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Abstract: Despite the large variety of existing graph transformation tools, the im-

plementation of their pattern matching engine typically follows the same principle.

First a matching occurrence of the left-hand side of the graph transformation rule

is searched by some graph pattern matching algorithm. Then potential negative

application conditions are checked that might eliminate the previous occurrence.

However, when a new transformation step is started, all the information on previous

matchings is lost, and the complex graph pattern matching phase is restarted from

scratch each time. In the paper, we present the foundational data structures and

initial experiments for an incremental graph pattern matching engine which keeps

track of existing matchings in an incremental way to reduce the execution time of

graph pattern matching.

Keywords: Incremental graph transformation, model transformation

1 Introduction

Despite the large variety of existing graph transformation tools, the implementation of their

graph transformation engine typically follows the same principle. First a matching occurrence of

the left-hand side (LHS) of the graph transformation rule is being found by some graph pattern

matching algorithm based on constraint satisfaction (like in AGG [ERT99]) or local searches

driven by search plans (PROGRES [Zün96], Dörr's approach [Dör95], FUJABA [FNTZ98]).

Then negative application conditions (NAC) are checked that might eliminate the previous oc-

currence. Finally, the engine performs some local modi�cations to add or remove graph elements

to the matching pattern.

Since graph pattern matching leads to the subgraph isomorphism problem that is known to be

NP-complete in general, this step is considered to be the most critical in the overall performance

of a graph transformation engine. However, as the information on a previous match is lost when
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Incremental Graph Pattern Matching

a new transformation step is initiated, the complex and expensive graph pattern matching phase

is restarted from scratch each time.

Our previous experiments based on benchmarking for graph transformation [VSV05] and

practical experience in model-based tool integration based on triple graph grammars [KS06]

have clearly demonstrated that traditional non-incremental pattern matching can be a perfor-

mance bottleneck.

Some basic incremental approaches have already been successfully applied in various graph

transformation engines (see Section 6 for a summary) to provide partial support for typical model

transformation problems. However, PROGRES [SWZ99] only treated attributes in an incremen-

tal way, while the Rete-based approach of [BGT91] lacked the support for negative application

conditions and inheritance.

In the current paper, we propose initial concepts (including a common representation for mod-

els, metamodels and graph patterns in Section 2), data structures (Section 3) and experiments for

incremental graph pattern matching. In a preprocessing phase, all complete matchings (and also

non-extensible partial matchings) of a rule are collected and stored explicitly in a matching tree

according to a given search plan. This matching tree is updated incrementally triggered by the

modi�cations of the instance graph. Negative application conditions are handled uniformly by

storing all matchings of the corresponding patterns. Furthermore, as the main conceptual nov-

elty of the paper, we introduce a noti�cation mechanism by maintaining registries for quickly

identifying those partial matchings, which are candidates for extension or removal when an edge

is inserted to or deleted from the model.

While the detailed discussion of the algorithms [VVS] is out of scope for the paper, we demon-

strate the incremental operation on an example in Section 4 and compare the performance of

the incremental approach to Fujaba using the object-relational mapping as graph transformation

benchmark in Section 5. Finally, some related work is reviewed in Section 6, while Section 7

concludes our paper.

2 A Common Representation for Models and Patterns

First we introduce a uniform representation for models, metamodels and graph patterns infor-

mally, using the standard CWM variant [PCTM02] of the object-relation mapping as a running

example. This transformation was captured by a set of graph transformation rules in [VSV05].

Graph transformation (GT) is a rule and pattern-based paradigm frequently used for describing

model transformation. A graph transformation rule contains a left-hand side graph LHS, a right-

hand side graph RHS, and (one or more) negative application condition graphs NAC connected to

LHS.

The application of a rule to a host (instance) model M replaces a matching of the LHS in M by

an image of the RHS. The most critical step of graph transformation is graph pattern matching,

i.e., to �nd such a matching of the LHS pattern in M which is not invalidated by a matching of

the negative application condition graph NAC, which prohibits the presence of certain nodes and

edges.

Example. A graph transformation rule ClassRule which transforms an (unmapped) UML class

C resided in a UML package P into a relational database table T in the corresponding schema S

Proc. GraMoT 2006 2 / 15
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(a) ClassRule

Schema Package Class Table

s p c t

typetype type type

ref EO ref

P0

P1P2P3 123

Q0

QA

QB

AB

(b) Its tool independent representation

Figure 1: Tool-independent representation of precondition patterns of GT rules

is depicted in Figure 1(a) using the compact Fujaba representation [FNTZ98].

2.1 A Graph Representation for Models and Patterns

In the paper, we use a common, tool independent graph-based framework for representing in-

stance models and graph patterns of rules in a uniform way by using an edge-labelled directed

graph. In case of a pattern P, a node is either a constant (denoted by white boxes in �gures) or

a variable (marked by grey boxes in �gures), while a model consists of constant nodes only. In-

heritance can be handled in this representation by linking all types of a node (i.e., its direct class

and all the supertypes) by type edges. A metamodel of our graph representation is presented in

Figure 2(a).

A negative application condition [HHT96] is a graph morphism, which maps the LHS pattern

to a NAC pattern. A reduced NAC pattern Q is such a subgraph of a NAC pattern that has (i)

the minimum number of nodes (called as shared nodes), and (ii) no edges in common with the

corresponding LHS pattern P. A precondition pattern consists of the LHS pattern, the reduced

NAC pattern, and the mapping between them. In the paper, we only use reduced NAC patterns1

to ensure that the common edges of LHS and NAC patterns are tested only once during pattern

matching.

(a) Models and patterns (b) Search plans

Figure 2: Metamodel for models, patterns and search plans

1 Note that we also omit the word reduced in the following.
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Example. Figure 4(c) presents a graph representation of an instance model. Both the classes

of the metamodel (such as Package, Schema, etc.) and the objects of the instance model (such

as p, s, etc.) uniformly appear as constant nodes. Instance-of relation between nodes is also

represented by a dashed type edge. Other edge labels (like EO) are de�ned by the metamodel

associations.

Figure 1(b) presents the representation of the precondition of the GT rule ClassRule (depicted

in Figure 1(a)). The LHS pattern (shown by P3
2) has three variables for model-level elements

(s, p, c), three constants for metamodel-level elements (Schema, Package, Class), three type

edges, one ref edge, and one EO edge. Similarly, the (reduced) NAC pattern (shown by QB)

consists of variables c, t, the constant Table, one ref edge and one type edge. Furthermore,

variable c is a shared node, thus it is contained by both the LHS and NAC patterns.

2.2 Graph Pattern Matching and Search Plans

During graph pattern matching, each variable of a graph pattern is bound to a constant node in

the model such that this matching (binding) is consistent with edge labels, and source and target

nodes of the model. A matching for a precondition pattern is a matching for its LHS pattern,

provided that no matchings should exist for its NAC pattern.

A search plan for a pattern prescribes an order of variables in which they are mapped during

pattern matching. In the following, we suppose that a search plan already exists for each pattern,

and vk will denote the kth variable of a pattern according to the corresponding, �xed search plan.

A (simpli�ed) metamodel of search plans is depicted in Figure 2(b).

The kth subpattern Pk is a subgraph of P where nodes consist of all constants and the �rst k

variables (i.e., v1; : : : ;vk) of pattern P according to a corresponding search plan, and edges consist

of all edges of pattern P whose source and target nodes are both included in the selected set of

nodes. Incoming (outgoing) condition edges of the kth subpattern Pk are the edges leading into

(out of) variable vk. Without loss of generality, in the following, we consistently use n to denote

the number of variables in a (complete) pattern Pn. Consequently, a pattern Pn with n variables

has n+1 subpatterns (i.e., P0; : : : ;Pn). A partial matching for (complete) pattern Pn is a matching

for subpattern Pk. A maximal partial matching is a non-extensible partial matching, i.e., pattern

Pk+1 cannot be matched.

Example. For instance, a matching of the LHS pattern P3 of Figure 1(b) in model Figure 4(e)

is: c = c1, p = p, s = s. A matching of the NAC pattern (see QB in Figure 1(b)) in model

Figure 4(g) is: c = c1, t = t1.

We de�ne a search plan for the LHS pattern by �xing orders on variables (1) c, (2) p, (3) s.

A search plan for the NAC pattern is (A) t, (B) c.3 The position of a variable in a �xed order is

denoted by a numbered circle in Figure 1(b). Search plans are generated independently of each

other in the current version of the pattern matching engine.

Based on these search plans, subpatterns of LHS are shown by areas P0, P1, P2, P3 surrounded

by solid (grey) borders in Figure 1(b). Subpatterns of NAC areQ0, QA, QB, drawn by dashed (red)

borders. Note that P0 and Q0 denote the empty matchings for the LHS and the NAC, respectively.

2 The purpose of Pis and Qis will be explained later in Section 2.2.
3 Search plans of the current example have been selected manually for presentation purposes.
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The EO edge connecting c to p is an incoming condition edge of pattern P2, while the type

edge connecting p to Package represents an outgoing condition edge, since they are edges of

pattern P2, and they lead into and out of the second variable (p) of the corresponding search plan

of the LHS pattern.

3 Data Structures for Incremental Pattern Matching

In this section, we present the data structures needed for the ef�cient storage of partial matchings.

Class diagrams depicting the different aspects of data structures being used by the incremental

pattern matching engine are shown in Figure 3.

Matching and Matching Tree. A Matching (denoted by a numbered circle in Figure 4)

represents a partial matching for a pattern. It contains a set of Bindings. Each binding de�nes

a mapping of a Variable to a Constant.

For each pattern Pn, a matching tree is maintained, which consists of matchings being orga-

nized into a tree structure along parent-child edges (depicted by dashed arcs in Figure 4).

The root of the tree denotes the empty matching for the corresponding pattern, i.e., when none

of the variables have been bound. Each level of the tree (denoted by light grey areas in Figure 4)

contains matchings for a subpattern of pattern Pn. The mapping of subpatterns to tree levels is

guided by the search plan having been �xed for the pattern. A tree node in level k (i.e., hav-

ing distance k from the root) represents a matching of the kth subpattern being speci�ed by the

search plan. Each leaf represents a maximal partial matching for the pattern. By supposing that

the pattern Pn has n variables, each leaf in (the deepest possible) level n represents a complete

matching of the pattern.

Example. Sample models of Figs. 4(c), 4(e), and 4(g) and the corresponding data structure

contents are presented in Figs. 4(d), 4(f), and 4(h), respectively. Figs. 4(d), 4(f), and 4(h) show

matching trees in their top-right corner, they depict binding arrays at the bottom, while noti�ca-

tion arrays are presented in their left part.

Figure 4(d) contains two matching trees representing the partial matchings of the LHS pattern

and the NAC pattern, respectively. Matchings 1 and 2 denote empty matchings. Matching 3 is

located on the �rst tree level of the LHS pattern, thus, it is a matching for subpattern P1, which

contains a single binding that maps variable c to constant c1. Matching 3 is a child of matching

1, as the latter can be extended by the mapping of variable c.

(a) Matchings (b) Event processing (c) Pattern matcher

Figure 3: Data structures of the incremental pattern matching engine
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Schema Package Class Table

s p c t

typetype type type

ref EO ref

(a) Precondition pattern for ClassRule (b) Notational guide for data structures

Package SchemaClass Table
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(c) Model 1 (d) Data structure contents for Model 1
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(e) Model 2 (f) Data structure contents for Model 2
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type type type

type

type

type

type

type

type
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typeref
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CF

UF

(g) Model 3 (h) Data structure contents for Model 3

Figure 4: Sample models and the corresponding data structures
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In the context of Figure 4(d), matching 3 is a maximal partial matching as it cannot be further

extended, due to the lack of outgoing EO edges leading out of c1. On the other hand, matching

3, is not a maximal partial matching in Figure 4(f) as it can be extended e.g., by mappings p to p

and s to s to get matching 5. This means a complete matching for the LHS pattern as matching 5

is located on the lowest tree level P3.

Binding Arrays. Matchings are physically stored as one-dimensional binding arrays, which

are indexed by the variables. An entry in a binding array stores variable�constant pairs in the

corresponding matching. When one matching is an ancestor of another one, their binding arrays

can be shared in order to reduce memory consumption as the ancestor matching contains a subset

of the bindings of the descendant matching. Consequently, for each pattern Pn with n variables, a

binding array match[n] of size n is used. In �gures, binding arrays are connected to matchings

by solid black lines.

Example. Since the LHS pattern has 3 variables, matchings of the LHS tree refer to binding

arrays having 3 entries as it is shown e.g., in the lower part of Figure 4(f). Each column of the

binding array of the LHSmatching tree represents a binding of variables (upper row) to constants

(lower row). Note that memory consumption can be reduced by sharing binding arrays among

a matching and any of its ancestors in the matching tree. E.g., the array that contains mappings

c to c1, p to p and s to s can be shared by matchings 1, 3, 4, and 5, as they only consist of the

�rst 0, 1, 2, and 3 bindings of the array, respectively. In spite of the fact that a completely �lled

binding array is assigned to matching 3 in Figure 4(f), this matching only makes use of the single

mapping c to c1 in the algorithms.

Invalidation Edges. Invalidation edges, which are denoted by thick (red) arcs, represent the

invalidation of partial matchings of a LHS caused by complete matchings of a NAC.

Example. The red invalidation edge of Figure 4(h) connecting matchings 7 to 3 means that

matching 7 is a complete matching for the NAC pattern, which invalidates matching 3 as both map

the shared variable c to the same constant c1. As long as matching 3 is invalidated (as shown by

the incoming invalidation edge), it cannot be part of a complete matching for the LHS pattern,

which fact is marked by the empty subtree rooted at matching 3.

Noti�cation Arrays. Since the transformation engine sends noti�cations on model changes,

noti�cation related data structures (shown in Figure 3(b)) are also needed. The incremental

pattern matching engine has a single INSERT and a single DELETE noti�cation array consisting

of noti�cation entries.

� An entry in the insert noti�cation array is a pair consisting of an InsertKey (with

label, end and attribute isSrc) and a list of Matchings to be noti�ed. If an edge e

with label e.lab connecting e.src to e.trg is added to the model, then Matchings

of such insert noti�cation array entries are noti�ed whose InsertKeys are of the form

[e.src,e.lab,*] and [*,e.lab,e.trg]. Based on the notation of Figure 3(b),

these InsertKeys correspond to the end=e.src, label=e.lab, isSrc=true and

end=e.trg, label=e.lab, isSrc=false settings, respectively.
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� An entry in the delete noti�cation array is a pair consisting of a DeleteKey and a list of

Matchings to be noti�ed. If an edge e with label e.lab connecting e.src to e.trg

is removed from the model, then Matchings of such delete noti�cation array entry is

noti�ed whose DeleteKey is of the form [e.src,e.lab,e.trg].

Example. Sample noti�cation arrays are presented e.g., in the left part of Figure 4(d). The

INSERT noti�cation array has 4 entries of which the �rst is triggered by the InsertKey

[*,type,Class] and refers to matching 1. This entry means that matching 1 has to be

noti�ed, when a type edge leading to Class is inserted into the model. Similarly, the �rst en-

try in the DELETE noti�cation array means that matching 3 must be noti�ed, if the type edge

connecting c1 to Class is deleted.

Query Index Structure. A query index structure (not shown in �gures) is also de�ned for each

precondition pattern to speed-up the queries of complete matchings initiated by the GT tool that

use the services of the incremental pattern matching approach.

4 Incremental Operations on an Example

During the incremental operation phase, the matching tree is maintained by four main methods

of class Matching.

1. The insert() method is responsible for the possible extension of the current partial

matching for proper subpattern Pk to create a new partial matching for subpattern Pk+1.

2. The validate() method is responsible for the recursive extension of insert operations

to all (larger) subpatterns.

3. The delete()method removes the whole matching subtree rooted at the current match-

ing for subpattern Pk.

4. The invalidate() method is responsible for the recursive deletion of all children

matchings of the current matching.

These methods are called by the pattern matching engine when edge modi�cation events arrive

from the model repository.

� Insert edge noti�cation. If an edge e with label e.lab connecting constants e.src to

e.trg is added to the model, then the insert()method of class Matching is invoked

(i) with parameter e.trg on every matching as de�ned by entry INSERT[e.src,

e.lab,*], and (ii) with parameter e.src on every matching as de�ned by the entry

INSERT[*,e.lab,e.trg].

� Delete edge noti�cation. If an edge e with label e.lab connecting constants e.src

to e.trg is removed from the model, then delete() method of class Matching is

invoked on every matching being noti�ed by entry DELETE[e.src,e.lab,e.trg].

Proc. GraMoT 2006 8 / 15
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Due to space restrictions, we only exemplify the process by using our running example of

Figure 4. (The details of the algorithms can be found in [VVS].) Let us suppose that a class c1 is

added to package p in the model by user interaction initiated by the system designer. The pattern

matching engine is noti�ed about this activity in two steps. First a noti�cation arrives about the

insertion of a type edge connecting c1 to Class (see Figure 4(c)) followed by the insertion of

an EO edge connecting c1 to p (see Figure 4(e)). Modi�cations are denoted by thick lines.

Step 1. At the insertion of a type edge connecting c1 to Class, the pattern matching engine

looks up entries retrieved by insert keys [c1,type,*] and [*,type,Class].

The latter entry triggers the possible extension of the empty matching 1 by mapping variable

c to constant c1 by invoking the insert() method on matching 1 with parameter c1. As this

binding is a matching for pattern P1, (i) a new matching 3 is created and added to the (matching)

tree as a child of matching 1, and (ii) the binding c to c1 is recorded.

Then matching 3 is inserted into the delete noti�cation array with delete key [c1,type,

Class]. This means that whenever the type edge from c1 to Class (i.e., the edge that has

been just added) is removed, this matching should be deleted.

Effects of adding a new matching to the tree are recursively extended to �nd matchings for

larger subpatterns by calling validate. Matching 3 can be further extended (as shown by

corresponding new entries being added to the insert noti�cation array pointing to matching 3),

whenever an edge with label EO leading out of c1 or with label type leading to Package is

added to the model in the future.

As also the current content of the model may extend matching 3, we initiate the possible

extensions of this matching by checking the existence of at least the EO edges leading out of c1.4

As no such edges exist in our example, the algorithm terminates with the matching tree presented

in Figure 4(d).

Step 2. When EO edge connecting c1 to p is inserted (as shown by the thick line of Figure 4(e)),

matching 3 is �rst extended to a new matching 4 by mapping variable p to constant p and by

executing a sequence of insert() and validate() method calls as shown in Figure 5.

Figure 5: Sequence diagram showing edge insertion into the LHS pattern

4 Note that the insert key generation and the possible further extension of matching 3 are guided by the condition

edges of the one larger subpattern P2.
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This time, matching extension is propagated to another new matching 5 by assigning s to s

by invoking the insert method on matching 4 with parameter s, as the current model already

contained ref and type edges connecting p to s and s to Schema, respectively.

In addition, both new matchings are appropriately registered in both the insert and delete

noti�cation arrays, and the binding array is updated accordingly. The corresponding matching

tree is shown in Figure 4(f).

At this point, matching 5 represents a complete matching for the LHS pattern, so the GT rule

ClassRule can be applied.

Step 3. The result of applying the GT rule ClassRule on matching 5 can be observed in Fig-

ure 4(g) after the insertion of some 13 edges, processed one by one by the pattern matching

engine.

Let us suppose that the new ref edge between c1 and t1 is processed �rst, which is followed

by the insertion of of type edge connecting t1 to Table. The �rst edge causes no modi�cations

in data structures as no appropriate insert keys appear in the insert noti�cation array.

At the second edge insertion, matching 2 is noti�ed by invoking its insert method with

parameter t1, which creates matchings 6 and 7. As the latter is a complete matching of the NAC

pattern QB, matching 3 must be invalidated by deleting all its descendant matchings in the tree.

When all the 13 edges are added, the data structure will re�ect the situation in Figure 4(h).

5 Experimental Evaluation

In order to assess the performance of our incremental approach, we performed measurements

on the object-relational mapping benchmark example [VFV06]. As a reference for the measure-

ments, we selected Fujaba [FNTZ98] as it is among the fastest non-incremental GT tools.

By using the terminology of [VSV05], graph transformation rules, the initial model and the

transformation sequence have to be �xed up to numerical parameters in order to fully specify a

test set.

(a) Initial model of the test case for the N = 3 case

Class Model TS
size length match update match update

# # # msec msec msec msec
10 1342 146 0.201 0.479 0.026 5.439

30 12422 1336 0.287 0.052 0.023 56.116

50 34702 3726 0.171 0.012 0.021 221.955

100 139402 14951 0.278 0.011 0.042 2067.462

10 1342 146 0.937 0.148 0.019 1.665

30 12422 1336 2.488 0.101 0.032 4.510

50 34702 3726 3.371 0.032 0.022 6.849

100 139402 14951 11.959 0.030 0.039 26.684

10 1342 146 0.875 0.107 0.043 0.592

30 12422 1336 3.896 0.045 0.016 1.108

50 34702 3726 5.975 0.025 0.023 1.948

100 139402 14951 24.057 0.028 0.068 9.353

IncrementalFujaba

as
so
cR
ul
e

cl
as
sR
ul
e

as
so
cE
nd
R
ul
e

(b) Experimental results

Figure 6: Initial model and measurement results

The structure of the initial model is presented in Figure 6(a) for the N = 3 case. The model has

a single Package that contains N classes, which is the only numerical parameter of the test set. An
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Association and 2 AssociationEnds are added to the model for each pair of Classes, thus initially,

we have N(N� 1)=2 Associations and N(N� 1) AssociationEnds. Associations are also contained

by the single Package as expressed by the corresponding links of type EO. Each AssociationEnd is

connected to a corresponding Association and Class by a CF and SFT link, respectively.

The object-relational mapping can be speci�ed by 4 graph transformation rules, which de-

scribe how to generate the relational database equivalents of Packages, Associations, Classes, and

AssociationEnds, respectively. (Due to space restrictions, the exact benchmark speci�cation is

omitted from the paper. The reader is referred to [VFV06].) The transformation sequence con-

sists of the application of these rules on each UML entity in the order speci�ed above.

Measurements were performed on a 1500MHz Pentiummachine with 768MBRAM. A Linux

kernel of version 2.6.7 served as an underlying operating system. The time results are shown in

Figure 6(b).

The head of a row shows the name of the rule on which the average is calculated. (Note

that a rule is executed several times in a run.) The second column (Class) depicts the number

of classes in the run, which is, in turn, the runtime parameter N for the test case. The third

and fourth columns show the concrete values for the model size (meaning the number of model

nodes and edges) and the transformation sequence length, respectively. Heads of the remaining

columns unambiguously identify the approach having been used. Values in match and update

columns depict the average times needed for a single execution of a rule in the pattern matching

and updating phase, respectively. Execution times were measured on a microsecond scale, but a

millisecond scale is used in Figure 6(b) for presentation purposes.

Our experiments can be summarized as follows.

� In accordance with our assumptions, the incremental engine executes pattern matching in

constant time even in case of large models, while the traditional engine shows signi�cant

increase when the LHS of the pattern is large as in case of assocEndRule.

� Incremental techniques by their nature suffer time increase in the updating phase due to

(i) the bookkeeping overhead caused by the additional data structures, and (ii) the fact that

even the insertion of a single edge may generate (or delete) a signi�cant amount of match-

ings. Its detrimental performance effects are reported in the updating phase of classRule,

when also the matchings of the other rules have to be refreshed. On the other hand, the

traditional engine executes the update phase in constant time as it can be expected.

� By taking into account both phases in the analysis, it may be stated that the incremental

strategy provides a competitive alternative for traditional engines as the total execution

times of the incremental approach are of the same order of magnitude in case of the fre-

quently applied rules (i.e., assocRule and assocEndRule).

� The bene�ts of the incremental approach are the most remarkable (i) when rules have

complex LHS graphs as the pattern matching of Fujaba gets slow in this case and (ii) when

the dependency between rules is weak as this leads to fast updates in incremental engines.

As a consequence, we may draw that the incremental approach is a primary candidate for

graph transformation tools where (i) complex transformation rules are used and (ii) where all
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matchings of a rule have to be accessed rapidly, which is a typical case for analysis/veri�cation

tools.

6 Related Work

Incremental updating techniques have been widely used in different �elds of computer science.

Now we give a brief overview on incremental techniques that could be used for graph transfor-

mation.

Rete networks. [BGT91] proposed an incremental graph pattern matching technique based

on the idea of Rete networks [For82], which stems from rule-based expert systems. In their

approach, a network of nodes is built at compile time from the LHS graph to support incremental

operation. Each node performs simple tests on the entities (i.e., nodes, edges, partial matchings)

arriving to its input(s). If the test succeeds, the node groups entities into compound ones, which

are then put into its output. On the top level of the network, there are nodes with a single input

that let such objects and links of a given type to pass that have just been inserted to or removed

from the model. On intermediate levels, network nodes with two inputs appear, each representing

a subpattern of the LHS graph. These nodes try to build matchings for the subpattern from the

smaller matchings located at the inputs of the node. On the lowest level, the network has terminal

nodes, which do not have outputs. They represent the entire LHS pattern. Entities reaching the

terminals represent complete matchings for the LHS.

The technique of [BGT91] shows the closest correspondance to our approach, as matching

levels can be considered as nodes in the Rete network. However, it is not a one-to-one mapping

as one matching level in our approach corresponds to several Rete nodes. As a consequence,

Rete-based solutions have more bookkeeping overhead as they store information at the inputs of

nodes in local memories and they use more nodes.

Two signi�cant consequences can be drawn from this similarity. (i) All techniques (e.g., the

handling of common parts of different LHS patterns at the same network node [MB00]) that have

already been invented for Rete-based solutions are also applicable to our approach. (ii) The idea

of noti�cation arrays can speed-up traditional Rete-based approaches used in a graph transfor-

mation context as these arrays help identifying those partial matchings that may participate in

the extension of the matching. Thus, it is subject to our future investigations.

PROGRES. The PROGRES [SWZ99] graph transformation tool supports an incremental

technique called attribute updates [Hud87]. At compile-time, an evaluation order of pattern

variables is �xed by a dependency graph. At run-time, a bit vector having a width that is equal to

the number of pattern variables, is maintained for each model node expressing if a variable can

be mapped to a given node.

When model nodes are deleted, some validity bits are set to false according to the dependency

graph denoting the termination of possible partial matchings. In this sense, PROGRES (just

like our approach) performs immediate invalidation of partial matchings. On the other hand,

validation of partial matchings are only computed on request (i.e., when a matching for the LHS

is requested), which is a disadvantage of the incremental attribute updating algorithm.

As an advantage, PROGRES has a low-level bookkeeping overhead (i.e., some extra bits for

model nodes), and the index structures maintained for partial matchings are also smaller.
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View updates. In relational databases, materialized views, which explicitly store their content

on the disk, can be updated by incremental techniques. Counting and DRed algorithms [GMS93]

�rst calculate the delta (i.e., the modi�cations) for the view by using the initial contents of the

view and base tables and the deltas of base tables. Then the calculated deltas are performed on

the view.

In contrast to our approach, view updating algorithms are more �exible as they use a run-time

evaluation order for delta calculation, and they can provide both lazy and eager style updates

being speci�ed when a view is created.

[VFV06] proposed an approach for representing graph pattern matching in relational data-

bases in form of views. Although some initial research (reported in [VV04]) has been done for

incremental pattern matching in relational databases, this solution has been completely thrown

away as it suffers from the inadequate support of incremental algorithms by the underlying

databases and the strong restrictions being posed on the structures of the select query that de�nes

the view.

7 Conclusion

In the current paper, we proposed data structures for incremental graph pattern matching where

all matchings (and non-extensible partial matchings) of a rule are stored explicitly in a matching

tree. This matching tree is updated incrementally triggered by the modi�cations of the instance

graph. Negative application conditions are handled uniformly by storing all matchings of the

corresponding patterns. As the main added value of the paper, we introduced a noti�cation

mechanism by maintaining additional registries for quickly identifying those partial matchings,

which are candidates for extension or removal, and thus, which have to be noti�ed when an edge

is inserted to or deleted from the model.

Limitations. We have also identi�ed certain limitations of the presented algorithms. First of

all, the ef�ciency of the incremental pattern matching engine highly depends on the selection

of search plans as even a single edge insertion (or deletion), which affect matchings located at

upper levels of the tree (i.e., near to its root) may trigger computation intensive operations. As

a consequence, further investigations on creating good search plans for the incremental pattern

matching engine have to be carried out.

Our current solution provides a suboptimal solution, when patterns contain a large number of

loop edges. This is related to the fact that our approach currently stores only the matchings of

the nodes but not the edges (i.e., edges do not have identi�ers), which assumption can be relaxed

in the future.

At �rst glance, it can be strange that NACs are handled independently of the LHS (i.e., all

matchings of the NAC are calculated). The goal of our approach is to support the reusability of

patterns when the same pattern can be used once in the LHS and once as a NAC, or the same

NAC is a negative condition for multiple LHSs (as in VIATRA2 [BV06]).

Future work. In the order of importance, the following tasks would appear on our todo list for

the future: (i) investigation on the applicability of Rete-networks in our incremental approach,

(ii) generation of search plans that are optimized for incremental pattern matching, (iii) the opti-

mal handling of bulk inserts, which may signi�cantly accelerate the initialization phase, (iv) the
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implementation of the pattern merger and optimizer module to be able to share matchings across

matching trees, and (v) the incremental handling of path expressions.
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