
Electronic Communications of the EASST
Volume 15 (2008)

Proceedings of the
8th International Workshop on

OCL Concepts and Tools (OCL 2008)
at MoDELS 2008

Building an Efficient Component for OCL Evaluation

Manuel Clavel1 3, Marina Egea2, Miguel A. Garcı́a de Dios3

11 pages

Guest Editors: Jordi Cabot, Martin Gogolla, Pieter Van Gorp
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/270295471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

Building an Efficient Component for OCL Evaluation

Manuel Clavel1 3, Marina Egea2, Miguel A. Garcı́a de Dios3

1 manuel.clavel@imdea.org
IMDEA Software Institute, Madrid, Spain,

2 marinae@inf.ethz.ch
Information Security Group

ETH Zurich, Switzerland
3 clavel@sip.ucm.es miguelgd@fdi.ucm.es

Departamento de Sistemas Informáticos y Computación
Universidad Complutense, Madrid, Spain

Abstract: In this paper we report on our experience developing the Eye OCL
Software (EOS) evaluator, a Java component for efficient OCL evaluation. We first
motivate the need for an efficient implementation of OCL in order to cope with novel
usages of the language. We then discuss some aspects that, based on our experience,
should be taken into account when building an OCL evaluator for medium-large
scenarios. Finally, we explore various approaches for evaluating OCL expressions
on really large scenarios.

Keywords: OCL,evaluation,efficiency,benchmark

1 Motivation

In the recent past we have worked on the definition of a formal and executable semantics for the
Object Constraint Language (OCL) [OCL06]. The results of this research appeared in a doctoral
dissertation [Ege08] and provide the foundations of the ITP/OCL tool [CE06], a rewriting-based
evaluator for OCL expressions on instances of user-defined models. As part of our research, we
have looked at different usages of OCL beyond its “initial requirements as a precise modeling
language complementing UML specifications.” Two related applications have drawn our inter-
est [eA01, BA03a, BA03b, CET07, BMDE08], both having to do with using OCL to analyze
user-defined models by evaluating queries on the corresponding instances of their metamodels.
Since these instances typically contain a large number of elements, evaluating expressions on
them comes at a high computational cost.

Consider, for example, the use of OCL to express metrics for Java programs (this application
was suggested to us by members of the Triskell group at IRISA, France). The scenarios on which
the program metrics will be evaluated are the instances of the Java metamodel corresponding to
the programs: thus, the larger the programs the larger the scenarios1 and, consequently, the
higher the computational cost of evaluating the program metrics.

1 An an example, the SpoonEMF application, developed by the Triskell group generates, for a standard Java
program with 10 lines, a scenario with 113 objects; for a program with 100 lines, one with 1180 objects; and for a
program with 500 lines, one with 3470 objects.

1 / 11 Volume 15 (2008)

mailto:manuel.clavel@imdea.org
mailto:marinae@inf.ethz.ch
mailto:clavel@sip.ucm.es
mailto:miguelgd@fdi.ucm.es

Building an Efficient Component for OCL Evaluation

We report here on our experience developing the Eye OCL Software [DCE08] (EOS) com-
ponent, an OCL evaluator designed with the goal of performing efficient evaluation of OCL
expressions on medium-large size scenarios. In particular, we discuss i) the need for an efficient
implementation on OCL in order to cope with the novel usages of the language; ii) the aspects
that we have taken into consideration to improve the efficiency of the EOS evaluator on medium-
large scenarios; iii) the limits of the current OCL implementations for dealing with really large
scenarios. Although we include the results of applying a benchmark to several OCL evaluators,
this paper is not a comparative study (see [GKB08b] for a recent study of this kind). In fact, the
results are included here only to show the current performance of some OCL tools on medium-
large scenarios and to illustrate the aspects that we consider that should be taken into account
when implementing an efficient OCL evaluator for medium-large scenarios. Interestingly, this
quality —OCL engine efficiency on medium-large scenarios— is not covered by the benchmark
proposed in [GKB08b]: in fact, the largest scenarios scenario proposed for testing OCL engine
efficiency in [GKB08a] contains only 42 objects and 42 links among them. Furthermore, despite
the results of our benchmark, this paper is not a promotional brochure for our EOS component:
as a “product”, our OCL evaluator is still in its infancy; the fact is that we have only worked a
few months in its implementation, which is rather straightforward except for those aspects that
are explicitely discussed in this paper.

To motivate the need for OCL engines that can efficiently evaluate expressions on medium-
large size scenarios, we show in Table 1 the time that currently takes to evaluate two given
OCL expressions on three different, small-medium size scenarios for a number of OCL eval-
uators: namely, USE 2.4.0 [Gro06], RoclET [BM07], OCLE [CBC+05], MDT OCL [HT08],
and EOS [DCE08].2 The tests were run on a laptop computer, with Windows XP Professional
installed, a processor Intel Pentium M 2.00GHz 600MHz, and 1GB of RAM. Also, in the case
of the EOS and USE evaluators, we run the JVM with its parameters -Xms and -Xmx set to
1024m.

The scenarios considered in these tests are instances of the model Library shown in Figure 1:
each scenario is referenced by a number n, which also indicates its “size”; more precisely, for
each n, the scenario #n is a library that contains exactly 10n books, each book with a unique title
different from “Hobbit”. The OCL expressions used in these tests are

Book.allInstances()−>forAll(b|b.title <> ’Hobbit’) (1)

Book.allInstances()−>forAll(b1,b2|b1 <> b2 implies b1.title <> b2.title). (2)

The first expression says that the library does not contain any book titled “Hobbit”, while the
second one says that the library does not contain two different books with the same title. Ob-
viously, the cost of evaluating these expressions depends on the number of books in the library
and the cost of accessing, and storing for later use, information about these books. For example,
in order to evaluate the expressions (1) and (2) on scenario #3 we have to perform, respectively,
103 and 2× 103× 103 times the operations of accessing and storing a book’s title. But this is

2 In the case of USE, we have run our experiments using its version 2.4.0. For MDT OCL, we have run the experi-
ments using the plug-in “OCL Interpreter”, version 1.2.0v200805130238. Finally, for our experiments in OCLE, we
have used its version 2.0.

Proc. OCL 2008 2 / 11

ECEASST

Scenario Expression RoclET OCLE MDT OCL EOS USE
#2 (1) < 1s < 1s < 1s 0ms 230ms

(2) > 10m ≈ 4s < 1s 50ms 240ms
#3 (1) − ≈ 3s < 1s 10ms 240ms

(2) − > 10m ≈ 4s 841ms 1s342ms
#4 (1) − − < 1s 20ms 261ms

(2) − − ≈ 5m12s 1m18s 2m12s

Table 1: Evaluating performance on medium-large scenarios.

Figure 1: The model Library.

precisely one of the challenges for OCL engines when evaluating expressions on medium-large
size scenarios: namely, to efficiently access the information contained in, possibly, all the objects
that populate the scenarios.

Notice that in Table 1 we use > t to indicate that we stopped an experiment after having
passed time t without obtaining the result. Also, we use a dash to indicate that we did not run the
experiment, because we already stopped the execution of a “simpler” one. Finally, since RoclET,
OCLE and MDT OCL do not report their execution time in milliseconds, we use < 1s to indicate
that the result of an evaluation was output in less than 1 second, and we use ≈ t to indicate that
the result of an evaluation was output approximately in time t.

2 Measuring the cost of evaluating expressions

Although the computational cost of evaluating a particular OCL expression on a given scenario
obviously depends on the algorithms and data structures used to implement each tool, based
on our experience, there are two measurements worthwhile considering before launching the
evaluation process: first, the maximum number of times that objects’ properties will be accessed
and, second, the maximum size of the collections that will be built. In the case of medium-large
size scenarios, the challenge for OCL engines is that these measurements typically return large
numbers.

To illustrate this challenge, we show in Table 2 the performance of MDT OCL, EOS, and
USE when evaluating different iterator-expressions whose evaluation require accessing many
times objects’ properties and/or building large collections. All the expressions in Table 2 were
evaluated on the same scenario, namely, an instance MyLibrary of the model Library shown in
Figure 1 which contains 103 authors, each author with 10 different books, and each book with
a title different from “Hobbit”.3 For the sake of the experiment, we artificially increased the

3 In the case of MDT OCL, the scenario MyLibrary was loaded from an XMI file; for EOS, it was built using a

3 / 11 Volume 15 (2008)

Building an Efficient Component for OCL Evaluation

size of the collections to be iterated upon: in particular, in Table 2, the terms p1, p2, and p3
refer, respectively, to the expressions “Book.allInstances().author.books”, “p1.author.books”, and
“p2.author.books”, which on the scenario MyLibrary evaluate to collections with 105, 106, and
107 books, respectively.4 The iterator-expressions in Table 2 were evaluated on a laptop com-
puter, with Windows XP Professional installed, a processor Intel Pentium M 2.00GHz 600MHz,
and 1GB of RAM. Also, in the case of the EOS and USE evaluators, we run the JVM with its
parameters -Xms and -Xmx set to 1024m. For the reason explained above, in the case of the
MDT OCL evaluator all times shown in Table 2 are approximated (≈).5 The Error evaluation
time indicates that we could not evaluate the expression due to an OutOfMemoryError in Java.

Let exp(pi), with i ∈ {1,2,3}, be the time that takes to evaluate an iterator-expression exp on
the collection generated by evaluating the term pi. With respect to the performance of MDT
OCL, EOS, and USE, Table 2 shows that, for the same exp, the time exp(pi+1) is approximately
10×exp(pi) in these tools. Table 2 also shows that, for the same pi, the time exp(pi) depends for
these tools on the number of accesses to objects’ properties that are required to evaluate the body
of the iterator-expression exp; we have organized accordingly the expressions in three groups:
A, B, and C. Consider, for example, the evaluation times for the first expression in each group.
Finally, Table 2 shows that, again for the same pi, the time exp(pi) depends as well for these tools
on the size of the collection that need to be built. built. Consider, for example, the evaluation
time for the first two expressions in Group C: notice that to evaluate

p3−>collect(x|x.author.books.title)−>size() (3)

will require to allocate memory for storing a collection with 108 titles while evaluating

p3−>collect(x|x.author.books.title−>size())−>sum() (4)

will only require to allocate memory for storing a collection with 107 integers. Using these and
similar expressions, we regularly use the above mentioned measurements, namely, the maximum
number of times that objects’ properties will be accessed and the maximum size of the collec-
tions that will be built, to check the performance of the EOS evaluator and look for possible
optimizations.

3 The implementation of the EOS evaluator

As mentioned before, based on our executable equational semantics for OCL [Ege08], we have
implemented a rewriting-based OCL evaluator, named ITP/OCL [CE06]. Although our tool

Java program that simply calls the appropriate EOS’s interface methods for defining the scenario; and for USE, it was
loaded from a file that contained the appropriate USE commands to build the scenario.
4 A more “natural” approach will be to consider scenarios with larger number of books but, as we will discuss in
Section 4, none of the tools support well the loading of scenarios with more than 106 objects.
5 We have also run the same experiments using a desktop computer, with Window Vista Business installed, a
processor Intel Core 2 Quad CPU Q9300 2.50GHz 2.50 GHz, and 2GB of RAM. Again, in the case of the EOS and
USE evaluators, we run the JVM with its parameters -Xms and -Xmx set to 1024m. In the case of EOS and MDT
OCL the results were similar to those shown in Table 2. In the case of USE, however, the evaluations were completed,
approximately, in half the time taken by the single-core test machine.

Proc. OCL 2008 4 / 11

ECEASST

MDT EOS USE
p1 < 1s 30ms 1s12ms
p2 −>size() < 1s 190ms 7s330ms
p3 ≈ 5s 931ms 1m22s

Group A MDT EOS USE
p1 < 1s 80ms 1s212ms
p2 −>collect(x|x.title)−>size() ≈ 1s 391ms 10s84ms
p3 ≈ 18s 3s896ms 1m48s
p1 < 1s 90ms 981ms
p2 −>collect(x|x.title <> ’Hobbit’)−>size() ≈ 2s 481ms 8s432ms
p3 ≈ 20s 4s516ms 1m30s

Group B MDT EOS USE
p1 < 1s 240ms 6s810ms
p2 −>collect(x|x.author.books)−>size() ≈ 6s 2s140ms 1m42s
p3 ≈ 58s 17s736ms Error
p1 < 1s 221ms 3s565ms
p2 −>collect(x|x.author.books−>includes(x))−>size() ≈ 7s 1s893ms 32s677ms
p3 ≈ 1m1s 17s906ms 5m32s
p1 < 1s 251ms 3s475ms
p2 −>forAll(x|x.author.books−>includes(x)) ≈ 5s 1s963ms 32s6ms
p3 ≈ 53s 17s30ms 5m25s
p1 < 1s 260ms 3s685ms
p2 −>select(x|x.author.books−>includes(x))−>size() ≈ 5s 2s13ms 35s411ms
p3 ≈ 55s 17s605ms 5m51s

Group C MDT EOS USE
p1 ≈ 2s 290ms 8s412ms
p2 −>collect(x|x.author.books.title)−>size() ≈ 20s 2s573ms 1m27s
p3 ≈ 3m17s 23s684ms Error
p1 ≈ 2s 270ms 4s957ms
p2 −>collect(x|x.author.books.title−>size())−>sum() ≈ 19s 2s274ms 48s660ms
p3 ≈ 3m15s 20s840ms 10m54s
p1 ≈ 2s 280ms 4s777ms
p2 −>forAll(x|x.author.books.title−>excludes(’Hobbit’)) ≈ 20s 2s604ms 46s286ms
p3 ≈ 3m15s 22s802ms 7m52s

Table 2: Evaluating performance: MDT OCL, EOS, and USE.

5 / 11 Volume 15 (2008)

Building an Efficient Component for OCL Evaluation

MDT OCL EOS USE
Scenario XMI Mem Time Mem Time Mem Time
#3 50KB 111MB < 1s 20MB 40ms 88MB 1s
#4 500KB 112MB < 1s 22MB 661ms 116MB 35s
#5 5MB 125MB ≈ 45s 50MB 2m36s 209MB 8m25s
#6 50MB > 20m > 20m > 20m

Table 3: Evaluating loading cost: MDT OCL, EOS, and USE.

performs reasonably well on small-medium size scenarios, its performance does not scale up to
medium-large size scenarios. Prompted by our interest on applications that require efficient OCL
evaluation on medium-large size scenarios, we decided to implement the Eye OCL Software
(EOS) evaluator, a Java component whose designed follows the key ideas behind the ITP/OCL
tool.

The implementation of the EOS component has taken 4 man-months. It includes an OCL
parser (which uses SableCC) and an OCL evaluator, the latter consisting of about 7K lines of
Java code. The current version handles most of OCL, including the possibility of adding user-
defined operations. With the idea of making it as ‘pluggable’ as possible, the EOS component
is not based on any particular (meta)modeling framework: its public interface provides methods
to insert elements, one-by-one, into user-models and scenarios, and to input the expressions
to be evaluated as strings of ASCII characters. This decision allowed us also to design the
EOS’s data structure for internally storing user-models and scenarios in such a way that objects’
properties are efficiently accessed. The other possible novelty in its implementation is that,
before evaluating a collect expression, we try to (over)estimate the size of the resulting collection
and allocate memory in advance. The rest of the EOS implementation is rather straightforward:
OCL iterator-expressions are executed using Java for/while loops and standard OCL operations,
when possible, are executed using the appropriate Java operators. As expected, expressions
are evaluated in EOS following an eager strategy: in particular, collection-expressions are fully
evaluated and their resulting elements are all allocated in memory. As part of our research
agenda, we plan to study the advantages/disadvantages of a lazy strategy for OCL evaluation,
where collection-expressions are only evaluated on-demand.

4 Dealing with really large scenarios

To evaluate expressions on really large scenarios, we need first to solve the problem of loading
the scenarios in the OCL evaluators. To illustrate this challenge, we show in Table 3 the time
and memory taken by MDT OCL, EOS, and USE, when loading different scenarios of the model
Library. Each of the scenarios is identified by a number n, which also indicates its “size”: more
precisely, for each n, the scenario #n exactly contains 10n books. Notice that for scenario #6,
with 106 books, none of the tools were able to finish in less than 20 minutes.6

6 With respect to the “extra” time taken by the EOS tool to store scenarios, compared to MDT OCL, it is possibly
due to the extra computation required to store scenarios in the EOS internal data structure.

Proc. OCL 2008 6 / 11

ECEASST

Scenario Time
1 ≈ 0m25s
2 ≈ 45m

Table 4: Evaluating performance: OCL2SQL

So far, we have explored two different approaches for addressing this problem, both based on
the representation of user-models and scenarios as relational databases. The first approach con-
sists on modifying the EOS evaluator so as to look for the information contained in the scenarios
directly in its database representation. The advantage of this approach is that it only requires
modifying the evaluation of dot-expressions in the expected way: namely, accessing the value of
an object’s attribute or the value of an object’s association-end will be now implemented as a ba-
sic SQL select-query. The concrete form of these queries depends, of course, on the mapping
used to represent models as relational databases (see, for example, [SC08, SI05] and [Gor05]).
To check the feasibility of this approach, we modified the EOS evaluator accordingly: unfortu-
nately, the cost of evaluating dot-expressions through the JDBC driver was so high that it made
impractical the use of the modified EOS evaluator for evaluating expressions on medium-large
scenarios.7

The second approach consists on translating OCL expressions into expressions in a query
language already available for relational databases. To the best of our knowledge, the most
interesting results in this line are discussed in [DHL01, HWD07] and provide the foundations of
the OCL2SQL tool [Hei06, Gro07]. However, the solution offered in [DHL01, HWD07] is not
satisfactory yet. First, it only considers a restricted subset of the OCL language: in particular,
it cannot deal with tuples or nested collections. Second, it only applies to boolean expressions
and not to arbitrary queries. Finally, the “complexity” of the SQL expressions resulting from this
translation is so high that makes also impractical its use for evaluating expressions on medium-
large scenarios.8 For example, consider a simple extension of model Library shown in Figure 1
where books have now an additional attribute pages. Then, consider the following invariant:

context Writer inv: self.books−>forAll(x | x.pages > 300) (5)

Applying to (5) the translation implemented in OCL2SQL, we automatically obtain the SQL
query shown in Figure 2. In Table 4 we show the results of evaluating this query on two different
scenarios: scenario #1 contains 102 writers and 104 books, each writer being the author of 102

different books; and scenario #2 contains 102 writers and 105 books, each writer being the author
of 103 different books. In both scenarios, all books have exactly 150 pages. The figures corre-
spond to the local execution of the above query in a PostgreSQL 8.3 database installed in a laptop
computer, with Windows XP Professional, a processor Intel Pentium M 2.00GHz 600MHz, and
1GB of RAM.

7 For this experiment, we mapped each class to a table whose columns correspond to its attributes, and each
association to a table whose columns correspond to its association-ends.
8 The OCL2SQL’s main developer has confirmed that the efficiency of the OCL2SQL tool has not been tested on
medium-large scenarios (e-mail communication, May 2008).

7 / 11 Volume 15 (2008)

Building an Efficient Component for OCL Evaluation

create or replace view NAME as
(select *
from OV_Writer as SELF
where not (not exists (

select PK_Book
from (select PK_Book

from OV_Book as foo
where PK_Book in

(select FK_books
from ASS_Ownership as foo
where FK_author in

(select PK_Writer
from OV_Writer as foo
where PK_Writer = SELF.PK_Writer)))

as foo
where PK_Book in (

select PK_Book
from OV_Book as ALIAS2
where not (ALIAS2.pages> 300)

)
)))

Figure 2: An example of an SQL query generated by OCL2SQL.

Proc. OCL 2008 8 / 11

ECEASST

5 Conclusions

In this paper we have first motivated the need for efficient OCL evaluation support in order to
cope with the high-computational cost of evaluating OCL expressions in medium-large size sce-
narios. Then, we have discussed, based on a number of experiments, two measurements that
should be taken into consideration when building OCL evaluators for medium-large scenarios:
namely, the cost of accessing individual objects’ properties and the cost of building collections
to hold the partial results of an evaluation. Independently of the results of our benchmark, our
aim here is similar to that of [GKB08b]: we do not want to recommend the use of a particu-
lar tool, but would like to emphasize the need for a benchmark for OCL engine efficiency on
medium-large scenarios which can help to build OCL implementations. Next, we have briefly
discussed the implementation of the EOS evaluator [DCE08]. Finally, we have presented the
challenge of evaluating expressions on really large scenarios and discussed the feasibility of
various approaches to address this problem.

Acknowledgements: Research supported by Spanish MEC Project TIN2006-15660-C02-01
and by Comunidad de Madrid Program S-0505/TIC/0407.

Bibliography

[eA01] F. B. e Abreu. Using OCL to formalize object oriented metrics definitions. Technical
report ES007/2001, FTC/UNL and INESC, June 2001.
http://ctp.di.fct.unl.pt/QUASAR/Resources/Papers/others/MOOD OCL.pdf

[BA03a] A. Baroni, F. B. e Abreu. An OCL-based formalization of the MOOSE metric suite.
In ECOOP Workshop on Quantitative Approaches in Object Oriented Software En-
gineering. Darmstadt, Germany, July 2003.

[BA03b] A. L. Baroni, F. B. e Abreu. A Formal Library for Aiding Metrics Extraction. In In-
ternational Workshop on Object-Oriented Re-Engineering at ECOOP’2003. Darm-
stadt, Germany, July 2003.

[BM07] T. Baar, S. Markovic. The RoclET tool. 2007.
http://www.roclet.org/index.php

[BMDE08] D. Basin, M.Clavel, J. Doser, M. Egea. Automated Analysis of Security-Design
Models. Information and Software Technology 4853, 2008. To appear in the special
issue on Model Based Development for Secure Information Systems.

[CBC+05] D. Chiorean, M. Bortes, D. Corutiu, C. Botiza, A. Carcu. An OCL Environment
(OCLE) 2.0.4. 2005.
http://lci.cs.ubbcluj.ro/ocle/

[CE06] M. Clavel, M. Egea. ITP/OCL: A Rewriting-Based Validation Tool for UML+OCL
Static Class Diagrams. In AMAST’06: 11th International Conference on Algebraic

9 / 11 Volume 15 (2008)

http://ctp.di.fct.unl.pt/QUASAR/Resources/Papers/others/MOOD_OCL.pdf
http://www.roclet.org/index.php
http://lci.cs.ubbcluj.ro/ocle/

Building an Efficient Component for OCL Evaluation

Methodology and Software Technology. Lecture Notes in Computer Science 4019,
pp. 368–373. Springer, Kuressaare, Estonia, July 2006.

[CET07] M. Clavel, M. Egea, V. Torres. Model Metrication in MOVA: A Metamodel Based
Approach using OCL. 2007. Universidad Complutense de Madrid, Spain.
http://maude.sip.ucm.es/∼marina/pubs/pubs.html

[DCE08] M. A. G. de Dios, M. Clavel, M. Egea. The Eye OCL Software (EOS). 2008.
http://maude.sip.ucm.es/eos

[DHL01] B. Demuth, H. Hussmann, S. Loecher. OCL as a Specification Language for Busi-
ness Rules in Database Applications. In Gogolla and Kobryn (eds.), UML 2001:
4th International Conference on the Unified Modeling Language. Lecture Notes in
Computer Science 2185, pp. 104–117. Springer, 2001.

[Ege08] M. Egea. An Executable Formal Semantics for OCL with Applications to Formal
Analysis and Validation. PhD thesis, Universidad Complutense de Madrid, 2008.
http://maude.sip.ucm.es/∼marina/

[GKB08a] M. Gogolla, M. Kuhlmann, F. Büttner. Sources for a Benchmark for OCL Engine
Accuracy, Determinateness, and Efficiency. 2008.
http://www.db.informatik.uni-bremen.de/publications/Gogolla 2008
BMSOURCES.pdf/

[GKB08b] M. Gogolla, M. Kuhlmann, F. Büttner. A Benchmark for OCL Engine Accuracy, De-
terminateness, and Efficiency. In Czarnecki et al. (eds.), Model Driven Engineering
Languages and Systems, 11th International Conference, MoDELS 2008, Toulouse,
France, September 28 - October 3, 2008. Proceedings. Lecture Notes in Computer
Science 5301, pp. 446–459. Springer, 2008.

[Gor05] D. Gornik. A UML Data Modeling profile. February 2005.
http://www.jeckle.de/files/RationalUML-RDB-Profile.pdf

[Gro06] D. S. Group. The UML Specification Environment (USE) tool. 2006.
http://www.db.informatik.uni-bremen.de/projects/USE/

[Gro07] S. T. Group. The OCL2 Dresden Toolkit. 2007.
http://sourceforge.net/project/showfiles.php?group id=5840

[Hei06] F. Heidenreich. OCL-Codegenerierung für deklarative Sprachen. Master’s thesis,
University of Dresden, March 2006.
http://dresden-ocl.sourceforge.net/publications.html

[HT08] K. Hussey, Model Development Tools Team. MDT-OCL. 2008.
http://www.eclipse.org/modeling/mdt/?project=ocl

[HWD07] F. Heidenreich, C. Wende, B. Demuth. A Framework for Generating Query Lan-
guage Code from OCL Invariants. In 7th OCL Workshop at the UML/MoDELS Con-
ference. 2007.

Proc. OCL 2008 10 / 11

http://maude.sip.ucm.es/~marina/pubs/pubs.html
http://maude.sip.ucm.es/eos
http://maude.sip.ucm.es/~marina/
http://www.db.informatik.uni-bremen.de/publications/Gogolla_2008_BMSOURCES.pdf/
http://www.db.informatik.uni-bremen.de/publications/Gogolla_2008_BMSOURCES.pdf/
http://www.jeckle.de/files/RationalUML-RDB-Profile.pdf
http://www.db.informatik.uni-bremen.de/projects/USE/
http://sourceforge.net/project/showfiles.php?group_id=5840
http://dresden-ocl.sourceforge.net/publications.html
http://www.eclipse.org/modeling/mdt/?project=ocl

ECEASST

[OCL06] Object Management Group. Object Constraint Language specification. May 2006.
http://www.omg.org/docs/ptc/05-06-06.pdf

[SC08] S. Sambasivam, P. Crefcoeur. How databases and XML can be used to master UML
models, an investigation. J. Comput. Small Coll. 23(6):220–228, 2008.

[SI05] Y. Shuxin, R. Indrakshi. Relational Database Operations Modeling with UML. In
AINA ’05: Proceedings of the 19th International Conference on Advanced Informa-
tion Networking and Applications. Pp. 927–932. IEEE Computer Society, 2005.

11 / 11 Volume 15 (2008)

http://www.omg.org/docs/ptc/05-06-06.pdf

	Motivation
	Measuring the cost of evaluating expressions
	The implementation of the EOS evaluator
	Dealing with really large scenarios
	Conclusions

