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Abstract: Graph transformation can be used to implement stochastic simulation of
dynamic systems based on semi-Markov processes, extending the standard approach
based on Markov chains. The result is a discrete event system, where states are
graphs, and events are rule matches associated to general distributions, rather than
just exponential ones. We present an extension of this model, by introducing a
hierarchical notion of event location, allowing for stochastic dependence of higher-
level events on lower-level ones.
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1 Introduction

Graph transformation combines the idea of graphs as a universal modelling paradigm with a
rule-based approach to specify the evolution of systems [KK96]. Behaviour can be modelled
in terms of labelled transition systems, where states are graphs and rule applications represent
transitions. A discrete event system can be generally obtained by interpreting rule matches as
events. Hierarchical graphs can be used to keep into account the spatial structure of graphs in
terms of topological grouping, with advantages that have been underlined from the point of view
of modelling and verification [BL09].

Stochastic graph transformation is applicable to probabilistic analysis and stochastic valida-
tion of graph-based modelling. Stochastic simulation can be particularly useful as validation
technique when systems are too complex to be model-checked. It can be implemented relying on
a discrete event system approach [CL08]. Transitions are labelled by scheduling times, randomly
chosen according to given probability distributions — thus replacing stochastic determinism for
indeterminism in the models.

A simple form of stochastic graph transformation can be obtained by associating rule names
with exponential distributions [HLM06]. The associated Markov-chain analysis has been applied
to integrated modelling of architectural reconfiguration and non-functional aspects of network
models [Hec05]. However, this approach has some limits. Exponential distributions can express
well the relative speed of processes, but are less than suited to describe phenomena characterised
by mean and deviation. Generalised stochastic graph transformation can answer this problem,
allowing for general distributions to be associated with rule names [KL07] and more generally
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SGT with regions

with rule matches [HT10, KTH09]. In the latter case, assignment of probability distributions to
events may depend e.g. on attributes of match elements. Generalised semi-Markov processes
provide the discrete event semantics for such systems.

In reality, events can often be described at different levels of spatial and causal detail. The ex-
pression of causal dependency in graph transformation depends solely on rules and their match-
ing. On the other hand, in the approaches that we have considered up to now, each event is
treated as stochastically independent from any other with respect to the assignment of proba-
bility distributions. Stochastic dependency on global variables and derived attributes has been
considered [HT10]. Even allowing that, it is not generally possible to express in a direct way e.g.
that the probability of a certain event depends on other events. This can make it particularly hard
to model aspects that involve correlation between different levels of description, as in the case
of geographic and biochemical systems, where information is usually found at different levels of
spatial granularity [TSB02].

In this paper we propose an approach based on hierarchical graphs in order to introduce local-
isation and granularity of events, we define a notion of structured stochastic simulation allowing
us to express stochastic dependency of higher-level events on lower-level ones, and we provide a
semantics for it in terms of discrete event systems. Regardless of the specific approach, a major
stumbling block in the implementation of stochastic simulation based on graph transformation
is the need to compute all the matches at each step. This is hard in principle — the subgraph
homomorphism problem is known to be NP-complete, though feasible in many cases of interest.
However, the cost of recomputing can be prohibitive. For this reason, we rely on incremental
pattern matching based on a RETE-style algorithm as implemented in VIATRA [BHRV08] (a
model transformation plugin of Eclipse). In [THR10] we presented GRASS, a tool that extends
VIATRA with a stochastic simulation control based on the SSJ libraries [LMV02]. By using a
decoupled notion of graph hierarchy, it should be possible to implement hierarchical stochastic
simulation in VIATRA/GRASS.

1.1 Hierarchical extensions

Hierarchy in graph models can be used to introduce a notion of topological grouping on model
elements. Grouping information can be represented as a hierarchy graph, as distinct from the un-
derlying graph, relying on a decoupled approach [BKK05]. In the case of bigraphs, the approach
is to pair place graphs and link graphs, together with a specific notion of matching [Mil08].
Here we use topology to localise events, rather than elements, relying on a generic notion of rule
matching. A model consists of an underlying graph coupled with a place graph, where the latter
is a directed acyclic graph (dag) from which the hierarchy arises, as partial order (≤). Topo-
logical grouping arises from rule matching through the hierarchy. Nodes in the dag are places
and edges represent containment between places (hierarchical containment). The two graphs are
linked together by containment edges (coupling containment) that map underlying graph nodes
to places. Regions are defined as downward-closed sets with respect to the hierarchy, i.e. closed
sets in the corresponding order topology [TSB02].

From the stochastic point of view, we use hierarchy to let lower-level events affect the assign-
ment of probability distributions to higher-level ones. In particular, we allow for the distribution
assigned to an event to depend (1) on the enabling of other events, and more generally on the
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number of enabled matches of a certain type — what we call a density measure; (2) on the
scheduling of other events — what we call an activity measure. In this way, we expect to be able
to perform more sensitive stochastic analysis without resorting to making models and reachabil-
ity analysis more complex.

In fact, density measures boil down to counting matches, therefore they could be handled by
introducing additional attributes in a flat model — though this would mean making the model
more complex. Activity measures are trickier, as in principle they might lead to circular depen-
dencies. This is avoided by requiring that stochastic dependency between events as well as event
time scheduling comply with the hierarchy. Therefore, no event may depend on higher level
ones, and at each step of the simulation, the time scheduling of lower-level events takes place
before that of higher-level ones.

2 Example

We model a power grid as example in which higher-level events may depend stochastically on
large numbers of lower-level ones. Each power source serves a number of distribution points,
by allocating power quotas in a reconfigurable way. Appliances can be added to and removed
from a distribution area, and they can be connected to and disconnected from distribution points,
determining the level of consumption, which must remain within a tolerance of the quota. A
power failure may occur when the quota is overstepped. A failure determines the disruption of
the distribution point, with consequent loss of data, and it forces the intervention of a recovery
unit. Actual reconfiguration is carried out following optimisation criteria that can be reflected
stochastically in the application of the rule.

The model is based on the SPO approach, and uses typed graphs with attributes. A power
station is connected to each of the distribution points by power lines denoted by multi-edges, i.e.
sets of parallel edges represented as a single edge with an integer value. A station can reconfig-
ure the capacity of each power line depending on the available power and the distribution area
consumption — this takes place by changing the number of line edges, also updating residual
power and local quota.

The spatial structure of the model is quite simple — there are three types of places: the network
area, a supply area for each station, and a distribution area for each service point. Each place is
represented as a rounded box. The hierarchy order≤ is represented as containment (larger boxes
are places higher up in the order, therefore associated with higher-level elements). The coupling
order is also represented as containment in an obvious way — each underlying graph node (a
square box) being coupled only with the smallest place box it is contained in. In this example,
the place graph is a tree. The notation could be easily extended to the dag case, by associating
places to intersections. The symbols Dec, Inc,Tol,Add,F,G,H,P in the figures stand for given
functions.

The distinction between higher-level and lower-level events here is comparatively straight-
forward. The former ones are those associated with reconfigurations, failures and recoveries,
and located in regions generated by supply areas. The latter ones are associated with adding,
removing, switching on and off appliances, and are located in regions generated by distribution
areas. From the stochastic point of view, actions that depend heavily on external aspects, such
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Figure 1: Type graph, Switch-on/off
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Figure 3: Failure, Recovery

as adding appliances, switching on and failure, may be assigned exponential distributions. Ac-
tions more plausibly associated with mean values, such as switching off and recovery, may be
more naturally associated with normal distributions. Crucially, reconfiguration can dependent
stochastically on the context.

In the example, there are two possible matches for the reconfiguration rule — one with a1 and
the other with a2 as distribution areas. In order to model stochastically a “smart” reconfiguration
strategy, one could make the probability of application inversely dependant on the difference
between quota and area consumption (a derived attribute associated with distribution points and
denoted by D in the picture). However, if that is to be the only criteria, here there is little chance
of modelling a high quality of service without changing the model. Given a high rate of switching
on against a low one of appliance addition, the area a1 is more at risk than a2, in spite of the
higher D value. This risk is essentially associated with the number of matches for switch on in
a1, and further than that — with their scheduling times.

Of course it would be possible to retain information about the number of appliances in an
area explicitly, by adding an attribute — however, apart from the need to extend the model, this
way of capturing the density measure would not be the most natural in this case, as it would
not belong to the service point. Moreover, it is difficult to think of a similar way to capture an
activity measure. On the other hand, the knowledge embedded in the reconfiguration strategy
might be based on estimates rather than precise data. Therefore, modelling it in terms of implicit
stochastic dependence seems realistic.

3 Stochastic Graph Transformation

Stochastic graph transformation for semi-Markov process modelling requires us to track matches
through transformation. Incremental pattern matching is indeed based on tracking partial
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Figure 4: Example

matches. Here we provide a general definition of typed graph transformation that supports track-
ing with respect to a generic approach (although the running example is based on SPO), allowing
for node type inheritance and negative application conditions. We then extend the notion, by en-
dowing graphs with hierarchy and derived topological structure.

3.1 Graph transformation

In existing axiomatic descriptions of graph transformation [KK96], a graph transformation ap-
proach is given by a class of graphs G , a class of rules R, and a family of binary relations
⇒r⊆ G ×G representing transformations by rules r ∈ R. Here we assume that each rule r is
associated to a left hand-side graph Lr and a set of negative application conditions Nr. This
notion can be further refined by introducing a definition of rule match depending on a given ap-
proach (including SPO and DPO). In the following, we will sometimes use a syntax for function
definitions with dependent types [Bar92] in a comparatively informal way, in order to specify
functions that we assume to be implementable, by writing Πx ∈ α.β rather than α → β when
x ∈ α and β depends on x.

Basically, a graph is a triple G = 〈NodesG,EdgesG,asgG〉, where for x ∈ NodesG, asgG(x) =
〈y,z〉 with y,z ∈ NodesG. At an abstract level, a partial match of a rule r in a graph G can be
represented as a triple m = 〈r,g,c〉, where r = rule(m), g = SG(m) is a partial graph morphism
from Lr into G, and c = AC(m) ⊆ Nr is the set of application conditions that are satisfied. We
denote the graph elements of the match, i.e. the image of m, by EL(m). We say that a match m
is valid when SG(m) is total and AC(m) = Nr. We denote by Mr,G the set of the partial matches
of r in G. Mr,G is ordered by a relation vr,G, component-wise defined as subgraph and subset
relation on the SG and AC components of the matches, respectively. We define the set of all
partial matches in a graph G as MG =

⋃
r∈R Mr,G, and by Mv

G ⊆ MG the set of all those that are
valid.

Def. 1 We define a function⇒: ΠG ∈ G .Mv
G→ G . We write G⇒m H for⇒ (G)(m) = H, and

we say that this is the transformation step determined by the application of rule rule(m)
to match SG(m) in graph G.
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Notice that transformation steps correspond to a function that is partially defined with respect
to the set of all matches. The functional requirement captures the idea that rule application is
well-defined and deterministic once a valid match m is found in G. This is needed, in order
to guarantee that matches form a proper set, unlike in more abstract presentations [EEPT06].
Also notice that, however, we implicitly allow for a global renaming action associated with a
transformation.

Def. 2 A graph transformation system (GTS) G = 〈R,G0〉 consists of a set R ⊆ R of rules
and an initial graph G0 ∈ G . A transformation in G is a sequence of rule applications
G0⇒m1 G1⇒m2 · · · ⇒mn Gn using rules in G with all graphs Gi ∈ G .

Assuming finite graphs and an enumerable set of rules, the graphs that are reachable from G0
by a finite sequence of transformation steps form a set, denoted by LG, and so do the partial
matches over the reachable graphs, denoted by MG.

Even without fixing the approach, we can say that in general, a transformation step t = G⇒m

H is associated with a set Delt of all the graph elements that are deleted or modified by t, and with
a set Cret of all the graph elements that are created by t. Correspondingly, the partial matches
that are destroyed form a set DG,t ⊆MG, those that are created form a set CH,t ⊆MH , and those
that are preserved are M|t = MG\DG,t . From the deterministic assumption, MH = σt(M|t)∪CG,t

follows, where σt is the renaming induced by t (assuming the name spaces are disjoint).
We are interested in defining a notion of persistent match, by identifying matches that are

preserved through transformation. In particular, from the point of view of stochastic models,
given m1 ∈ σt(DG,t),m2 ∈ DG,t and m2 = σt(m1), we want to identify m1 and m2 when they are
both valid with respect to the same rule r. This can be generalised to partial matches. In [KTH09,
KL07] we relied on a conservative naming policy — here we adopt a looser one altogether,
though still defining a persistent match as equivalence class.

In order to abstract from renaming, we define, for n1 ∈ MR,G′ ,n2 ∈ MR,G′′ , the symmetric
relation n1 =a n2 that holds whenever for all transformation steps t, if t = G′⇒m G′′ and n1 ∈M|t ,
then n2 = σt(n1), and if t = G′′⇒m G′ and n2 ∈ M|t then n1 = σt(n2). We can then define the
transitive closure using the least fixpoint operator (µ)

n1 ≡ n2 =d f µE.(n1 = n2)∨ (∃n3.E(n1,n3)∧n3 =a n2)

It is a matter of routine to show that ≡ is indeed an equivalence relation. The persistent
matches over the set of the reachable graphs in G can therefore be defined as the quotient class
MG = MG/≡. We call event a persistent valid match, and we denote with EG the corresponding
set of events. We define MG = {[m]|m ∈ MG}, and EG = {[m]|m ∈ Mv

G}. This in general will
allow us to lift definitions from valid matches to events.

Lr
n1 //

=
n2

88G
t / H

Figure 5: persistence of matches
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3.2 Hierarchical structure

We use hierarchical graphs in the decoupled sense [BKK05], i.e. we define a hierarchical graph
as graph that includes the underlying graph as well as a directed acyclic graph representing the
hierarchical structure.

Def. 3 A hierarchical graph is a graph G in which there is a distinguished dag PG ⊂G called the
place graph, where the nodes of PG are the places;
(a) the edges that link nodes in G\PG to (non-empty) places, called C-edges, express cou-
pling containment and form a distinguished set CEdgesG ⊂ EdgesG;
(b) the edges connecting places together (H-edges) express hierarchical containment.
Moreover, the following conditions must be satisfied:
(1) 〈PG,≤G〉 is a partial order (hierarchy of G), where≤G is the reflexive-transitive closure
of hierarchical containment.
(2) <G is downward well-founded (i.e. there are no infinite descending chains).
(3) ≤G has finite degree (i.e. it is finitely branching).
In addition, (i) the underlying graph of G is defined as the largest subgraph of G which
does not contain either nodes or C-edges — this may be expressed set-theoretically as
UG = (G\PG)\CEdgesG;
(ii) for X ⊆ NodeG, locG(X) denotes the finite set of the places associated to any element
of X by C-edges (the location of X); we also write locG(x) for locG({x}), and locG(m) for
locG(ELG(m)∩NodesG) with m ∈M G.
We say that G is complete whenever for each node x in UG, locG(x) 6= /0.
We say that G is grounded whenever for each node x in UG, locG(x) contains at most one
element.
We denote by G h the class of the hierarchical graphs, by G c the class of the complete ones,
by G g that of the grounded ones, and by G cg that of the complete grounded ones.

Clearly, PG may be a finitely branching tree. In practice, PG is going to be mostly finite
— indeed, assuming ≤G does not contain infinite ascending chains and has a finite number of
minimal elements, finiteness follows, using Koenig’s lemma.

Any partial order≤ can be associated to an Alexandroff topology where the downward-closed
sets are the closed sets and ≤ coincides with the specialisation order [Vic89]. This is too fine-
grained though, as there is no need to consider downward-closed sets which are not generated by
matches, and we prefer to take nodes that share a place to the same region. Therefore we define
the following.

Def. 4 Given a partial match m ∈M G, we say that the graph region of m, denoted by gregG(m),
is the smallest subgraph J ⊆ G such that
(1) set-theoretically, SG(m) ⊆ J, locG(m) ⊆ J, and all the C-edges and H-edges in G
between elements of J are in J.
(2) J is downward-closed with respect to≤G, i.e. for w,z places in PG, if w ∈ J and z≤G w
then z ∈ J
(3) for each node x in G, if locG(x)∩ J 6= /0 then locG(x)⊆ J.
The abstract region of m is the place subgraph regG(m) = gregG(m)∩PG.
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We denote by RegG the set of the abstract regions defined on M G.
For m,m′ ∈MG, p ∈ RegG, we say that m is located in p iff regG(m)⊆ p. We say that m
is lower-level with respect to m′ (resp. m′ is higher-level wrt m) and we define m <G m′ iff
regG(m)⊂ regG(m′).

Notice that m⊆m′ follows from EL(m)⊆ EL(m′) for any m,m′ ∈M G. Set-theoretically, it is
not difficult to see that RegG is closed with respect to arbitrary intersection (condition 3 helps).
Adding empty and global region, we may regard RegG as basis of an Alexandroff topology, where
the specialisation order is monotonic with respect to ≤G. From the downward well-foundedness
of <G, it follows that <G is similarly well-founded, i.e. it has no infinite descending chains.
Abstract regions can therefore be used to order events.

We can now introduce a notion of hierarchical transformation system, consistently with the
generic approach, along the lines of the definitions 1, 2, by adapting them to classes of hierarchi-
cal graphs. We take x = h | c | g | cg.

Def. 5 A hierarchical transformation step function is a function⇒x: ΠG ∈ G x.Mv
G→ G x such

that (by the notation of def. 1), G⇒x
m H iff G⇒m H, provided G,H ∈ G x.

A hierarchical graph transformation system (HGTS) G = 〈R,G0〉 consists of a set R⊆R
of rules and an initial graph G0 ∈ G x.
A transformation in G is a sequence of rule applications using rules in G and applying
them through⇒x.

In case of x = h, the definitions are clearly generalisations of those for G . The running example
is meant to be a case of x = cg. Notice that in every case, the notion of match is implicitly
assumed to be the most general — this can be stated by saying that for every match m ∈ MG,
SG(m)∈ G h. However, in order to keep E G finite, we assume as fixed the names of empty places
that are preserved by the transformation.

When the system is based on the SPO approach — as in the running example, each rule can
be defined in terms of two components — one defined on the underlying graph, the other on the
place graph. Figure 6 provides with a diagrammatic illustration, where 1–5 are pushouts and
6–9 are pullbacks. Notice that regions can be used to wrap the side-effects of SPO rules — e.g.
the Failure rule in the running example, where all the line edges which are deleted are in fact
between nodes that are included in the supply area — thus generally allowing for more modular
transformations.

3.3 Stochastic Modelling

Generalised stochastic graph transformation has been defined in [HT10, THR10, KTH09], by
associating events with general distributions, each of them expressed as a cumulative distribution
function (cdf ) — i.e. a function from real numbers to probability values. Here we denote by
Dist(e)⊆ Real→ [0,1] the type of the cdf assigned to event e.

Def. 6 A generalised stochastic graph transformation system (GSGTS) is a structure S = 〈G,∆0〉
where G is a GTS, ∆0 : Πe∈ EG.Dist(e) is a distribution assignment, which associates with
every event a cdf.
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The behaviour of a GSGTS can be described as a stochastic process over continuous time,
where reachable graphs form the state space and the application of transformation rules defines
state transitions as instantaneous events. More precisely, a rule enabled by a match defines an
event associated with an independent random variable (timer, or scheduling time) which repre-
sents the time expected to elapse (scheduled delay) before the rule is applied to the match. As
the simulation is executed, the timer is randomly set according to the static specification pro-
vided by the cdf of the corresponding event — in the implementation, this involves a call to a
pseudo-random number generator (RNG).

We intend to extend the definition of stochastic graph transformation in order to make it pos-
sible to express the dependency of the probability distribution of an event e on other events, and
more precisely on properties of the graph, such as the number of events of a certain type in a
certain region associated to e, or the average scheduled delay for lower-level events of a certain
type — e.g. the dependency of the cdf of Reconfiguration events on the number and the sched-
uled delay of Add and SwitchOn events in the relevant distribution area, given in the running
example. Syntactically, we also allow for rule constructors over finite domains, i.e. c : X → R
with X finite, representing a set of rules r1 = c(x1), . . . ,rk = c(xk), where k is the cardinality of
X — e.g. Add(X) in the example.

We now consider stochastic simulation from the point of view of a HGTS G. For each G ∈
L G, we can assume to have a scheduling function

schedG : Πe ∈ EG.Dist(e)→ Time(e)

which assigns a value to each timer, given its cdf — where Time(e)⊆ Real is a subtype of the
reals that represents a random variable. We can also assume to have an event counting function

countG : Πp ∈ RegG.Πr ∈ R.Num(r, p)

where Num(r, p) ⊆ Nat is a subtype of the naturals that represents the number of matches of
rule r in region p.
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Once we assume that for each state G, the scheduling of delays follows the granularity order
<G, we can allow for the cdf of an event e ∈ EG to depend
(1) on the general number of events in G, i.e. on {countG(r, p)|r ∈ R, p ∈ RegG}, and as a special
case, on the number of events located in the same region, i.e. {countG(r,regG(e))|r ∈ R} (local
density);
(2) on the scheduled delays of lower-level events, i.e. on {schedG(e′)|e′ < e} (local activity).

We now show how the distribution assignment can be functionally defined, in order to make
the above possible. We can associate local density to local event counting, specified as function
of type

LDensG =d f Πe ∈ E G.Πr ∈ R.Num(r,regG(e))

We can associate local activity to a notion of local delay scheduling, specified as a function of
type

LActG =d f Πe1e2 ∈ E G.e2 <G e1→ Time(e2)

We can then introduce a notion of abstract distribution assignment δ that depends on both,
specified as follows

δ : ΠG ∈L G.Πe ∈ E G.(LDensG(e)×LActG(e))→ Dist(e)

Partial scheduling πG : Πe ∈ E G.LDensG(e)×LActG(e) can now be defined by recursion (as-
suming δ is given)

πG =d f µ f .λe1.(λ r.countG(r,regG(e1)), λe2. if e2 <G e1 then (schedG(e2)(δ (G)(e2)( f (e2))))

Finally, the distribution assignment ∆ : ΠG ∈LG.Πe ∈ EG.Dist(e) can be defined as

∆ =d f λG.λe.δ (G)(e)(πG(e))

This shows that ∆ can be defined recursively, given sched,count,δ , and relying on the well-
foundedness of <.

Def. 7 A stochastic hierarchical graph transformation system (SHGTS) is a structure H =
〈G,δ 〉, where G is a HGTS and δ is a function specified as above, so that ∆ :
ΠG.Πe.Dist(e) can be defined as the function that assigns a continuous cdf to each event
for each reachable graph.

4 Stochastic Simulation

We define an operational interpretation of SHGTS in terms of semi-Markov processes, following
an approach already used in [THR10, KTH09, KL07]. We rely on a representation of stochastic
processes as discrete event systems [CL08], and define a translation of SHGTS into them.
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Semi-Markov processes are continuous-time stochastic processes in which the embedded
jump chain is a Markov chain and the inter-event times are associated with general distribu-
tion functions. This means that events are independent of past states, but may depend on the
time spent in the current one. They are a generalisation of continuous-time Markov processes,
which allows only for exponential distributions. More formally, a semi-Markov process can be
defined as a process generated by a generalised semi-Markov scheme (GSMS) [DK05]. Here we
need to define a structure that is syntactically more general than a GSMS, insofar as we need to
keep hierarchy and delay scheduling order into account.

Def. 8 A hierarchical semi-Markov scheme (HSMS) is here a structure

P = 〈 Z, E, enabled : Z→℘(E), vS: Z→ (E×E)→ Boolean,

new : Z×E→ Z, cdfAsg : Z→ E→ Real→ [0,1], s0 : Z 〉

where Z is a set of system states; E is a set of timed events; enabled is the activation
function, so that enabled(s) is the finite set of active events associated with state s; new
is a partial function depending on states and events that represent transitions; cdfAsg is
the distribution assignment, so that cdfAsg(s)(e) gives a cdf of the scheduled delay of e at
state s; vS (s) is a well-founded order (schedule-making order) on the enabled events at
state s; and s0 is the initial state.

Def. 9 Given a SHGTS H = 〈R,G0,δ 〉, we define its translation to an HSMS PH as follows:

1. Z = L (〈R,G0〉) i.e. set of graphs reachable from G0 by rules in R

2. E = EG i.e. the set of possible events for G = 〈R,G0〉
3. enabled(G) = EG i.e. set of all events enabled in graph G

4. new(G,e) = H iff G⇒e H i.e. transition is defined as transformation

5. cdfAsg(G)(e) = ∆(G)(e)

6. vS (G) = vG

7. s0 = G0

This embedding can be used as static framework for the definition of a simulation algorithm
that is adequate with respect to system runs, in the sense that there is a one-to-one correspon-
dence between the runs of the original SHGTS and those of the resulting HSMS, and therefore
correct and complete with respect to reachability. The algorithm, based on the general scheduling
scheme given in [CL08], can be described as follows.

1. Initial step

(a) The simulation time is initialised to 0.

(b) The set of the enabled events A = enabled(s0) is computed.

(c) The schedule-making order vS (s0) is computed.
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(d) For each event e ∈ A, a scheduling time te is determined by RNG depending on the
probability distribution function cdfAsg(e)(s0);

(e) The enabled events with their scheduled times are collected in the event list ls0 =
{(e, te)|e ∈ A} ordered by time values.

2. For each successive step — given the current state s ∈ Z and the associated event list
ls = {(e, t)|e ∈ active(s)}

(a) the first element k = (e, t) is removed from ls;

(b) the simulation time tS is updated by increasing it to t;

(c) the new state s′ is computed as s′ = new(s,e);

(d) the list ms′ of the surviving events is computed, by removing from ls all the disabled
elements, i.e. all the elements (z,x) of ls such that z /∈ enabled(s′);

(e) The schedule-making order vS (s′) is computed.

(f) a list ns′ of the newly enabled events is built, containing a single element (z, tz) for
each event z such that z ∈ enabled(s′)\enabled(s) and is scheduled at time tz = tS +
dz, where dz is the random delay value given by RNG depending on the distribution
function cdfAsg(s′)(z);

(g) the new event list ls′ is obtained by reordering the concatenation of ms′ and ns′ with
respect to time values

Part of the complexity of the algorithm is hidden in the recursive definition of cdfAsg, which
means that time scheduling takes place following the schedule-making order <S, associated to
<G by the translation. The translation and the assumptions on the hierarchy≤ also guarantee that
<S (s) is well-founded. Essentially, the algorithm relies on graph transformation with persistent
matches, on functions to count events, and on ordered delay scheduling implemented as calls to
RNG.

5 Further work

Expressing stochastic dependencies associated with density and activity measures — as in the
example — can be useful to model situations in which specific events depend on large num-
bers of co-located ones, as in describing biochemical processes at different levels of detail (e.g.
molecular and cellular). Graph transformation can be good at tracking individual processes —
however, there are aspects that can be modelled more efficiently in terms of mass effect and dif-
ferential equations [Car08]. Therefore, the general capability of expressing presence of reactants
and reactions in a region can be useful.

From the point of view of an implementation, applying few high-level rules rather than many
low-level ones could ease the cost of updating incremental data-structures. As presently imple-
mented in GRASS [THR10], scheduling is carried out independently of the RETE network. This
might make hierarchical scheduling comparatively expensive. Hierarchical information could be
handled more efficiently by introducing a further level of incrementality based on a live trans-
formation approach [RBOV08], i.e. by continuously maintaining spatial information as part of
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the transformation context, so that changes to the spatial structure can be instantly mapped to the
underlying graph.

6 Conclusion

Stochastic simulation is a promising field of application for graph transformation techniques. We
have argued that structured graphs can be useful for stochastic simulation. We have focussed on
probabilistic dependency of events on global and local properties, in order to make stochastic
modelling more flexible. In particular, we have shown that hierarchy can be used to define
a topological order on events, allowing for the introduction of a weak notion of modularity
and an increased expressiveness with respect to stochastic simulation. This extension can be
embedded in discrete event models of stochastic processes. We think that an implementation
of stochastic simulation along this lines can take benefit from an appropriate use of incremental
pattern-matching.
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