
Electronic Communications of the EASST
Volume 6 (2007)

Proceedings of the
Sixth International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2007)

Graph-Based Engineering Systems
A Family of Software Applications and their Underlying Framework

Gregor Wrobel, Ralf-Erik Ebert, Matthias Pleßow

12 pages

Guest Editors: Karsten Ehrig, Holger Giese
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/270295472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ECEASST

Graph-Based Engineering Systems
A Family of Software Applications and their Underlying Framework

Gregor Wrobel, Ralf-Erik Ebert, Matthias Pleßow

{wrobel,ebert,plessow}@gfai.de
R&D Department of Graph-Based Engineering Systems
Society for the Promotion of Applied Computer Science

Berlin, Germany

Abstract: In various engineering disciplines visual modeling techniques are used
for the definition as well as representation of complex systems. Besides the pictorial
illustration, the included structural information is often used for application-specific
procedures. This paper presents a few engineering systems for quite different ap-
plication fields, but they use a common graph-based model. This model is part of
a framework that underlies these applications. Various kinds of applications can be
developed on the basis of this framework by means of configurations and exten-
sions. The development of new applications is supported by convenient assemblies
of suitable system functions and layout methods as well as by integration of appli-
cation functionalities. The introduced framework is the basis for a product line of
graph-based engineering systems.

Keywords: visual modeling techniques in engineering, software architectures and
frameworks, software product line, tool support

1 Introduction

In the early 1980s, the use of computers for the design and documentation of schematic dia-
grams increased in response to both the new possibilities of computers and the growing use of IT
in engineering. In many engineering disciplines, apart from computer-aided design, computers
are important for the production of logic models. In line with human thought and decision pro-
cesses, these models are complex, frequently have a net-like structure, and represent hierarchical
phenomena [PP98].
Independently of that, extensive research was conducted in a completely different field: the gen-
eration of graph layouts (graph drawing [DETT99]). In graph drawing a key role is played by the
automatic generation of such layouts and for that purpose, numerous software tools have been
developed [JM03]. However, the modeling of engineering systems requires graphic editors.
This paper presents a framework that combines computer aided modeling with schematic draw-
ing, based on a structural model. It includes graph drawing techniques. As the result it constitutes
the basis of a product line. The domain of this product line is referred to as graph-based engi-
neering systems and its main elements are presented here. Finally, a number of applications are
introduced.

1 / 12 Volume 6 (2007)



Graph-Based Engineering Systems

2 System Architecture

Based on engineering applications developed [PP98][BPPS01] and former research activities in
drawing schematics [PS89], we performed a domain engineering process to detect common fea-
tures of what we call graph-based engineering systems. In order to create such systems in an effi-
cient way, a system architecture has been developed whose main element is a domain framework
so-called CASTool (Computer Aided Schematics ToolBox). A core software component of this
framework is a meta data model. Based on this model, several framework software components
for domain functionalities are implemented. Hence, by using this framework, the development of
a concrete system should be restricted to implement specific application knowledge. In order to
achieve this goal the following implementation strategies are used: configuration management,
component orientation, common and extendable meta model and generic programming.
Figure 1 shows the system architecture. The main elements and some implementation techniques
to create CASTool-based applications are outlined below.

a

CASTool

I/O Engine ELADO
Configuration

Engine

Registry

Engine

Command

Factory

Presentation

Engine

a

undo

redo

log

...

System Layout Application

Application Subsystem

Configuration Files / Scripts (GUI, Behavior, Interactors, Layout, ...)

command 2

command 1

command 2

command 1

command 2

command 1

Application

Model

Application

Functions

Model Configuration

Structure

Parameters

Command Queue

graph-based engineering system

File Edit View Insert

ABC

XML

...

...

...

Figure 1: System architecture

2.1 Data Model

One common characteristic of graph based engineering systems is the usage of an extended graph
model. ELADO (Extended Layout Data Model) represents such structure and is comprised of
three main sections: a structure model, an application model and a visualization model.
The structure model represents what we call networks (Figure 2 shows the core elements).
Networks are structured similarly to mathematical graphs and substantially made up of com-
ponents, nets and connection points (called as pins). To extend the graphs, components (which
correspond to graph vertices) can also contain networks of their own. This means that hierarchi-
cally structured models can easily be represented. Such hierarchical component can be a node

Proc. GT-VMT 2007 2 / 12



ECEASST

ELADO

0..1

0..2

2..*
0..*0..*

structure modelapplication model

0..*

visualization model

0..1

0..*

0..1

0..*

0..1

0..1

0..1

0..1

NetworkElement

Pin Net

PropertyPackage

Property

BaseValue

RepresentationPackage

LayoutPackage

BehaviorPackage

GraphicPackage

Component

Figure 2: ELADO model parts (extract)

in a scheme or a simple project node (e.g. a folder). The latter is used for project structuring.
Apart from the hierarchical structure, networks differ from graphs in that components have pins.

Figure 3: ELADO structure

Pins are the connection points for nets. Figure 3 shows a sim-
ple network. A outer component contains three components.
These components are connected by a net. This net is owned
by the upper component and associated with pins of the in-
ner components. Additional, Figure 3 denotes other elements
of the ELADO structure model. In the mathematical sense,
the net between the inner components is a hyper edge. The
three parts of the net (called as segments) are ending in a com-
mon branch point (shown as smal black rectangle in Figure 3).
Further, each segment is modeled by segment parts which are
delimited by bend points (shown as smal black cicles in Fig-
ure 3). Apart from the model elements featured above, other
classes exist for group representation, annotations and special
structure elements.
Besides the structure model, ELADO consists of a visualization model. This part of ELADO is
used to store information about the geometry of a network element, its shape as well as layout-
specific behaviors. This means for instance, that standardized symbols from various fields of
applications can be simply represented. For example in Figure 4, the net’s segment representing
a bus is drawn by a double line and in Figure 3 the component’s pins are located on fixed po-
sitions on the component’s shape and all connected pins are colored different. The latter could
be a special layout behavior. In addition, each component can contain simple graphics (pictures,
lines, text, etc.) as well as store its own layout information such as connection rules and routing
behaviors. Therefore, in one application various visual languages could be embedded.
In order to be able to develop different applications and in particular to store their application-
specific data (e.g. technology data, business data), ELADO has been augmented with a third
model part, the application model. In contrast to the structure model, in which each relevant ele-

3 / 12 Volume 6 (2007)



Graph-Based Engineering Systems

ment is modeled by a class, the application model is an abstract data structure. The data is stored
in an associative property tree. Each node in the tree can be identified by a key and owns a value
object and a subtree. As indicated in Figure 2, diverse types of basic values such as numbers,
intervals and time series are implemented in ELADO as derived classes.
In conclusion, ELADO satisfies the requirement of an extendable meta model. The use of the
same model for networks as well as for project structure modeling and the appropriate applica-
tion data management makes CASTool different from standard drawing tools. As a matter of
principle, all applications we develop underlie this model approach. Hence, we call such appli-
cations graph-base engineering applications. ELADO consists of approx. 65 classes. Based on
ELADO, CASTool provides a few class libraries to develop graph-based engineering systems in
an efficient way. Some of these are described below.

2.2 Extensibility and Configurability

In order to be able to develop diverse engineering solutions, the system architecture must be
designed such that new functionality can be added and existing functionality extended or modi-
fied. For this purpose, the framework can be augmented by application-specific services such as
special layout methods and engineering components like simulators etc.
Figure 1 shows the extension mechanism embedded into the system architecture. Additional
software components can be added dynamically at run time via a defined mechanism. On prin-
ciple, every user-controlled communication between components is based on the execution of
commands. The use of such a command is based on the fabric pattern [GHJV95] whereas the
creation is embedded in the command itself.
Due the abstract application data model (see Section 2.1), the handling of special data is more
complicated and not high-performing. Therefore, every ELADO object (more precisely every
CASTool object) can be decorated with interface objects. An interface object provides specific
functions for model data access and manipulation, but can not store data persistently. This is
not necessary, since all data can be stored in the application model. The registration of interface
objects works in the same way as for commands by registering an alias at runtime.
Beside the system’s extensibility, configuration mechanisms have been implemented within the
system (configuration engine in Figure 1), which are primarily used for the design of GUI and
layout management (in form of layout plans that formulate the calls of individual analysis, layout
and evaluation methods) of an application. This can be done by modifying initialization files or,
alternatively, by dynamic script interpretation at run time. Currently, interpreters for JavaScript,
Phyton, TCL and CSL are integrated. All interpreters are extended with special functions for
CASTool command calling, configuration access and model method invocation. For this pur-
pose, a navigation language for object data, which is according to XPath, is implemented.
To sum up: the framework offers a convenient way of system extension by commands and in-
terface objects integration as well as system configuration. This satisfies the implementation
strategies described as component orientation, generic programming and configuration manage-
ment above.

Proc. GT-VMT 2007 4 / 12



ECEASST

2.3 Additional Framework Features

CASTool’s presentation module is responsible for outputting the model data corresponding to
the application. To visualize the ELADO structure model and interact with it, a software com-
ponent for drawing schematics is included (the presentation engine in Figure 1). To deal with
ELADO application data, generic dialogs and forms have been developed. For that purpose,
dialog elements for base data types are developed including optional GUI elements for addition
information (units, bounds, intervals). A dialog generator arranges sets of these line by line
on forms. Nodes of the application data tree rendered as tabs. Besides this features CASTool
provides data exchange routines (XML formats for data exchange, SVG and pixel formats for
schematics) as well as client-server components to run the framework in intranet/internet envi-
ronments without visualization, in which case CASTool acts as a layout server.

3 Layout Methods

The framework includes a couple of basic layout methods such as the usual procedures for align-
ing selected components and simple routing methods like rubber band. All these methods work
direct on ELADO. Furthermore, some special layout and placement methods (with special data
structures) are included. These methods also operate with structure as well as geometry infor-
mation and have been developed taking graph drawing techniques into account. Their purpose is
to emphasize the structural properties of networks, and they also have to be clear and aesthetical.
Moreover, layout methods need to be topologically and geometrically stable to prevent recogni-
tion problems during interactions on the part of the user [BP90]. Amongst others, the framework
includes the following layout methods:
Orthogonal routing: This aids the interactive graphic design of networks by locally adapting
the net routing whenever component positions are changed. As a special feature, this method
finds long continuous connection parts (buses) and draws them as horizontal or vertical lines.

Figure 4: Bus routing

This makes the schemes much easier to read because of the
representation of one main flow. This bus routing method
consists of three parts: pattern routing for two point connec-
tions, autonomous bus routing and post processing for bus
routing. The pattern routing draws two-point connections in
a sophisticated way by using a set of defined base patterns.
The bus routing handles hyper-edges and embeds them as
sub-optimal Steiner-Trees. While the autonomous bus rout-
ing disregards collisions, the post processing optimizes the
results by regarding collisions. Figure 6 shows the bus rout-
ing in an application.
Level layout: The framework also contains a so-called level layout that is suitable for diagrams
of logic networks and analogous control systems in which the components are arranged in verti-
cal levels. A channel router is used to draw nets between the component levels [GPS03]. Level
layout seams to be similar to the well known layer layout due to Sugiyama [STT81]. However,
the level layout does not change the order of components within the levels.

5 / 12 Volume 6 (2007)



Graph-Based Engineering Systems

Tree layout: This includes techniques that allow to draw networks with tree-like structures.
Various basic principles regarding the direction of growth, adjustment and the order of com-

(a) Bottom left tree

A

A

A

A A

A A

(b) Tree with star and buses

Figure 5: Various tree layouts

ponents can be selected in accordance with corresponding parameters. The tree layout follows
the principle of topological stability. For that purpose, the user can choose the root node of a tree
as well as the order of subtrees by graphical interactions. Additional, special network features
like stars and busses are supported.

4 Applications

In recent years, various different solutions have been developed on the basis of the domain frame-
work presented here. Some of them are briefly described below.

4.1 TOP-Energy - Toolkit for Optimization of Industrial Energy Systems

The main aim of TOP-Energy is to support energy consultants in analyzing and optimizing indus-
trial energy supply systems by providing modules for documentation, simulation and evaluation
of energy systems with respect to energetic, economic and environmental aspects.
TOP-Energy consists of two major parts: CASTool and a set of modules. The former supplies
the services of a modern GUI-application such as module-sensitive dialogs and presentations,
flow sheet editing and report generation. Figure 6 shows the flow sheet editor in TOP-Energy for
the modeling of energy supply systems. A flow sheet is TOP-Energy’s visual language to model
energy systems and can contain different kinds of energy components. Components represent
technical objects (e.g. chiller) as well as non-material objects (e.g. energy rates). The flow sheets
are used by a simulator module to calculate energy demands [AWKP04]. The visual language of
flow sheets includes some connection rules to connect only pins of the same medium as well as
rule definitions of hyper-nets and flow directions. Because of the marginal spatial comprehen-
siveness of these systems, a special placement procedure is not necessary. The included local
alignment operations and collision detections are adequate. However, strong internal linking
structures require an appropriate routing procedure.
Based on the first TOP-Energy application, the software was enhanced to a common CASTool-
based framework for software solutions on the field of energy systems [WHA07].

Proc. GT-VMT 2007 6 / 12



ECEASST

Figure 6: Flow Sheet in TOP-Energy

4.2 VotAn - Requirements Engineering Tool for Software of Technical Systems

VotAn is a tool for requirements engineering of software solutions in technical engineering envi-
ronments, especially in the field of automation. It provides a model-based approach with focus
on a product model. VotAn includes a few well-defined term structures (thesaurus, taxonomy)
containing domain-based knowledge for some application areas. Besides product objects, this
structure includes terms for functional and non-functional requirements in form of templates, so-
called VotAn-Objects. In general, VotAn supports, among other things, the following activities:

• acquisition, specification, structuring, tracing and revision of requirements in a systematic
way by further using of standard (third party) software

• adaptable methodical guidance for the structuring of the requirement specification includ-
ing their documentation in different forms

• template creation for self-made reusable VotAn-objects

VotAn supports different schematic illustrations for the requirements modeling. Each VotAn-
Object can be represented in such a scheme. For that purpose, a VotAn-Object possess several
proxies and in fact, these proxies are assigned to a scheme. Besides representations to show
structural information (e.g. UML use case diagrams), there exist also schemes that control dialog
sequences (see Figure 7). The visual language for these sequences is designed according to UML
activity diagrams wherein a acitivity is a VotAn proxy that opens a form. This form shows data

7 / 12 Volume 6 (2007)



Graph-Based Engineering Systems

Figure 7: Activity Sequence Scheme in VotAn

of a VotAn-Object that the proxy belongs to, using the framework‘s generic dialogue generation.
The conditions in that diagrams are proxies, too. These control the sequence in dependence of a
value of a VotAn-Object’s parameter. Additional, some common diagram elements (e.g. message
dialogs in form of activities and user controlled branchings in form of conditions) are available.
As a result, the user can define wizard-like data administration sequences. Again, these can be
stored as templates and reused as domain-specific process model for different projects.

4.3 SwitchLay - Switch Cabinet Layout

Switching stations can be found in modern factories and buildings everywhere. They are utilized
as supervisory station to control and observe different technical processes. Electrical/ electrome-
chanical engineering systems (ECAD-systems) are often used to design switchboards. As design
result, circuit diagrams are mainly developed. But for the physical design of a switchboard they
offer no assistance [VSP04].
SwitchLay possesses two methods for layout on the mounting plates of switch cabinets: place-
ment and routing. These are quite different layout tasks as in the application descried before. In
SwitchLay, a physical layout is required, in which the components have to be full-scale placed,
and routing means wiring of cable in a physical environment.
The task of the placement technique is to accommodate a specified set of electrical devices on the
mounting plate. For this purpose, a pattern of a channel frame can be selected for the mounting
plate. The electrical devices must then be assigned to the individual facets between the channels.

Proc. GT-VMT 2007 8 / 12



ECEASST

Figure 8: Switch Cabinet Layout

Any affinities or incompatibilities be-
tween the electrical devices must be taken
into account. Note that the pattern merely
describes the basic architecture of the
channel frame and the existence of cer-
tain rails. During placement, the channel
frame needs to be resized depending on
space requirements.
The key problem of routing is the decom-
position of hypernets. The clamps in-
volved in a hypernet must be connected
by a tree that branches out only at the
clamps. The clamps have limited va-
lences for technical reasons. For each hy-
pernet, the algorithm forms partial trees,
which are successively connected. An
extended form of Dijkstra’s algorithm is
used [VSP04].
SwitchLay seems to be quite different
to applications including logical net-like
structures, but de facto, all SwitchLay components could be modeled by ELADO (see Section
2.1). Consequently, SwitchLay was developed as a prototype based on CASTool to investigate
the layout methods and show the layout results. Currently, the routing method is included in a
third party ECAD-system.

5 Experiences

We use the described framework in application development since a couple of years. More
precisely, we have developed the framework from prototypes, which have been developed in re-
search projects. Hence, we used a reactive strategy to develop our framework as a product line
infrastructure. This way implicated some necessary redesign processes. As the result, we have
now a powerful software basis for application development in the field of graph-based engineer-
ing systems. The main approach, the same data model for all applications, has the advantage of
using common software components. Especially the GUI components for the ELADO structure
model and generic dialogs and forms for the ELADO application model make rapid prototyping
possible. Certainly for end products, special GUI elements especially for application data must
be implemented. Furthermore, the same date model comprised the data exchange between dif-
ferent applications in a native way.
Based on the exiting results, we changed our framework development recently to a proactive
strategy. We gain the same experience as [Dit04], that the implementation of a lot of functional-
ities in commands such as model manipulations makes the code difficult to read. Additional, by
calling sub commands in commands, dependencies increased and as consequence, side-effects
have a negative impact. Currently, in a re-design phase, we integrate some command stored

9 / 12 Volume 6 (2007)



Graph-Based Engineering Systems

common functionalities in framework libraries and modules.
The system configurability and extensibility necessitate the abstraction level described here. To-
gether with the abstract ELADO application data, the system’s complexity increases, which is
why particular attention had to be paid to system performance.
In order to cover areas of usage which are as large as possible, the system has been developed to
run on various system environments by means of platform-independent libraries. All framework
classes are written in C++ using open-source third party libraries such as wxWidgets [SHC05]
and Apache Xerces. So far, the framework, including layout methods, comprises about 850
classes and approx. 300,000 lines of code.

6 Related Works

With the increasing popularity of UML in the end of 1990s, the use of visual techniques and
graph-based tools increased. Therefore, a large number of (Meta)CASE tools have been devel-
oped. The main objective of these systems is to provide software modeling techniques as well
as tools for source code generating. Independently of that, many systems for modeling, pro-
gramming as well as simulating of technical applications with visual modeling techniques (e.g.
LabView and Matlab Simulink) are widely used. These systems are designed for non-application
specific languages and require special user knowledge.
In contrast, CASTool offers the development of software systems for engineering applications
with user-defined, domain-specific, visual languages and, therefore, provides the modeling of
technical systems in an easier way. This and the possibility to extend application-logic (e.g. sim-
ulators) enables the end-user to deal with complex issues in a domain-specific environment.
Besides many visual modeling tools [JM03], a few frameworks for such applications have been
built up to date. The Graphical Modeling Framework (GMF [N06]) is such a framework. GMF
is a bridge between the Eclipse Modeling Framework (EMF) and the Graphical Editing Frame-
work (GEF). Another framework for the development of graph-based applications is UPGRADE
[BJSW02] that is not only used to develop software engineering tools too. It provides many of
the framework features descried above (e.g customizability, extensibility as well as convenient
layout methods). GMF provides a number of visual editors for the application development pro-
cess. In contrast, CASTool contains only an editor for tree-structured configuration files and a
graphical editor to create component appearances. To describe connection rules, CASTool in-
cludes a declarative way in form of configuration files. This is rather weak compared to the visual
languages provided by GMF and PROGRES. A visual description language for design rules was
developed in [FPA05] and will be integrated in the framework by future works.
The main difference between the frameworks above and CASTool is that CASTool is focused on
engineering systems including net-like structures. For this purpose, CASTool’s abstraction level
is lower. Certainly, the GMF and UPGRADE are more general and powerful in the sense that
these can be used for the development of various applications. But for such engineering systems
which can be represented by ELADO and which need to store besides the structure information
a lot of application data, the described framework is more suitable.

Proc. GT-VMT 2007 10 / 12



ECEASST

7 Conclusion

The framework described above enables custom-made engineering systems to be produced effi-
ciently. The chosen approach of using a lower abstract meta model enables the implementation
of many common functionalities for graph-based engineering systems in the software basis. The
simple adaptability of the system supports the supply of ergonomic user interfaces and enables
individual configurations. As a result, changing user requirements can easily be taken into ac-
count in the latter phases of application development and even after the system has been com-
pleted. The presented solutions demonstrate that the system approach can be used for application
development, rapid prototyping as well as basis for further frameworks.
One can easily imagine that CASTool can be used not only for engineering systems but also for
other similar systems (related to the data model and required system functionalities) of different
domains. In particular, the possibility of being able to generically add functionality to the system
and to integrate this functionality into the overall architecture opens up a broad sphere of appli-
cations for CASTool.
Future work will involve evolving research prototypes into products and developing other layout
methods as well as searching for new fields of application.

Acknowledgements: The authors are grateful to the Federal Ministry of Economics and Tech-
nology of Germany as well as the Federal Ministry of Educations and Research of Germany for
the financial support of several projects on this subject.

Bibliography

[AWKP04] E. Augenstein, G. Wrobel, I. Kuperjans, M. Pleßow. TOP-ENERGY - Computa-
tional Support for Energy System Engineering Processes. In Tsahalis (ed.), Proceed-
ings of the 1st International Conference ”From Scientific Computing to Computa-
tional Engineering”. Volume 3, pp. 1284–1291. Patras University Press, Athens,
Greece, September 2004.

[BJSW02] B. Böhler, B. Jäger, D. Schleicher, B. Westfechtel. UPGRADE: A Framework for
Building Graph-Based Interactive Tools. In Mens et al. (eds.), Proceedings Interna-
tional Workshop on Graph-Based Tools (GraBaTs 2002). Electronic Notes in Theo-
retical Computer Science 72(2). Elsevier, Barcelona, Spain, October 2002.

[BP90] K.-F. Böhring, F. N. Paulisch. Using Constraints to Achieve Stability in Automatic
Graph Layout Algorithms. In ACM SIGCHI Conference on Human Factors in Com-
puting Systems. ACM SIGCHI, pp. 43–51. Seattle, WA, April 1-5 1990.

[BPPS01] T. Bartsch, M. Pleßow, M. Pocher, H.-W. Schmidt. Ein universelles System für die
Projektierung von Prozeßleitsystemen. ZwF Zeitschrift für wirtschaftlichen Fabrik-
betrieb 4(96):205–211, 2001.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, I. G. Tollis. Graph Drawing - Algorithms for
the Visualization of Graphs. Prentice Hall, 1999.

11 / 12 Volume 6 (2007)



Graph-Based Engineering Systems

[Dit04] K. Dittert. Softwarearchitekturen: Mythen und Legenden. OBJELTspektrum 3:34–
39, Mai/Juni 2004.

[FPPL05] R. Fröhling, M. Pocher, M. Pleßow, A. Lisounkin. Tools for Knowledge Acquisition,
Modeling and Visualization Applied to Process Supervision. In Krüger et al. (eds.),
Industrial Simulation Conference. Pp. 358 – 362. EUROSIS, June 2005.

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Addison-Wesley,
January 1995.

[GPS03] B. Goetze, M. Pleßow, P. Scheffler. Level-Layout für die Generierung grafischer
Dokumentationen in der Leittechnik. ZwF Zeitschrift für wirtschaftlichen Fabrik-
betrieb 3(98):97–101, 2003.

[JM03] M. Jünger, P. Mutzel. Graph Drawing Software. Mathematics and Visualization.
Springer, 2003.

[N06] N. N. The Eclipse Foundation - Graphical Modeling Framework.
http://www.eclipse.org/gmf/, 19.12.2006.

[PP98] M. Pleßow, M. Pocher. Intelligente Editoren - ein innovatives Konzept für die Erstel-
lung von schematischen Darstellungen. In Dassow and Kruse (eds.), Informatik ’98.
Pp. 141 – 150. Springer-Verlag, Magdeburg, Germany, September 1998.

[PS89] M. Pleßow, P. Simeonov. Netlike Schematics and their Structure Description.
In Menga and Kempe (eds.), Workshop on Informatics in Indusrial Automation.
Pp. 144–163. CICIP, Berlin, GDR, Nevember 1989.

[SHC05] J. Smart, K. Hock, S. Csomor. Cross-Platform GUI Programming with wxWidgets.
Bruce Peren’s Open Source Series. Prentice Hall, USA, 2005.

[STT81] K. Sugiyama, S. Tagawa, M. Toda. Methods for Visual Understanding of Hierarchi-
cal System Structures. IEEE Transactions on Systems, Man and Cybernetics SMC-
11(2):109–129, 1981.

[VSP04] W. Vigerske, B. Stube, M. Pleßow. Automatic Wiring in Switch Cabinets. In
Maropoulos and Schaefer (eds.), Proceedings of the 1st International Conference on
Electrical/Electromechanical Computer Aided Design and Engineering. Pp. 90–93.
The University of Durham, School of Engineering, Durham, UK, November 2004.

[WHA07] G. Wrobel, S. Herbergs, E. Augenstein. TOP-Energy - Ein Framework für Soft-
warelösungen in der Energietechnik. In Oberweis et al. (eds.), eOrganization:
Service- Prozess-, Market-Engineering, 8. Internationale Tagung Wirtschaftsinfor-
matik. Volume 2, pp. 947–964. Universitätsverlag Karlsruhe, February/March 2007.

Proc. GT-VMT 2007 12 / 12


