
Electronic Communications of the EASST
Volume 3 (2006)

Guest Editors: Jean-Marie Favre, Reiko Heckel, Tom Mens
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the

Third Workshop on Software Evolution

through Transformations:

Embracing the Change

(SeTra 2006)

A MDE-Based Approach for Developing Multi-Agent Systems

Viviane Torres da Silva, Beatriz de Maria, Carlos J. P. de Lucena

14 Pages

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/270295468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ECEASST

2 / 14 Volume 3 (2006)

 A MDE-Based Approach for Developing Multi-Agent Systems

Viviane Torres da Silva Silva*, Beatriz de Maria**, Carlos J. P. de Lucena**

*Departamento de Sistemas Informáticos y Programación, UCM, Spain

** Departamento de Informática, PUC-Rio, Brazil

viviane@fdi.ucm.es, {biamar, lucena}@inf.puc-rio.br

Abstract: This paper focuses on the development of multi-agent systems based on a

model driven engineering approach. Our goal is to cope with the traceability between

design and implementation models and with the always changing characteristics of such

systems.

Keywords: model driven architecture, multi-agent systems, transformation, evolution

1 Introduction

The development of multi-agent systems (MAS) has rapidly increased in the last few years.

Modeling languages [13][17][22], platforms [16][18], methodologies [2][4][15] and some

other MAS modeling and implementing techniques have been proposed with the purpose of

helping the developers in building such systems. Although several approaches are concerned

with modeling and implementing MAS, only few accomplish the tracking between design

models and implementation code.

 While dealing with MAS, the refinement of design models into implementation code

becomes especially difficult since it is necessary to deal with different paradigms during the

system development. The agent-oriented paradigm is used while modeling the systems but,

frequently, those systems are implemented by using the object-oriented paradigm (OO). Since

agents and objects have different properties and characteristics (for instance, agents are

autonomous and goal-oriented entities that execute plans in order to achieve their goals and,

different from objects, do not need external stimulus to execute and can ignore requests), the

transformation from agent-oriented design models into OO code is not simple. To try to assist

the implementation of MAS, several OO platforms, architectures and frameworks such as

[18][16] have been proposed. Although such approaches satisfactory provide satisfactory

support for the implementation of the MAS, they fail to provide the tracing between the design

models and the implementations. The numerous MAS modeling language, methodologies and

platforms deal with different agent properties and characteristics what directly impact in the

traceability.

 Another important concern that mostly affects the development of MAS is the always

changing characteristic of MAS applications and techniques. Since a number of fundamental

questions about the nature and the use of the agent-oriented approach are still being answered,

important techniques’ features and also applications’ requirements are still evolving.

This paper focuses on helping the MAS developers to cope with (i) the mapping

between design models and implementation models and with (ii) the always changing

characteristics of the MAS applications and techniques. In order to achieve these two goals, we

use a model driven engineering (MDE) approach [11] for developing MAS. Being our

proposal a MDE approach we specify (i) the modeling languages being used to describe the

Short Article Title

Proc. SeTra 2006 3 / 14

source and target models, (ii) both models, (iii) the transformations, and (iv) some guidelines

to cope with models evolution [11].

The traceability between MAS design models and OO implementation models will be

illustrated by the use of the multi-agent system modeling language called MAS-ML [17][19]

(the source modeling language), the agent society framework called ASF [18] and the UML

modeling language [14] (the target modeling language). The MAS-ML design models (the

source models) will be transformed into UML implementation models (the target models) by

instantiating the ASF framework according to the application characteristics.

Our second goal is accomplished by demonstrating that the transformation rules can be

adapted to the evolution of both applications and techniques being used in the transformation.

Such adaptation is facilitated due to the low coupling between design and implementation

models. Design models are independent of the platform / framework being used to implement

the system, i.e., design models are not concerned with any characteristic of the implementation

technique. In addition, the framework is also defined completely independent of the modeling

language being used in the design models.

The paper is organized as follows. In Section 2 we present the MAS techniques being

used in the paper: MAS-ML and ASF. Section 3 introduces the transformation process and

Section 4 provides some guidelines to embrace the evolution of applications and techniques.

Section 5 describes some related work and Section 6 draws the conclusions and discusses

future work.

2 Multi-Agent System Techniques

The development process of complex and large-scale systems, such as MAS, involves the

construction of different models based on a variety of requirements. The transformation of a

system specification into models and of these models into code is usually accomplished in a

non-organized way that is not easily adaptable to technology changes. In fact, it is possible to

find different modeling languages, methodologies and platforms for modeling and

implementing MAS but it is hard to find in the literature approaches that trace the design

models into code. Therefore, we propose in this paper a top-down MDE approach that traces

MAS-ML design models into ASF object-oriented code.

 The MAS-ML Modeling Language
MAS-ML is a platform independent modeling language that extends UML incorporating

agent-oriented abstractions (such as agents, organizations, environments and roles), their

properties (such as goals, plans, actions, beliefs and protocols) and relationships (such as play,

inhabit and ownership). Although MAS-ML uses agent and object-oriented abstractions,

MAS-ML does not restrict the implementation of its models to a specific implementation

platform.

Figure 1 illustrates an important part of the MAS-ML metamodel that presents the

agent and object-oriented abstractions defined in the metamodel and the possible relationships

among them. By using MAS-ML it is possible to model, for instance, the roles that agents can

play (by using a static diagram defined in MAS-ML called organization diagram) and agents

achieving their goals while executing their plans (by using the extended UML sequence

diagram defined in MAS-ML).

 ECEASST

4 / 14 Volume 3 (2006)

Class

AgentClass

OrganizationClass

AgentRoleClass

EnvironmentClass

play

1

1..*0..*

define

1 sub-org

play 1..*1

play in

0..*

1..*

1..*1 inhabit
1

0..*

inhabit

inhabit

1

0..*

1

sub-

org

0..* 1

play in play in

0..*

0..*

Metaclass of the UML metamodel

Metaclasses introduced by MAS-ML

Legend

Figure 1. Part of the MAS-ML metamodel

 The ASF Framework
The goal of ASF is to help designers implementing MAS by using the object-oriented

paradigm. The framework defines a set of OO models where each model represents a MAS

entity type. The set of OO classes and relationships defined in each module makes possible the

implementation of the structural aspects of MAS entities (its properties and relationships with

other entities) and also the dynamic ones (their behavior).

 Figure 2 shows a UML class diagram modeling all ASF classes grouped by modules.

The modules that are used to instantiate agents (delimited by a continuous rectangle),

organizations (defined by the dotted enlace) and agent roles (marked by the hatched rectangle)

are complex modules since they group several classes to represent all the properties of these

entity types. The module that corresponds to environments (hatched circle) is simple

represented by one class because the properties of this entity can be directly represented as

attributes and methods.

 In order to use ASF to implement a MAS application, it is necesary to instantiate the

framework by extending the defined modules. The extentions should be made according to the

entities characteristics defined in the application being implemented. For instance, to

implement application agents by using ASF it is necessary (i) to create an OO class extending

the Agent abstract class defined in the ASF agent module to be used to instantiate the agents,

(ii) to create OO classes by extending the Plan and Action classes to implement the plans and

actions of the agents, (iii) to implementing the constructor method of the new agent class to

create the (instances of the) beliefs, goals and plans and also (iv) to relate the agent instances

to the roles that they will play, the organizations where they will play such roles and also to the

environments that they will inhabit. Similar steps could be followed in order to implement the

organizations, roles and environments defined in the MAS application.

3 The Transformation Process

In this section we describe the transformation process used to refine MAS-ML design models

into UML implementation models that instantiate ASF. The transformations were defined by

using the Atlas Transformation Language (ATL) [9]. An ATL transformation program is

composed of rules (described in ATL) that define how source model elements are matched and

navigated to create and initialize the elements of the target models. Besides the rules, an ATL

program receives as input (i) the metamodel of the source model (the MAS-ML metamodel),

(ii) the source model itself (a MAS-ML model) and (iii) the metamodel of the target model

(the UML metamodel). The program checks the source model according to its metamodel and,

Short Article Title

Proc. SeTra 2006 5 / 14

by using the transformation rules (MAS-ML2ASF rules), transforms the source model into the

output target model (UML model) that is compliant with the target metamodel. In MDE [11],

transformation processes based on the translations between metamodels are called language

translations. Figure 3 illustrates the inputs and the output of the ATL program that transforms

MAS-ML models into UML models by using the MAS-ML2ASF rules.

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>><<abstract>>

Figure 2. The ASF classes and relationships

 The set of rules used by the ATL program to transform a MAS-ML model into a UML

model instantiates the ASF framework according to the application features modeled in MAS-

ML. The set of MAS-ML2ASF rules is composed of (i) one general rule that generates all the

classes defined in ASF (and illustrated in Figure 2); (ii) five rules to transform the five entity

types found in MAS-ML models (and defined in the MAS-ML metamodel depicted in Figure

1); and (iii) three other rules to generate the concrete plans, actions and protocols that extends

the abstract classes Plan, Action and Protocol defined in ASF (also illustrated in Figure 2).

 ECEASST

6 / 14 Volume 3 (2006)

ATL program

UML

metamodel

MAS-ML

metamodel

MAS-ML

model

UML

model

MAS-ML2ASF

rules

input

outputinput

input

Figure 3. The ATL transformation process

The Transformation Rules
Due to page limitation, we concentrate on demonstrating the transformation of agents modeled

using MAS-ML into OO classes by instantiating ASF. The following sections describe the

MASML2ASF rules used by the ATL program that contemplates such transformation.

The creation of the concrete agent class

For each distinguished agent class modeled in a MAS-ML structural diagram, one object-

oriented agent class that extends the abstract ASF class called Agent must be created.

Therefore, we have implemented a rule that is executed for each agent defined in MAS-ML.

Such rule, illustrated in the box below, is responsible for creating the agent class and for

implementing the constructor method (detailed in Section 0).

 The new classes are created with the same name of the agent classes modeled in MAS-

ML models. Associated with each agent class, we define a generalization relationship in order

to model the new agent class extending the abstract Agent class defined in ASF. Due to such

generalization, the new agent class inherits all the attributes (and relationships) defined in the

abstract class.

 The set of features of the new class is composed of (i) the constructor method, (ii)

methods for instantiating goals, beliefs, plans and actions, and (iii) methods for creating the

associations between agent instances and the role instances to be played, and the associations

between the agent instances and the environment instances.
rule Agent {
from
 c : masml!AgentClass
to

-- Creating the agent class
outAgent : uml!Class (
 name <- c.name, --the name of the new class is equal to the name of the agent
 isAbstract <- false, --the new class is not an abstract one
 generalization <- genAbstractAgent, --creating the generalization relationship
 feature <- Set{constMethod, createBeliefs, createGoals, createPlans,
createActions, createInhab, createPlays}), –-creating the set of structural and
behavioral features

-- Creating the generalization relationship between Agent and UserAgent
genAbstractAgent : uml!Generalization (
 parent <- c.superClass,
 child <- outAgent

Short Article Title

Proc. SeTra 2006 7 / 14

),...}

The implementation of the constructor method

The constructor method of agent classes invokes other methods that are used to instantiate the

agent properties (goals, beliefs, plans and actions) and to set the relationships between the

agents instances, their roles, and environments. Therefore, the body of this method is very

simple.

-- Constructor Method
constMethod : uml!Method (
 specification <- operationAgent,
 body <- 'createBeliefs(); createGoals(); createPlans(); createActions();
createPlays();

 createEnv(); createPlays();'
),
operationAgent : uml!Operation (
 isAbstract <- false,
 specification <- 'UserAgent()'
),

 The instantiation of the agent properties are exemplified by describing the instantiation

of beliefs and plans. The beliefs and goals of an agent are created by instantiating the ASF

classes Belief and Goal, respectively. Therefore, the body of the method responsible for

generating the beliefs creates one new belief instance from the Belief class for each belief

defined by the agent classes of the MAS-ML model being transformed.

 The plans and actions of an agent are created by instantiating the classes that

correspond to the plans and actions themselves. Those classes are extensions of the Plan and

Action classes as demonstrated in Section 0.

-- Instantiating the agent beliefs
createBeliefs : uml!Method (
 specification <- operationCreateBeliefs,
 body <- c.beliefs -> iterate (e; body : String = '' | body+'
 Belief newBelief = null;
 beliefs = new Vector();
 newBelief = new Belief('+e.type+','+e.value+'); -- instantiating a
belief
 beliefs.add(newBelief);')
),
operationCreateBeliefs : uml!Operation (

isAbstract <- false,
 specification <- 'void createBeliefs()'
),

-- Instantiating the agent plans
createPlans : uml!Method (
 specification <- operationCreatePlans,
 body <- c.plans -> iterate (e; body : String = '' | body+'
 Plan newPlan = null;
 plans = new Vector();
 newPlan = new '+e.name+'(); -- instantiating a plan
 plans.add(newPlan);')
),
operationCreatePlans : uml!Operation (
 isAbstract <- false,
 specification <- 'void createPlans()'
),

 After instantiating the agent properties, it is necessary to relate the agent instances

with the roles to be played, the organization where the roles will be played and the

environments that they will inhabit. In order to do so, two methods were created. Both

methods are called by the agent constructor method every time an agent instance is created.

 ECEASST

8 / 14 Volume 3 (2006)

-- Environment
createInhab : uml!Method (
 specification <- operationInhab,
 body <- c.inhRel -> iterate (e; body : String = '' | body+'
 this.environment = new '+e.env.name+'();') --environment
),
operationInhab : uml!Operation (
 isAbstract <- false,
 specification <- 'void createEnv()'
),

-- Roles being played
createPlays : uml!Method (

specification <- operationPlays,
 body <- c.playRelAg -> iterate (e; body : String = '' | body+'
 //roles being played
 AgentRole newRole = null;
 rolesBeingPlayed = new Vector();
 newRole = new '+e.role.name+'();-- instantiating the role
 newRole.setAgent(this);

 newRole.setOrganization(\''+e.org.name+'\');-- associating with the
organization
 rolesBeingPlayed.add(newRole);
 // organizations where is playng roles
 MainOrganization newOrg = null;
 organizations = new Vector();
 newOrg = new '+e.org.name+'();
 newOrg.setAgentRole(\''+e.role.name+'\');
 organizations.add(newOrg);')
),
operationPlays : uml!Operation (
 isAbstract <- false,
 specification <- 'void createPlays()'
)

The creation of the plans and actions classes

Each agent defines its set of plans and their correspondent actions. In the MAS-ML structural

diagrams, the plans and actions are named and associated with the agent. The execution of

plans and actions are therefore modeled in MAS-ML dynamic diagrams.

 In order to create the correspondent plans and actions by using ASF, it is necessary to

create the classes that will represent these agent properties by extending the abstract ASF

classes Plan and Action. Those classes receive the name of the plans and actions defined in the

MAS-ML structural diagrams and also the implementation described in the MAS-ML dynamic

diagrams. Note that plans are related to the goals that they achieve and to the actions that they

execute. Therefore, the constructor method of a plan executes methods to relate the plan

instance being created to its goals and actions.

rule Plan {
from
 c : masml!Plan
to
outPlan : uml!Class (
 name <- c.name,
 isAbstract <- false,
 feature <- Set{constMethod, createActions, createGoals}
),
constMethod : uml!Method (
 specification <- operationPlan,
 body <- 'createActions(); createGoals()'
),
operationPlan : uml!Operation (
 isAbstract <- false,
 specification <- c.name+'()'
),

Short Article Title

Proc. SeTra 2006 9 / 14

-- Relating actions to the plan
createActions : uml!Method (
 specification <- operationActions,
 body <- c.actions -> iterate (e; body : String = '' | body+'
 Action newAction = null;
 actions = new Vector();
 newAction = new '+e.name+'();
 actions.add(newAction);')
),
operationActions : uml!Operation (
 isAbstract <- false,
 specification <- 'void createActions()'
),

-- Relating goals to the plan
createGoals : uml!Method (
 specification <- operationGoals,
 body <- 'Goal newGoal = null;
 newGoal= new
Goal('+c.goal.value+','+c.goal.valueType+','+c.goal.goalType+');
 goals.add(newGoal);'
),
operationGoals : uml!Operation (
 isAbstract <- false,
 specification <- 'void createGoals()'
)}

Applying the Transformations in a Simple Example
The UML model generated by the transformation is a UML class diagram that contains the

ASF framework classes and the classes related to the application that instantiate the

framework. Since this paper does not concern the MAS-ML dynamic diagrams during the

transformation, UML dynamic diagrams are not part of the target model and, therefore, details

about the execution of the agents were not transformed. All application entities, properties and

relationships modeled on the three MAS-ML structural diagrams are represented in the target

UML class model. Figure 4 depicts the transformation of the agent class UserAgent modeled

in a MAS-ML organization diagram into a set of three classes (and its corresponding methods)

modeled in a UML class diagram instantiating ASF.

4 Embracing the Evolution of Applications and Techniques

The evolution of the applications’ requirements is easily handled by our MDE approach. After

changing the design models according to the updated requirements, the implementation models

can be regenerated by using the same set of rules already available. Changes in the

requirements of an application do not require adaptations of our approach.

User Agent

<<goal>> Boolean : buyItem = false →

negotiation

<<belief>> Book : itemToBuy

...

{priceAgreement} paying {paymentSent}

...

negotiation {bargaining, paying} → buyItem

...

User Agent

<<goal>> Boolean : buyItem = false →

negotiation

<<belief>> Book : itemToBuy

...

{priceAgreement} paying {paymentSent}

...

negotiation {bargaining, paying} → buyItem

...

 ECEASST

10 / 14 Volume 3 (2006)

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>><<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>><<abstract>>

Negotiation

PayingPaying

Negotiation()

createActions()

createGoals()

UserAgent

UserAgent()

createBeliefs()

createPlans()

createEnv()

createPlays()

UserAgent

UserAgent()

createBeliefs()

createPlans()

createEnv()

createPlays()

…

Figure 4. Transformation of a MAS-ML model into a UML model by instantiating ASF

Besides the evolution of applications, the techniques being used in our approach may also

evolve. It may occur adaptations in the MAS-ML metamodel, the ASF framework and also in

the UML metamodel. These three different technology adaptations influence the

transformation rules. The evolution of the MAS-ML and UML metamodel influence the

transformation rules since the rules are defined to receive well-formed models according to the

source metamodels and to generate well-formed models according to the target metamodel.

Adaptation of the ASF framework clearly influence the transformation rules since the

generated target models are instances of the framework and, therefore, conforms to its

specification. If the framework changes its instances also change.

Since the design and implementation models are low coupling, changes in the MAS-ML

metamodel do not influence in the ASF specification or in the UML metamodel, and vice-

versa. Besides, the rules were defined to try to minimize the effort of changing them due to

technique evolution, as detailed below:

• There is one rule for creating all the classes defined in ASF. Therefore, if the ASF

specification evolves, it will have a minor influence into the whole set of transformation

rules. The rule that generates the ASF classes will need to be modified together with few

Short Article Title

Proc. SeTra 2006 11 / 14

other rules, depending on the adaptation. For instance, if the abstract Agent class is

modified it may be necessary to modify the Agent rule that generates the specializations of

the abstract Agent class.

• There is one rule for each entity type defined in MAS-ML. If the MAS-ML metamodel

evolves, it will be necessary to adapt the correspondent rule(s) that deal(s) with the

modified part. Fortunately, each transformation rule deals with the transformation of one

entity type defined in the MAS-ML metamodel. For instance, if the part of the metamodel

that specifies the entity type agent is adapted, it will only be necessary to modify the

Agent rule.

• There is one rule for generating the plans, actions and protocols. Since there is a need

for creating OO classes for implementing plans, actions and protocols, we have defined a

rule for transforming such properties. Thus, if an adaptation occurs in MAS-ML that

affects how such properties are modeled or in ASF that affects how such properties are

implemented, these rules must also be adapted.

• It is easy to find out the part of the UML metamodel being used in the rules. Each rule

identifies the part of source model that the rule is able to transform and the part of the

target model that it can generate. Such identification is done by point out the metaclasses

of the source and target metamodels. Therefore, if the UML metamodel is modified, it will

be necessary to search in all transformation rules the rules that deal with the modified part.

For instance, if the specification of Method is changed, it will be necessary to search in all

rules the part of the rules that generate methods, i.e., the part of the rules where the

sentence uml!Method is stated.

5 Related Work

Although, some MAS methodologies such as Prometheus [15], Tropos [2] and MaSE [4] have

not used an MDA approach, they have already proposed the mapping between the design

models into implementation code and have also provided some tools for supporting both the

design and the implementation of MAS. However, they do not clearly demonstrate the

mapping from design models into code by presenting the rules used in the transformation.

Therefore, it is extremely difficult to use the design models created by using the

methodologies to generate code to another platform or framework that has not been addressed

by them.

In addition, they do not separate the models into platform independent models and

platform specific models. By using some of these methodologies, it is possible to describe

platform specific details during the design of the application. In such cases, the high-level

design models are platform dependent and, consequently, are not easily portable to any other

platform.

Other authors have already used the MDA approach in other to define a MAS

development process. Vallecillo et al [21] demonstrate the use of MDA to derive MAS low-

level models from MAS high-level models. The authors propose to use the Tropos

methodology and the Malaca platform [1] in the MDA approach. Malaca is platform where

agents are defined based on the specification and reuse of software components. The high-

level models created while using the Tropos methodology are transformed into low-level

Malaca models. However, the transformation from the Tropos models into Malaca models is

 ECEASST

12 / 14 Volume 3 (2006)

not completely automated. It requires manual intervention. Moreover, such an approach does

not deal with the transformation from Malaca models into code.

Novikay [12] analyzes how GR [3] based on the Tropos visual model can be related to

MDA. The author interprets the MDA approach as a visual modeling activity where more

abstract models are refined in more detailed models, using transformation techniques. This

work covers only the requirement stage existent in Tropos. The difference between our

approach and this approach is that ours contemplates the PIM, PSM and code stages.

In Kazakov et al. [10], the authors recommended a methodology based on a model-driven

approach for the development of distributed mobile agent systems. They define a mobile agent

conceptual model for distributed environments and describe a set of components, represented

by a collection of intelligent mobile agents. While such an approach focuses on a specific

application domain, our approach is a domain-independent development process.

6 Conclusion and Future Work

The MAS development process presented in this paper intends to provide an approach for

modeling and implementing MAS by using MDE. We presented a language translation

approach that is based on the translations between the source metamodel and the target

metamodel. We have implemented a set of transformation rules by using the ATL

transformation languages and to several MAS such as a supply chain management system

[7][8] as well as web-based paper submission and reviewing system [5][23].

The proposed MDE based development process was illustrated by the use of MAS-ML

and ASF. Our intention while using such techniques was to demonstrate how complex it is for

transforming design models into implementation code due to the use of different paradigms

while modeling the applications and while implementing them. Although MAS-ML and ASF

are founded in the same agent’s properties and characteristics, it is still not an easy task to

manually instantiate ASF to implement MAS-ML design models. Therefore, the use of an

(semi-)automatic transformer tool that could generate implementation code from design

models is especially important while dealing with modeling language and platforms that do not

share the same set of properties and characteristics. Although some times it may be very

difficult to define transformation rules, once those rules are defined the implementation of any

design model can easily be generated.

A prototyping developing tool [6] was created in order to demonstrate the feasibility of our

approach. The tool allows the designers to graphically model MAS systems by using MAS-

ML and to implement them while generating Java code by using the ASF framework. With the

aim of enhancing the tool, several important improvements should be made. First, the

transformer that generates code from MAS-ML models should also consider the MAS-ML

dynamic diagrams. Second, the tool should make the visualization and also the modification of

the UML models that represent the system implementation feasible. In addition, the tool

should provide a model checker to analyze and verify the consistency of the different models

(MAS-ML models and UML models).

References

[1] Amor, M.; Fuentes, L.; Troya, J. A Component-Based Approach for Interoperability Across

FIPA-Compliant Plataforms. Cooperative Information Agents VII, LNAI 2782, p. 266-288.

2003.

Short Article Title

Proc. SeTra 2006 13 / 14

[2] Bresciani, P. Tropos: An Agent-Oriented Software Development Methodology. Int.

Journal of Autonomous Agents and Multi-Agents Systems, 8(3):203-236, 2004.

[3] Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R. and Lowe M. Algebraic

Approaches to Graph Transformation. Handbook of Graph Grammars and Computing by

Graph Transformation, 1997.

[4] DeLoach, S. A. Multiagent Systems Engineering: a Methodology and Language for

Designing Agent Systems. In: Proc. of Agent Oriented Information Systems, 1999.

[5] DeLoach, S. A. Analysis and Design using MaSE and agentTool. In Proc. 12th Midwest

Artificial Intelligence and Cognitive Science Conference, 2001.

[6] DeMaria, B.; Silva, V.; Chore, R.; Lucena, C. VisualAgent: A Software Development

Environment for Multi-Agent Systems. In: Tool Track of Brazilian Symposium on Software

Engineering, 2005.

[7] Fox, M. S.; Barbuceanu, M., Teigen, R. Agent-oriented Supply-chain Management. The

International Journal of Flexible Manufacturing, v.12, p.165-188. 2000.

[8] Huget, M. Agent UML Class Diagrams Revisited. In: Proc. of Agent Technology and

Software Engineering (AgeS), 2002.

[9] Jouault, F, and Kurtev, I. On the Architectural Alignment of ATL and QVT. In: Proc. of

ACM Symposium on Applied Computing, model transformation track, Dijon, France, 2006.

[10] Kazakov, M., Abdulrab, H., Debarbouille, G. A Model Driven Approach for Design of

Mobile Agent Systems for Concurrent Engineering: MAD4CE Project 2002.

[11] Kent, S. Model Driven Engineering. In Proceedings of Third Internations Conference of

Integrated Formal Methods, Springer, LNCS 2335, pp. 286-298, 2002.

[12] Novikay, A. Model Driven Architecture approach in Tropos. Technical Report T04-06-

03, Istituto Trentino di Cultura, 2004.

[13] Odell, J., Parunak, H. Bauer, B. Extending UML for Agents. In Proceedings of Agent-

Oriented Information System Workshop at AAAI, pp. 3-17, 2000.

[14] OMG, UML: Unified Modeling Language Specification. Version 2.0. Available at:

http://www.omg.org/uml/. Accessed in: 02/2005.

[15] Padgham, L, Winikoff, M. Prometheus: A Methodology for Developing Intelligent

Agents, In Proc. of the 1
st
 Int. Joint Conf. on Autonomous Agents and MAS, 2002.

[16] Pokahr, A. Braubach, L., Lamerdorf, W. Jadex: Implementing a BDI-Infrastructure for

Jade Agents. Research of Innovation, 3(3):76-85, 2004.

[17] Silva, V., Lucena, C. From a Conceptual Framework for Agents and Objects to a Multi-

Agent System Modeling Language. Journal of Autonomous Agents and MAS, Kluwer, 9(1-2),

2004.

[18] Silva, V., Cortes, M., Lucena, C. An Object-Oriented Framework for Implementing

Agent Societies. Technical Report MCC32/04, PUC-Rio. Rio de Janeiro, Brazil, 2004.

[19] Silva, V., Choren, R., Lucena, C. Using the MAS-ML to Model a Multi-Agent System.

Software Engineering for Large-Scale Multi-Agent Systems II, Springer, 2004.

[20] Sycara, K., Paolucci, M., Van Velsen, M., Criampapa, J. The Retsina MAS

Infrastructure. Special joint issue of Autonomous Agents and MAS, 7(1-2):29-48, 2003.

[21] Vallecillo, A., Amor, M., Fuentes, L. Bridging the Gap Between Agent-Oriented Design

and Implementation Using MDA. Autonomous Agents and MAS Workshop, pp.93-108, 2004.

[22] Wagner, G. The Agent-Object-Relationship Metamodel. In: Second International

Symposium: From Agent Theory to Agent Implementation, 2000.

 ECEASST

14 / 14 Volume 3 (2006)

[23] Zambonelli, F.; Parunak, H. From design to intention: signs of a revolution. In: Proc. of

the 1
st
 Int. Conference on Autonomous Agents and MAS, pp. 455-456. 2002.

