to allow Fujaba, GReAT,
MOLA or VIATRA2 to overcome the limitations of earlier attempts at imperative graphics. It
is also too early to tell whether the more consistently declarative exposition available in a
graphical notation can enable AGG, Gmorph, QVTrelation or UMLX to encourage
development of declarative rather than imperative transformations. It may perhaps take a long
time for programmers to change their procedural and/or textual habits.

1.3.3 Graphical Differences
The semantics of UMLX are intentionally very similar to QVTrelation. The differences lie
primarily in the provision of more powerful matching and mapping capabilities that suit a
graphical exposition. UMLX graphics has only limited similarities to the proposed graphical
notation for QVTrelation.

 ECEASST

6 / 13 Volume 4 (2006)

Figure 1 Example of basic UML/MOF meta-modelling constructs

The basic UML class diagram notation for meta-models shown in Figure 1 is very familiar and
has formed the basis for some graphical notations. This has led to some confusion since the
notation defines relationships between classes rather than between instances or matches to
those classes.

UMLX re-uses UML concepts in so far as possible, and so the UML (multi-)object instance
notation is extended as shown in Figure 2. Each node in the pattern is a class variable, typed by
a class from the meta-model, to which (multiple) elements are assigned from the matched
model. Each edge in the pattern is a constraint typed by an association from the meta-model.
Both input and output patterns represent statements that are maximally true whenever the rule
applies and each rule applies as often as possible.

Figure 2 Example of UML object instance constructs (in UMLX)

aBook is a Class Variable of type Book, to which a particular book must be bound when the
pattern matches. The relationship between aBook and aPairOfChapters imposes a
Constraint upon the Class Variables at its ends; the Constraint is based upon the Book to
Chapter association. Since a Class Variable is clearly different to a Class, there is no
problem when a more complex pattern involves anotherBook. The multi-object notation is
used for collections, and so a successful match of the pattern will result in a binding of a
collection of chapters to aPairOfChapters, and since the pattern multiplicity is 2, the
matching collection must contain precisely two chapters. The pattern is therefore maximally
satisfied for all pair-wise combinations of two chapters from books with two or more chapters.

Graphical Style

In the QVT FAS, the class name underlines and the line decorations are omitted. Omission of
the underline is a minor stylistic deviation from UML. Omission of the line decorations
deprives the reader of the distinction between composition and association and the
disambiguation of multiple associations involving the same classes.

Fujaba and MOLA underline both class and instance name but also omit decorations.

Gmorph and GRE [1] show line decorations in a similar way to UMLX, but Gmorph
underlines both instance and class name while GRE uses a stereotype notation3 for the class
name.

AGG uses a more conventional Graph Transformation notation and so underlines and line
decorations are again omitted, and instance names are replaced by instance numbers.

3 text between angle brackets

Model Instantiation and Type Checking in UMLX

Proc. GraMoT 2006 7 / 13

Mapping Semantics

Graphical Transformation notations based on imperative principles combine a declarative
exposition of patterns with a procedural exposition of the sequencing and control flow between
the patterns. The graphical exposition requires little additional assistance from textual
annotations and has some similarities to UML activity diagrams.

With the exception of UMLX, Graphical Transformation notations based on declarative
principles rely on non-graphical annotations to define the mapping between input and output
patterns.

UMLX appears to be the only Graphical Transformation notation that uses graphics for both a
declarative exposition of the pattern and a declarative exposition of the mapping. Additional
text is only required when, in the interest of clarity, it is better to hide unnecessarily detailed
annotations.

2 Model Instantiation
The MOF QVT FAS [12] defines the QVTrelation language in terms of the QVTcore
language using a QVTrelation transformation to define the semantics.

The first half page of a 16 page transformation defines the RelationToTraceclass
Relation. Its exposition shown in Figure 3 no doubt represents the best endeavour of its author,
who clearly lacked appropriate tool support. The example contains a readily diagnosed type
error that is easily made when its textual representation has no inherent correlation with its
meta-model. The error makes it impossible to enter the example into UMLX, which imposes
compliance with the meta-model.
// Rule 1: Corresponding to each relation there exists a trace class in core.
// The trace class contains a property corresponding to each object node in the
// pattern of each domain of the relation.
//
relation RelationToTraceclass {
 checkonly domain relations r:Relation {
 name = rn,
 domain = rd:RelationDomain {
 pattern = t:ObjectTemplateExp {
 bindsTo = tv:Variable {
 name = vn,
 type = c:Class {}
 }
 }
 }
 }
 enforce domain core rc:Class {
 name = 'T'+rn,
 ownedAttribute = a:Property {
 name = vn,
 type = c
 }
 }
 where {
 SubTemplateToTraceClassProps(t, rc);
 }
}

Figure 3 RelationToTraceclass example from MOF QVT FAS

 ECEASST

8 / 13 Volume 4 (2006)

After correction of the error, we get the graphical equivalent shown in Figure 4. The solid lines
on left and right hand domains denote the pattern that is matched by each set of related left
hand and right hand side elements.

Figure 4 UMLX version of RelationToTraceclass Relation

This diagram is drawn primarily by dragging and dropping elements from an Outline view of
the QVT meta-model, with remaining elements selected from a Drawing Palette.

The Outline View at the right of Figure 5 shows a tree view of the graphical UMLX model
comprising 4 diagram sheets, a temporarily read-write locked UMLX Ecore model for the
transformation and six read-only Ecore models one for each package of the QVT meta-model.
The RelationDomain class of the qvtrelation package is open showing some of the
model elements that could be dropped into the transformation pattern; dropping a Class
generates a Class Variable in a pattern, dropping an Association generates a Constraint
between two appropriately typed Class Variables; these are automatically created if not
present. Since Class Variables and inter-Class Variable constraints are direct instantiations of

Model Instantiation and Type Checking in UMLX

Proc. GraMoT 2006 9 / 13

Classes or Associations in the meta-model, they are able to adopt the visual style of their
instantiated element; the diamond, arrow and label decorations on the Constraint between
RelationDomain and DomainPattern are therefore drawn automatically and change
automatically as the underlying meta-model is changed.

Figure 5 UMLX Palette and Outline

The meta-model in the Outline shows that a RelationDomain has a pattern as required
by the QVT specification, but that a pattern must be a DomainPattern, not an
ObjectTemplateExp as required in Figure 3. Entering the example with UMLX reveals
the problem and the relatively simple bug fix that introduces the missing DomainPattern
between the RelationDomain and the ObjectTemplateExp.

2.1 Mappings
The UMLX version of the example demonstrates the three UMLX mapping operators, each of
which exploits instantiation to reduce opportunities for errors.

Graph Transformations [6] use the basic concepts of Add, Delete and Keep to define the
mapping between input and output elements. UMLX generalises the unidirectional Add and
Delete operators for single objects to a multi-directional Evolution that exhibits traceability
characteristics to support multi-objects, inheritance and synchronisation of multiple rules.
UMLX generalises the Keep operator as a Preservation that supports a deep 'copy' of all nodes
and edges within the sub-graph defined by composition relationships rooted at the preserved
object.

 ECEASST

10 / 13 Volume 4 (2006)

2.1.1 Evolution

The instance of the relation2traceclass evolution at the top of Figure 4 defines the
evolution of elements of the input domain(s) to elements of the output domain(s). When the
example transformation is used in a left to right direction, it requires a trace Class to exist for
each Relation.

Since the graphics instantiates rather than defines an evolution, the same evolution may be
instantiated by another rule that requires synchronisation between input and output elements.
Instantiation of the evolution must of course comply with the definition. Therefore all input
and output elements of the same evolution must be compatibly typed, and of course the
evolution from the same set of input objects necessarily yields the same set of output objects in
all relations instantiating the same evolution. The example is a simple A to B conversion; the
generalised definition applies to multiple inputs and outputs, each of which may be a
collection of objects.

2.1.2 Invocation

A UMLX relation can be invoked, from another relation or from itself, by binding the input
and output domains of the invoked relation to the matched objects associated with class
variables in the invoking context. The example shows how the relations and core
domains of the SubTemplateToTraceClassProps relation are bound to the
ObjectTemplateExp and Class matches of the RelationToTraceclass. The
example also shows the declaration of the relations and core domains of the
RelationToTraceclass as matches for a Relation from the qvtrelation package,
or for a Class from the emof package.

A relation may be invoked declaratively as a constraint that must also be satisfied whenever a
matching pattern of input elements is identified. Since the invocation is unconditionally true
for this usage, UMLX uses a lozenge with solid lines; solid lines are always true.

Alternatively, as in the example, a relation may be invoked procedurally so that the relation is
invoked wherever a matching pattern of input elements is identified. Since the invocation is
optionally true, UMLX uses a lozenge with dashed lines for this usage; dashed lines may be
true.

2.1.3 Preservation

The mapping operator with an equality sign near the bottom of Figure 4 is a preservation
operator indicating a deep equivalence (copy) between the composition trees rooted at the
input and output elements. A preservation is also instantiated so that multiple instantiations of
the same preservation of the same objects can synchronise rules. Alternatively instantiation of
multiple preservations supports multiple copies of an input element.

3 Model Type Checking
We have shown how entry of a transformation model using a graphical notation can exploit
and enforce the type system defined by the meta-model and so prevent entry of illegal
statements.

Model Instantiation and Type Checking in UMLX

Proc. GraMoT 2006 11 / 13

Once a model has been successfully entered, it may be persisted using an XMI serialisation. If
the serialisation uses XMI identifiers to link model to meta-model, the instantiation can
survive many simple forms of refactoring, such as a change of name or reorganisation of a
class hierarchy. Alternate forms of XML serialisation, that resolve references using XML node
position or hierarchical XML names, are much less tolerant of refactoring.

More complex meta-model changes that represent a semantic rather than cosmetic change are
of course not survivable but can be diagnosed within the editor.

Figure 6 shows the UMLX display for the earlier example, after simulating a typical design
evolution. The QVT meta-model was modified to exclude the DomainPattern class and
so allow the example to be entered as an apparently valid model. The modification was then
removed from QVT meta-model simulating a typical design improvement. The consequence of
this meta-model change shows how the incompatibility is brought to the users attention.

The Problems View identifies the problem and supports navigation to the erroneous design
element. The Editor view shows an error marker on the RelationDomain to
ObjectTemplateExp association, which is in error because the QVT meta-model requires
the type of the pattern to be DomainPattern.

Note that this error cannot arise during design entry; a model can only be invalid with respect
to its meta-model if the meta-model is changed after the model was entered.

4 Conclusion
We have discussed how an MDA based on progressive model transformations offers an
improved programming environment with reduced opportunities for errors.

We have identified that a textual notation lacks inherent compliance with its meta-model and
so requires sophisticated tool support for any form of error checking or even simple forms of
refactoring.

In contrast we have shown how a graphical transformation can be closely coupled to its meta-
model and so can provide insight through visual decorations, avoid some forms of design
error, detect many others and readily support basic refactorings and model navigation.

 ECEASST

12 / 13 Volume 4 (2006)

Figure 6 UMLX Views with errors

Readers may judge for themselves whether the graphical or textual presentation of the
particular example in this paper is easier to grasp. It seems likely that simple or list-like
transformations are better expressed textually whereas complex patterns may be better
expressed graphically [16].

In order to combine the disciplines and advantages of the graphical approach with the apparent
compactness of the textual, both textual and graphical notation should be realised as alternate
views of the same underlying model, thereby allowing the user a free choice of the most
appropriate view for their purpose.

5 References
[1] Agrawal, A., Levendovszky, T., Sprinkler, J., Shi, F., Karsai, G.: "Generative

Programming via Graph Transformations in the Model-Driven Architecture", OOPSLA
2002 Workshop on Generative Techniques in the context of MDA, November 2002,

 http://www.softmetaware.com/oopsla2002/karsaig.pdf
[2] Agrawal, A., Karsai, G., Shi, F.: "A UML-based Graph Transformation Approach for

Implementing Domain-Specific Model Transformations",
 http://www.isis.vanderbilt.edu/publications/archive/Agrawal_A_0_0_2003_A_UML_base.pdf

[3] Balogh, A., Varró, D.: "Advanced Model Transformation Language Constructs in the
VIATRA2 Framework", ACM Symposium on Applied Computing --- Model
Transformation Track, SAC 2006.

Error
Markers

Model Instantiation and Type Checking in UMLX

Proc. GraMoT 2006 13 / 13

http://www.inf.mit.bme.hu/FTSRG/Publications/varro/2006/sac2006_vtcl.pdf
[4] Brooks, Frederick P.: "No Silver Bullet: Essence and Accidents of Software

Engineering," Computer, Vol. 20, No. 4 (April 1987) pp. 10-19.
[5] Buttner, F., and Gogolla, M.: "Realizing UML Metamodel Transformations with AGG",

Proceedings of the 4th International Workshop on Graph Transformation and Visual
Modeling Techniques, GT-VMT 2004, Barcelona, Spain, March 2004

http://wwwcs.uni-paderborn.de/cs/ag-engels/GT-VMT04/GT-VMT04-camera-ready.zip
[6] Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: "Algebraic

Approaches to Graph Transformation I: Basic Concepts and Double Pushout Approach",
In Rozenberg, G., ed., The Handbook of Graph Grammars, Volume 1, Foundations, World
Scientific, 1996.

[7] DSTC QVT Team: Tefkat, http://www.dstc.edu.au/Research/Projects/Pegamento/tefkat/
[8] Fujaba, http://wwwcs.uni-paderborn.de/cs/fujaba/documents/user/manuals/FujabaDoc.pdf
[9] Jouault, F., and Kurtev, I.:"Transforming Models with ATL", Proceedings of the Model

Transformations in Practice Workshop at MoDELS 2005, Montego Bay, Jamaica, October
2005,

http://sosym.dcs.kcl.ac.uk/events/mtip05/submissions/jouault_kurtev__transforming_models_with_atl.pdf
[10] Kalnins, A., Celms, E., Sostaks, A:. "Model Transformation Approach Based on MOLA".

ACM/IEEE 8th International Conference on Model Driven Engineering Languages and
Systems, MoDELS/UML '2005, Montego Bay, Jamaica, October 2 -7, 2005, p. 25.

http://melnais.mii.lu.lv/audris/Model%20Transformation%20Approach%20Based%20on%20MOLA.pdf
[11] MTF, http://www.alphaworks.ibm.com/tech/mtf
[12] OMG, "Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification",

OMG Final Adopted Specification, ptc/05-11-01, http://www.omg.org/docs/ptc/05-11-01.pdf
[13] Schlaer, S., and Mellor, S.: "Object-Oriented Systems Analysis: Modeling the World in

Data", Yourdon Press, 1988.
[14] Sendall, S.: "Combining Generative and Graph Transformation Techniques for Model

Transformation: An Effective Alliance?", OOPSLA 2003 Workshop on Generative
Techniques in the context of MDA, 2003

http://cui.unige.ch/~sendall/files/sendall-mda-workshop-OOPSLA03.pdf
[15] Tratt, L.: "The MT model transformation language", Proc. ACM Symposium on Applied

Computing, pages 1296-1303, April 2006
http://tratt.net/laurie/research/publications/papers/tratt__the_mt_model_transformation_language_sac.pdf

[16] Willink, E.: "On Challenges for a Graphical Transformation Notation and the UMLX
Approach", Proceedings of the 6th International Workshop on Graph Transformation and
Visual Modeling Techniques, GT-VMT 2006, Vienna, March 2006

http://dev.eclipse.org/viewcvs/indextech.cgi/*checkout*/gmt-home/subprojects/UMLX/doc/GT-
VMT2006/GTVMT2006.pdf

[17] Willink, E.: "Towards a Formalization of UMLX",
http://dev.eclipse.org/viewcvs/indextech.cgi/*checkout*/gmt-
home/subprojects/UMLX/doc/UmlxFormalization/UmlxFormalization.pdf

[18] Willink, E.: "UMLX : A Graphical Transformation Language for MDA", OOPSLA 2003
Workshop on Generative Techniques in the context of MDA, 2003

 http://dev.eclipse.org/viewcvs/indextech.cgi/*checkout*/gmt-home/doc/umlx/Oopsla2003.pdf

