Electronic Communications of the EASST

Volume 1 (2006)

Proceedings of the
Third International Workshop on Graph Based Tools
(GraBaT's 2006)

RePLEX: A Model-Based Reengineering Tool
for PLEX Telecommunication Systems

Christian Fuss, Christof Mosler, Marcel Pettau

12 pages

Guest Editors: Albert Ziindorf, Daniel Varro

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

https://core.ac.uk/display/270295474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

Eg ECEASST

RePLEX: A Model-Based Reengineering Tool
for PLEX Telecommunication Systems

Christian Fuss, Christof Mosler, Marcel Pettau

[fuss|mosler|pettau] @i3.informatik.rwth-aachen.de
http://www.se.rwth-aachen.de
Department of Computer Science 3 (Software Engineering)
RWTH Aachen University, Germany

Abstract: Maintenance of complex legacy software systems is a challenging task.
In the first place, maintenance requires understanding the system. Reverse engi-
neering and reengineering tools, which make the design of the current system avail-
able on-line and which support planning and performing changes to the system, are
urgently needed. We present a new tool for reengineering telecommunication sys-
tems, recovering the current architecture, and extracting state machines reflecting
the system behavior. The tool is based on a structure graph of the architecture and
allows architectural modifications with according code changes. The modifications
are specified as graph transformations using FUJIABA enabling the generation of a
Java prototype, which is accessible via a GUI based on the Graphical Editor Frame-
work (GEF) plug-in for the Eclipse workbench.

Keywords: Model-driven Development, Graph-based Reengineering Tools

1 Introduction

The reverse engineering and restructuring of large and complex software systems is a difficult
task. E-CARES' is a research project at RWTH Aachen University, Department of Computer
Science 3 in cooperation with Ericsson Eurolab Deutschland GmbH (EED), to study methods
and tools for reengineering of complex legacy systems implemented in PLEX. The program-
ming language PLEX [Wen99] was developed in the 70s at Ericsson and is still used within
the company for developing telecommunication infrastructure. It is an asynchronous concurrent
real-time language using the signaling paradigm, i.e. only incoming signals can trigger code ex-
ecution. The current system under study is Ericsson’s AXE10, a mobile-service switching center
(MSC) comprising more than ten million lines of code.

Generally speaking, the reengineering process can be divided into three phases. In the re-
verse engineering phase, engineers analyse the legacy systems to improve understanding and
gain more information about its current state, often by representing the software structure on a
high abstraction level (e.g. as an architecture graph). During the restructuring phase, engineers
perform re-design transformations to improve the software architecture. Finally, the source code
has to be modified according to the changes performed on design level.

1" E-CARES is the acronym for Ericsson Communication ARchitecture for Embedded Systems

1/12 Volume 1 (2006)

mailto:[fuss$|$mosler$|$pettau]@i3.informatik.rwth-aachen.de
http://www.se.rwth-aachen.de

RePLEX: A Model-Based Reengineering Tool E}

For representation and analysis of the legacy systems, we follow a graph-based approach, i.e.
all underlying structures are graphs and editing operations are specified by graph transformation
rules. Our goal was to provide an interactive reengineering environment, which should allow a
flexible and easy addition of new functionality (e.g. new analyses and transformations).

This paper is structured as follows: our approach and motivation for using graph-based tools
for software reengineering are described in section 2. In section 3, we present more details about
the realization of the RePLEX reengineering tool as a plug-in for the Eclipse IDE [Ecl06] using
the FUJABA tool suite. We focus on the graph-based aspects of the tool, and explain the parser
and source code transformations only very briefly. In section 4, a description and walk-through
from user perspective is presented. The paper closes with a summary and an outlook.

2 Approach

2.1 Reengineering Process

The reengineering process comprises three phases: reverse engineering, re-design and source
code transformation. All of them are supported by our tool environment, shown in Figure 1. In
the reverse engineering phase, we use different sources of information. The most important and
reliable one is the source code of the PLEX system. We parse the source code and create a textual
structure document describing the system structure, comprising its communication, control flow,
and data flow. Furthermore, we use some other sources of information, e.g. signal lists?, and add
it to the structure document.

RePLEX
Structure Annotated Modified
Editor PLEXCode PLEX Code
Additional Information N

(e.g. Signal Lists) Structure

Document

PLEX Code

Figure 1: RePLEX Tool Environment with source, intermediate and target documents.

After parsing, the RePLEX Structure Editor instantiates a graph from the structure document.
On this graph, the user can perform various types of analyses by using different visualization
and query techniques. In addition, different metrics can be used to obtain more quantitative
characterizations of the analyzed system. These features support the reverse engineering of the
analysed systems.

The tool supports the re-design phase by offering some complex algorithms for suggesting
how to improve the legacy software. The user can then interactively adapt the suggested re-

2 A signal list is a textual file, which provides the names of the blocks to which outgoing signals are sent during

runtime. In PLEX, signal receivers are often initialized dynamically. By considering the signal list, we are able to
exclude any signal edges from the graph which are potentially possible, but never actually used.

Proc. GraBaTs 2006 2/12

Eg ECEASST

design transformations taking the semantics of the software into account. During this process,
the graph structure and attributes of the nodes can change. Of course, the tool supports manual
re-design of the structure graph by providing basic editing functionalities as well.

After the re-design, the tool propagates modifications from the design level to the implemen-
tation level. First, an unparser writes information about the modified software structure into a
textual file combining the original source code and annotations indicating what text transforma-
tions must be preformed. In the last step, the new source code is generated by a TXL-based tool
processing the annotations.

2.2 Graph-based Reengineering

As shown, the reengineering process comprises graph-based and source code-based steps. Rep-
resenting software architectures by graphs is a natural choice, because in this manner not only
the hierarchical structures but also all other relations between code artifacts can be represented
directly. Therefore using visual and graph-based languages for building corresponding reengi-
neering tools is obviously advantageous. On the other hand, of course also the source code must
be processed.

By using both abstraction levels in our process, we can clearly divide the process into phases
which are performed automatically and manually. The parsing and unparsing of the source code
can be done automatically. During the re-design phase, the interactive process can be performed
in a much more convenient and effective way on the graph-level. At the same time, we are
exclusively interested in architectural aspects. Hence, we analyze and restructure the software
on a relatively high abstraction level without taking into account every single statement. In our
graph model, we consider only larger code parts, such as subroutines, signal entries, and variable
declarations, and go into detail only when necessary, for example when dealing with statements
sending signals. Furthermore, the separation of the graph and the source code levels should
allow an easy integration of new programming languages into the RePLEX tool suite. While
the model extensions should comprise mainly the algorithmic aspects required for the re-design
process, the language specific parsers and unparsers will comprise most of the details needed for
the actual source code transformation.

2.3 Related Work

There exist several graph-based reengineering tools. The comparison with other projects follow-
ing a graph-based approach, such as Rigi [MWT94], Bauhaus [Kos00], and GUPRO [EKRWO02],
shows that most of these tools lack the support provided by a high-level specification language.
Hence, graph transformations cannot be specified in a declarative way. These projects also con-
centrate on reverse engineering and do not support software restructuring.

The approach in [MVDJ05] shows how refactorings for object-oriented software can be de-
fined by using graph rewrite rules using FUJABA and AGG [Tae99] for tool validation. AGG
is a general tool environment for algebraic graph transformation following the interpretative ap-
proach. The AGG environment consists of a graphical user interface and an interpreter, which
can be used for the specification and prototypical implementation of Java applications with com-
plex graph-structured data. The paper at hand presents a very similar approach but aims at the

3/12 Volume 1 (2006)

RePLEX: A Model-Based Reengineering Tool E}

reengineering of programs written in a different kind of programming language. As we consider
the software on a higher architectural level, without going into a detailed analysis of every single
statement, the studied re-design transformations are also different.

The FUJABA Tool Suite RE [FUJ05] is a collection of reengineering tools and plug-ins. It al-
lows the parsing of Java source code and supports different kinds of static and dynamic analyses,
such as recognition of design patterns and anti-patterns [NSW02].

3 Realization

Based on knowledge from a former prototype implemented with PROGRES we started devel-
oping the new tool RePLEX? within a graduate course for computer science students at RWTH
Aachen University. The new prototype focuses on the forward portion of the reengineering pro-
cess offering features for typical re-design tasks on PLEX code, whereas the old one focused on
the reverse portion with abstracting from source code level and a plentitude of analyses.

In the following sections, we describe some aspects of the realization in detail, particularly the
specification of re-design features with FUJABA, construction of the editor interface as Eclipse
plug-in with GEF and text-transformation parsers and unparsers with the help of jay and TXL.

3.1 Parsing PLEX Code

The main unit of a PLEX program is a block corresponding to one source file. Many source
files make up a system, which might be divided into subsystems containing further subsystems
or blocks. The structure of a system and its subsystems can be derived from the directory struc-
ture of the source code. All nodes in the structure graph comprise different types of attributes
describing where the corresponding software parts can be found and what their characteristics
are.

Major parts of the RePLEX prototype are based on formal specifications from which they are
generated. On the source code level, scanners, parsers, and unparsers are generated automat-
ically. The structure of the PLEX system below block-level is determined by the pre-existing
PLEX-parser on jay basis. This parser was generated automatically by use of the lexical ana-
lyzer generator jlex [BerOO] and the parser generator jay [SKO06], which are Java correlatives of
the GNU lex/yacc compiler-compilers.

During parsing, many details from the PLEX code are abstracted away, putting only struc-
turally relevant information into the structure graph, e.g. subroutines, statement sequences, sig-
nal entries, and data objects. The primary relation of elements is the contains-relation, taken
directly from the nesting of the abstract syntax tree, but additionally references from the PLEX
code are introduced as own edges into the structure graph, e.g. goto, calls, from_source, to_target
edges.

The parser outputs a description of the abstracted structure graph as Python script or XML
file, which can then be read by the structure editor.

3 The acronym RePLEX combines the two words Reengineering and PLEX.

Proc. GraBaTs 2006 4/12

Eﬁ ECEASST

3.2 Specifying Re-design Features with FUJABA

As outlined in Section 2.2, a graph-based approach is well-fitted for the interactive re-design of
the structure graph of PLEX systems. There are several tools for performing the desired graph
transformations. Some come from the class of environments for specifying visual notations
like DIAGEN [Min02], or MetaEdit+ [KLLR96]. Others are general-purpose graph transforma-
tion environments like PROGRES [SWZ99], AGG [Tae99], or FUJABA [FUJ99]. There were
many reasons to choose FUJABA as realization environment: it has a strong reengineering back-
ground [FUJO05], enabling the integration with tools from related projects. From its roots, FU-
JABA is closely related to PROGRES, which served as environment for the specification of our
old prototype and it allows easy integration with Java code, particularly through the possibility
to adapt the code generation with little effort. Finally, specifying with FUJABA is very easy to
learn for novices like the students involved in the project, due to its resemblance of UML class
and activity diagrams.

A FUJABA specification is two-parted and consists of a meta-model of the notation, defined
as UML class diagram, and so-called story diagrams [FNTZ98] describing the operations on the
elements, in our case re-design operations for the according PLEX structure elements. From this
specification, the Java code is generated with the FUJABA plug-in CodeGen?2.

Meta Model

Figure 2 depicts the core of our meta model, directly reflecting the structure extracted by the
parser as described in Section 3.1. Every element in the graph is derived from GraphObject,
managing the unique IDs of all graph elements. GraphObject is a specialization of Observ-
ableObject, providing the event-handling for the Eclipse/GEF user interface (see Section 3.3 for
details).

<< reference >> GraphObject
ObservableObject
| " fromSource 0.1
Relation PlexObject
Zr Zr * toTarget 0..1
StructuralRelation SemanticRelation PlexSystem
ContainsRelation DataFlowRelation ControlFlowRelation I StatementSequence
SignalEntry
DataObject
HasRelation SignalRelation

Figure 2: Core of the structure graph model, reflecting the structure graph produced by the PLEX
parser.

Relations are directed and attributed; they are modeled as edge-node-edge constructs with

5/12 Volume 1 (2006)

RePLEX: A Model-Based Reengineering Tool Eﬁ

fromSource and toTarget associations. The contains and has relations are structural relations.
Relations derived from references within the PLEX code fall into the class of semantic rela-
tions which is specialized into DataFlowRelation (e.g. readsVariable, writesVariable), Con-
trolFlowRelation (e.g. goto, call), and SignalRelation (e.g. local signal, global inter-block sig-
nal).

Story Diagrams

The FUJABA story diagrams, used to describe the re-design transformations, are a combination
of UML activity and collaboration diagrams. Story diagrams can be read as activity diagrams
with a particular activity type called the story-activity, which enables describing interaction of
objects during the operational sequence of the program or the time-flow of program execution.
In terms of methods of classes, it means that every method in a class is described by a story
diagram. For the control flow of a method, elements of UML activity diagrams are used, e.g.
start and end points, transitions, and control structures. Within the control flow, so called story
patterns are used, modeling the transformation of the object structure. Each method consists
of a start point, several story patterns, and at least one end point, all connected by transitions.
FUJABA supports negative application conditions, restrictions, optional objects, and set-valued
objects within story patterns.

Figure 3 shows an exemplary story diagram implementing the method mergeSubSystems of
the class SubSystem. Each SubSystem object offers the method mergeSubSystems which moves
all contained blocks to another subsystem, given as a parameter, and then destroys itself. In
the left part of the story diagram, we search for containsRelation objects connecting blocks to
the current subsystem. For each relation we find, the fromSource edge is moved to the second
subsystem®. The right part of the diagram shows the destruction of the current SubSystem object
and its containsRelation object to the PlexSystem node.

SubSystem::mergeSubSystems (subsystem: SubSystem): Void

J Subsystem
/
. [each time system :PlexSystem
this «create»
¥ fromSgurce
¥ fromSource
¥ fromSource e
< i i ¥
LontainsRelation relation :ContainsRelation
containsRelation __:ContainsRelation
v t:{Target
ARCIE
= [end]
this

block :Block

S

Figure 3: Story diagram for the merge method of the SubSystem class

4 Since the fromSource relation has a 0..1 cardinality, the old edge is destroyed implicitly and thus not marked with

< destroy>>

Proc. GraBaTs 2006 6/12

Eg ECEASST

3.3 Implementing the Editor GUI with GEF

The core features of the RePLEX prototype were generated from the FUJABA documents. Yet,
the graphical user interface had to be implemented by hand. We chose to integrate the tool
into the Eclipse IDE [Ecl06] and used the Graphical Editing Framework (GEF) [GEF06] for
realization.

GEF is a Model-View-Controller (MVC) framework that can be plugged into the Eclipse IDE
to implement graphical editors for underlying models easily. GEF offers rich support for the
controller part of MVC, dictating a standard GEF architecture. For the view part, it depends on
the lightweight graphic system Draw2D, also available as an Eclipse plug-in. The underlying
model can be chosen arbitrarily, it merely has to offer event notification so that the controllers
can register with the model entities.

Since standard generated FUJABA classes do not support event notification, we had to adapt
the code generation using the FUJABA plug-in CodeGen2 [GSR], which allows modification of
the templates used to generate the code. We used the observer pattern and implemented a general
observable class for the housekeeping of notification queues etc. All generated Java classes for
the model entities are then derived from the observable class and the code generation templates
insert notifications into all modifiers.

The current implementation of the model representation with GEF deploys only two parame-
terizable representations for model entities: one for nodes and one for edges (actually, these are
edge-node-edge constructs, cf. Figure 2). The view parts for these are parameterized by the type
of the associated entity. The functionality offered for a node can also be parameterized by the
type of the entity. This is possible through the GEF mechanism of Requests and EditPolicies,
because EditPolicies contain a mapping of Requests to editing commands. The mapping can be
implemented to pick the commands dynamically depending on the elements type.

The different choices of parameterization have yet been coded into the prototype by hand,
but with the UPGRADE framework [BJSW02] for PROGRES prototypes, it has proven viable
to generate a complete parameterizable GUI from the specification of a graph transformation
prototype. This should also be possible for FUJIABA prototypes in the future.

3.4 Unparsing and Code Transformations

After re-design, the tool propagates the improvements on structural level to the implementation
level. The information about the improved software architecture is stored in the structure graph.
This graph only forms an instantiated representation of the system, it does not contain all the
information required for the generation of new source code. Each graph node representing data
of a control structure stores its original file name and its line numbers but not the actual source
code. Therefore, to obtain the changed program we resort to the original source code files and
enhance them by adding information extracted from the modified graph, describing how the
particular parts should be transformed.

The syntax of this code and the corresponding transformations are defined in the rule-based
programming language TXL [CHP91]. The TXL transformation system parses the enhanced
source code files (see Figure 5) and performs the transformations on the created abstract syntax
tree. A TXL rule can define, for instance, transformations between different types of signals and

7/12 Volume 1 (2006)

RePLEX: A Model-Based Reengineering Tool

signal entries (e.g. local and global). In the case of moving blocks to other subsystems, only
some comments are modified and the new source code is copied to the corresponding subsystem
directory.

During the transformation process, TXL parses the original source code files which is a huge
advantage of using this tool. As not all information required for generating the new source
code are stored in the graph model, more details must be extracted from the source code. We
should remark that TXL could also be used as a parser for extracting the structure document in
the reverse engineering phase. But as a jay-based parser for PLEX was already available from
former projects, we decided to use the pre-existing one. More detailed information about the
TXL-based tool can be found in [Mos06].

4 Using the RePLEX Tool

The RePLEX tool offers complex functionality, specified with the high-level mechanism offered
by FUJABA, that can easily be accessed through the GUI of an Eclipse plug-in. Figure 4 shows
the RePLEX GUI integrated into the Eclipse IDE. In this perspective it consists of a Navigator
View @), Strucure Graph Editor ®), Tool Bar (© and Editing Palette () as well as Property View
® and Code View).

& Replex - Replex Editor - Eclipse SDK
File Edit Mavigate Search Project Redesign Run Window Help

-4 SEIZESUB Me
L_ T % Signal Entry

4 - & < <) R 2 [1 NE NE 5 | ElReplex &Java
5. Mavigator 22 . D
b Palette »
E-G parsed k Select
= (= AXELD - - S (73, Marquee
== Mss = ST e) Creations ~ #
SHSC.oy. Contain : " ortai /A PLEX Syst
HLR.py B -'Bn ains Contq!ns onl alns‘_"\ &) ystem
MSCMO.py - Pl P Ry RA SubSystem
MSCMTE.py r‘- 5 StatementSe... ‘: 5 Subroutine ‘.'- .7 Record Al Block
=l source L IAMACK001_cs »{"jJ GMSC

== AXELD

= = MSS B \ “‘ £ Subroutine

GMSC.pragram !) N i | = v
HLR.program Hq‘s Modifies Cunfa\ns S Relations #
v \
FECMO procran, 4 N 5 ! 1 Contains
> ¥’ X % 4 ¥ ’
= — - = L ot Exi LabelStatement - FieldVariable ¥ call
L Properties &2 . Outline @ IAMACK001 | g3 IAMACK001_cs. SEIZURESUCCES:! {“ MSCMOIND PGuto
B 3¢ [Has

Property | Value ~ !;J Modify

Clear false < v

Comment StructurGraph | DF&
EndLine 18
FileName GMSC.program hange-actions |] Replex Code Yiew 3 Tasks ‘:@
LengthInBits 0 14 YARIABLE CSENDINGINDIVIDUAL 16 DS; | SENDING BLOCK REFERENCE ! n
Name MSCMOIND 15 VARIABLE CSENDINGBLOCKREF 16DS; | SENDING INDIVIDUAL !
Reload false 16
Revision B 17 RECORD GMSC;
° 18
StartLine 18 19 VARIABLE MSCMOREF 16DS; ! MSCMO BLOCK REFERENCE !
Store false 20 VARIABLE MSCMTEIND ~ 16DS; ! POINTER TO MSCMTE INDIVIDUAL !
21 VARIABLE MSCMTEREF 16DS; | MSCMTE BLOCK REFERENCE |
vl 22 varIABLE HLRIND 16DS; ! POINTER TO HLR INDIVIDUAL ! v

Figure 4: The RePLEX tool

In the Navigator View (® one can see the directory structure of the RePLEX project after the
PLEX code has been parsed. It contains a separate directory for PLEX code and parsed structure

Proc. GraBaTs 2006 8/12

Eg ECEASST

documents (one for each PLEX block file). The project contains a third directory for modified
PLEX code after generating PLEX code from a modified structure graph.

By choosing a structure document in the Navigator View, the corresponding structure graph is
shown in the Structure Graph Editor ®. In the figure, you can see a cutout of the structure graph
of the GMSC block. The graph consists of the block node, and nodes for different program parts
of the block. To make the analysis of a structure graph as convenient as possible, the Tool Bar
(© offers many functions for viewing, e.g. zooming, outline, and layout algorithms. All these
features allow effective reverse engineering of the analysed systems.

The Editing Palette (D) offers simple functionality for the modification of structure graphs.
In particular, one can manually create, destroy, and modify single nodes and edges. Using the
selection tool, one can also get more information on the selected element from the Property View
(), which shows all attributes of an element, and the Code View (), where the corresponding
lines in the PLEX source code are highlighted.

More complex reengineering and re-design analyses and transformations are available from
the according entries in the menu bar at the top of the window. E.g. from the Redesign menu one
can trigger the inclusion of the signal list (cf. p. 2) as additional information into the structure
graph. For each exchanged signal between block nodes, an edge is generated which is labeled
with numbers indicating how many signals are exchanged between these blocks. This allows to
abstract from block content and to regard only the block external signal flow, which is helpful
when a large amount of blocks is considered.

The tool also offers different kinds of re-designs, such as merging of two or more subsys-
tems, splitting of a subsystem into two subsystems, and moving one or more blocks to another
subsystem. Similar re-designs for the contents of single blocks exist as well. The algorithms
are based on different clustering techniques and effectively support the process of improving the
system architecture. Each re-design is separated into two steps. First, the graph is analyzed and a
re-design transformation suggested which still can be manipulated by the user after considering
the semantics of the program. In the second step, the actual graph transformation is performed.

ex Code Wiew X Tasks =0

14 VARIABLE CSENDINGIMDIVIDUAL 16 D5; | SENDING BLOCK REFERENCE !
15 VARIABLE CSENDINGELOCKREF 16D5; | SENDING IMDIVIDUAL !

17 RECORD GMSC;
18 [* renameVAR MSCMOIND MSCMOZIND *]

19 VARIABLE MSCMOIND 16D35; | POINTER TO MSCMO INDIVIDUAL |

20 [* END renamevar *]

21 WARIABLE MSCMOREF 16DS; | MSCMO BLOCK REFEREMCE I

22 YARIABLE MSCMTEIND 16D%; ! POINTER TOMSCMTE INDIVIDUAL !

23 WARIABLE MSCMTEREF 16DS; | MSCMTE BLOCK REFEREMCE I

24 YARIAELE HLRIND 16D5; | POINTER TO HLR INDIVIDUAL !

25 WARIABLE BMUMBER 16D5; | PHOME NUMBER, OF B-SUBSCRIBER | 3

e NARTAR e AR AL RLAUARATRLS BIRARER TR R SR T

Figure 5: The annotated PLEX source code

After modifying the structure graph, the changes must be propagated to implementation level.
From the current graph structure and the node attributes, the tool can derive changes, which must
be performed on source code level. As described in section 2, we first generate an annotated
version of the PLEX code by adding information about the required changes. Figure 5 shows
how the information is stored in the code. In this example, we performed a rename operation. We

9/12 Volume 1 (2006)

RePLEX: A Model-Based Reengineering Tool Eﬁ

rename the variable MSCMOIND from Figure 4 to MSCMO2IND. Each modification is enclosed
by two lines: the first line defines the modification type and the parameters, the second marks
the end of the source code area to be considered during the transformation. The TXL-specific
command lines are surrounded by [* *]. These files are the input for the TXL transformation
tool, which generates the new PLEX code, containing all re-design modifications.

Figure 6 shows another feature of the RePLEX tool: a state machine extracted from the PLEX
code of the GMSC block. In the telecommunication industry, the behavior of software com-
ponents is often modeled in terms of state machines. Each state machine is realized in one
PLEX block; by convention, their behavior is simulated by the enumeration variable STATE that
changes its value every time a signal arrives or leaves the block. By analyzing access to this
variable, we can derive a state machine from the structure graph to allow further analysis in the
reverse engineering process. Marburger [Mar04] describes the algorithm in detail.

State machines are visualized in an own view, the DFA tab. This view can be opened by
selecting a block and using the DFAExtractor from the Tool Bar.

& Replex - Replex Editor, - Eclipse SDK.

File Edit Refactor MNavigate Seatch Project Rewverse Redesign Run Latex SURGGLEN Help

% (SR AN X @ Q|

StartState , State
SEIZED @ FETCHROAMHR
.

“1am, SEIZEMSCMTE/SEITEMSCMTEACK

, State
@ SETUPHLR

SEIZEHLRYSETTEHLRACK GETROAMNR/GETROAMNRR.

State @ State
@ SETUPMSCMTE IAMMSCMTE

StructurGraph DFA

Figure 6: The state machine for block GMSC

This overview showed only a small part of the currently implemented and future functionality,
partly already realized in the former PROGRES prototype [Mos06].

5 Conclusion & Outlook

In this paper, we presented a graph-based tool for reengineering telecommunication systems.
We explained the underlying object-oriented model and how we use graph transformation rules
with FUJABA to specify the tool’s functionality. The tool supports the reverse engineering and
restructuring process by recovering the actual architecture and propagating the modifications
from the architecture level back to PLEX source code. From the FUJABA specification a Java
prototype is generated, which is accessible via a GUI based on the Graphical Editor Framework
plug-in for the Eclipse workbench.

From our experience with the formal specification of functionality with high level specification
languages, we can draw the conclusion that languages like FUJABA or PROGRES allow even

Proc. GraBaTs 2006 10/12

Eg ECEASST

novice developers to realize a complex tool within short time. After first orientation in FUJABA,
the basic specification took two students roughly two days. Further complex features could be
added within hours. The implementation of the GUI with GEF was straight forward and fairly
easy, but quite some hand-coding was necessary. This took ten students about eight workdays.
We believe that a parameterizable GUI could be generated from the FUJABA specification in the
future.

Further work concerns the development of more re-design transformations, partly already im-
plemented for the PROGRES-based prototype. In the context of the E-CARES project, especially
re-design modifications improving the real-time performance of PLEX systems are interesting.
On the other hand, our approach for the TXL-based source code transformation must be gener-
alized. The tool is already able to generate new PLEX code for the given set of corresponding
graph modifications, but we are still missing a prove that our approach can handle all possible
architecture modifications.

Bibliography

[Ber00] E. Berk. JLex: A lexical analyzer generator for Java(TM). Department of Com-
puter Science, Princeton University, Sept. 2000. http://www.cs.princeton.edu/ ap-
pel/modern/java/JLex/current/manual . html.

[BJSWO02] B. Bohlen, D. Jiger, A. Schleicher, B. Westfechtel. UPGRADE: A Framework for
Building Graph-Based Interactive Tools. Electr. Notes Theor. Comput. Sci. 72(2),
2002.

[CHP91] J. R. Cordy, C. D. Halpern-Hamu, E. Promislow. TXL: A Rapid Prototyping Sys-
tem for Programming Language Dialects. Computer Languages 16(1):97-107, Jan.
1991.

[Ecl06] Eclipse Consortium. Eclipse. 2006. http://www.eclipse.org.

[EKRWO02] J. Ebert, B. Kullbach, V. Riediger, A. Winter. GUPRO — Generic Understanding of
Programs: An Overview. Electronic Notes in Theoretical Computer Science 72(2),
2002. URL: http://www.elsevier.nl/locate/entcs/volume72.html.

[FNTZ98] T. Fischer, J. Niere, L. Torunski, A. Ziindorf. Story Diagrams: A new Graph Rewrite
Language based on the Unified Modeling Language. In Engels and Rozenberg (eds.),
Proc. of the 6'* International Workshop on Theory and Application of Graph Trans-
formation (TAGT), Paderborn, Germany. LNCS 1764, pp. 296-309. Springer, Nov.
1998.

[FUJ99] FUJABA — From UML to Java and Back Again. 1999. http://www.fujaba.de/.

[FUJO5S] FUJABA Tool Suite RE. 2005. http://wwwcs.uni-paderborn.de/cs/fujaba/
projects/reengineering/.

[GEF06] GEF — Graphical Editing Framework. 2006. http://www.eclipse.org/gef/.

11/12 Volume 1 (2006)

RePLEX: A Model-Based Reengineering Tool E}

[GSR]

[KLRY6]

[Kos00]

[Mar04]

[Min02]

[Mos06]

[MVDJO05]

[MWT94]

[INSW02]

[SKO06]

[SWZ99]

[Tae99]

[Wen99]

L. Geiger, C. Schneider, C. Record. Template- and Modelbased Code Generation for
MDA-Tools. 3rd International Fujaba Days 2005, Paderborn, Germany.

S. Kelly, K. Lyytinen, M. Rossi. MetaEdit+: A Fully Configurable Multi-User and
Multi-Tool CASE and CAME Environment. In Constantopoulos et al. (eds.), CAiSE.
Lecture Notes in Computer Science 1080, pp. 1-21. Springer, 1996.

R. Koschke. Atomic Architectural Component Recovery for Program Understand-
ing and Evolution. Doctoral thesis, Institute of Computer Science, University of
Stuttgart: Stuttgart, Germany, Stuttgart, Germany, 2000. 414 pp.

A. Marburger. Reverse Engineering of Complex Legacy Telecommunication Systems.
Shaker Verlag, Aachen, Germany, 2004. ISBN 3-8322-4154-X.

M. Minas. Specifying Graph-like Diagrams with DIAGEN. Electr. Notes Theor.
Comput. Sci. 72(2), 2002.

C. Mosler. E-CARES Project: Reengineering of Telecommunication Systems. In
Lmmel et al. (eds.), Proceedings of the Summer School on Generative and Transfor-
mational Techniques in Software Engineering (GTTSE 05). LNCS 4143, pp. 437—
448. Springer, Braga, Portugal, 2006.

T. Mens, N. Van Eetvelde, S. Demeyer, D. Janssens. Formalizing refactorings with
graph transformations. Journal on Software Maintenance and Evolution: Research
and Practice, pp. 247-276, 2005.

H. A. Miiller, K. Wong, S. R. Tilley. Understanding Software Systems Using Reverse
Engineering Technology. In The 62nd Congress of L’Association Canadienne Fran-
caise pour I’Avancement des Sciences ACFAS 1994. Pp. 41-48. Montreal, Canada,
May 1994.

J. Niere, W. Schifer, J. P. Wadsack, L. Wendehals, J. Welsh. Towards Pattern-Based
Design Recovery. In Proc. of the 24" International Conference on Software Engi-
neering (ICSE), Orlando, Florida, USA. Pp. 338-348. ACM Press, May 2002.

A.-T. Schreiner, B. Kiihl. jay — a yacc for Java. homepage, 2006. URL:
http://www.informatik.uni-osnabrueck.de/alumni/bernd/jay/.

A. Schiirr, A. J. Winter, A. Ziindorf. The PROGRES Approach: Language and En-
vironment. In Ehrig et al. (eds.), Handbook on Graph Grammars and Computing
by Graph Transformation: Applications, Languages, and Tools. Volume 2, pp. 487—
550. World Scientific: Singapore, 1999.

G. Taentzer. AGG: A tool environment for algebraic graph transformation. In Pro-
ceedings AGTIVE 99. LNCS 1779, pp. 481-488. Springer: Heidelberg, Germany,
Kerkrade, Netherlands, 1999.

J. Wennersten. PLEX-C Language Description. Ericsson Telecom AB, 1999.
EN/LZB 101 1903 R4B.

Proc. GraBaTs 2006 12/12

	Introduction
	Approach
	Reengineering Process
	Graph-based Reengineering
	Related Work

	Realization
	Parsing PLEX Code
	Specifying Re-design Features with FUJABA
	Implementing the Editor GUI with GEF
	Unparsing and Code Transformations

	Using the RePLEX Tool
	Conclusion & Outlook

