
Electronic Communications of the EASST
Volume 31 (2010)

Proceedings of the
Second International Workshop on

Visual Formalisms for Patterns
(VFfP 2010)

Patterns of Federated Identity Management Systems
as Architectural Reconfigurations1

Hyder Ali Nizamani and Emilio Tuosto

14 pages

Guest Editors: Paolo Bottoni, Esther Guerra, Juan de Lara
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

1 Research supported by the British-Italian Partnership Programme – British Council PP09/29.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/270295438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/


ECEASST

Patterns of Federated Identity Management Systems
as Architectural Reconfigurations†

Hyder Ali Nizamani1 and Emilio Tuosto2

1 han3@le.ac.uk, 2 et52@mcs.le.ac.uk
Department of Computer Science

University of Leicester, UK

Abstract: This paper proposes a formal model of Federated Identity Management
systems (FIMs) in terms of architectural design rewriting. FIMs allow cross-domain
user authentication to enable access control across the organisations under the con-
cept known as Circle of Trust (CoT). Patterns of FIMs emerged as recurring CoT
scenarios due to the fact that each of the pattern has different security and trust
requirements. This paper proposes a formal model for FIMs to characterise their
patterns as architectural styles. More precisely, an architectural style is given to
precisely pinpoint all possible legal configurations of the CoT in terms of the pat-
terns. The proposed model is specified through style-consistent (graphical) designs
in terms of architectural design rewriting (ADR).

Keywords: Modelling, Federation, Identity Management, Circle of Trust, Patterns,
Architectural Style, Reconfigurations.

1 Introduction

We give a definition of patterns emerging for federated identity management systems (FIMs) in
a formal model of graph transformation. In particular, we show how patterns can be formally
specified as architectural styles along with a representation of FIMs in a formal framework can
suitably express transformations of their patterns.

The fundamental goal of FIMs is to share identity related information for cross-domain user
authentication through some protocols and standards [15, 13, 11]. Typically, federations are
created and managed by establishing legal (i.e., business, administrative, etc.) relationships by a
set of contracts that specifies obligations and rights together with the policies each organisation
has to follow [12]. These federated organisations form a Circle of Trust (CoT) that can be defined
as a group of Service Providers (SPs) and Identity Providers (IDPs). Roughly upon requests to
the services, the SP uses identity related information to enforce access control.

Nowadays, FIMs implementations may be found in various domains (i.e., finance, education,
healthcare, etc.) and such systems are considered relatively static due to the nature of the CoT.
However, a dynamic approach may be realised that enables organisations leaving or joining the
CoTs to take some economic benefits in today’s emerging dynamic and scalable systems (e.g.,
Clouds and Web 2.0). In this way, one can take advantages of service-oriented computing (SoC)
that can provide not only functional but some non-functional requirements (i.e., security) as

† Research supported by the British-Italian Partnership Programme – British Council PP09/29.

1 / 14 Volume 31 (2010)

mailto:han3@le.ac.uk
mailto:et52@mcs.le.ac.uk


Patterns of FIMs as Architectural Reconfigurations

services. For instance, FIMs can be used to deal with access control in a cloud. Consequently,
architectural modeling of these systems becomes necessary; for instance, in current distributed
systems the possibility to tackle (dynamic) changes is paramount. Remarkably, this reflects at
the architectural level and requires what is known as architectural reconfiguration. Architectural
styles may provide a suitable mechanism for guiding the reconfigurations in a way that any
change in the architecture does not violate the style. At the best of our knowledge, only informal
FIMs models have been given; in [12, 7] some interesting FIMs patterns are presented in terms
of security and trust requirements.

This paper focuses on modeling architectural aspects of FIMs that are validated against the
patterns given in [12] and introduces an architectural style for the purpose. Architectural aspects
of FIMs are formalised using Architectural Design Rewriting (ADR) that is a graphical formal-
ism introduced in [4, 5] to formally specify architectural aspects of systems. The architectural
styles corresponding to the patterns in [12] are formally characterised by a type graph and a few
ADR productions. The type graph specifies the architectural elements of FIMs by describing
components (edges) and their legal interconnections (nodes) while ADR productions formalise
refinement. In fact, a selected FIMs pattern is generated by some design productions that guar-
antee a valid CoT by construction; for instance, as shown later, the constraint that a legal CoT
configuration must have at least one IDP and one SP is formalised by suitable productions. In
other words, architectural styles can model well-formedness conditions of FIMs as well as the
patterns induced by the security and trust requirements studied in [4, 5].

The main motivations for using ADR are (i) that it is a mathematically precise framework,
(ii) that ADR allows style-based design and, more importantly, (iii) that ADR features style-
preserving reconfigurations of software architectures. Noteworthy, style-preserving reconfigura-
tions are not naturally supported by other architectural description languages (cf. [6]). In ADR
instead, style-preserving reconfigurations can be enforced by imposing simple conditions on the
format of reconfiguration rules. More precisely, an ADR reconfiguration rule has the form

r : t→ t ′ (1)

where t and t ′ are typed terms of an algebra induced by the graph rewriting mechanisms of ADR
(i.e., productions); an ADR reconfiguration system is a set of rules where t and t ′ have the same
type for each rule (1). Remarkably, style-preserving reconfigurations are paramount for FIMs as
violations of well-formedness may hinder their correctness (security and trust requirements).

Structure of the paper § 2 briefly describes the concept of FIMs, some of their patterns, and
basic definitions of ADR. The ADR model of FIMs is in § 3. Architectural configurations of the
selected FIM patterns are in § 4 and their reconfigurations are addressed in § 5. Related work is
given in § 6. Finally, the summary and the future research directions are briefly described in § 7.

2 Background

This section gives an overview of FIMs and the basic definitions of ADR.

Proc. VFfP 2010 2 / 14



ECEASST

2.1 Federated Identity Management

FIMs forms an interesting class of distributed systems that allow group of organisations to “fed-
erate” to share services (or resources). Typically, sharing distributed resources requires an access
control system to authenticate users. FIMs make users’ authentication information available in a
global context so that organisations can be part of different federations and have more business
relationships with different group of organisations.

The roles involved in FIMs are

• users (whose identity is to be federated),

• identity providers (IDP), and

• service providers (SP)

where IDP vouch authentication statements for users (e.g., by issuing certificate) and SP dispense
services.

Example 1 A university can be part of a federation of digital libraries, in which case the uni-
versity is the IDP, each library is an SP, and students and staff are users. �

The notion of Circle of Trust (CoT) is key to FIMs and permits to establish complex contracts
that describe common policies and obligations. In [1], a CoT is defined as a framework that
specifies a common set of cooperation policies together with collaboration interfaces within a
certain group of organisations having trusted relationships. Users provide verified identities in
order to access resources shared by member organisations of the CoT. FIMs allow users from
different organisations to be authenticated when accessing remote resources in their CoT [16].
In FIMs, a CoT can be described as a federation of identity and service provider organisations.

FIMs are becoming ubiquitous and can be found in many different application contexts, in-
cluding eCommerce, education, eHealth, eGovernment.

Example 2 (cf. [10]) A financial institution needs its users (employees, customers, etc.) to
access services offered by a third party provider. The financial institution is the IDP managing
the authentication information of its users to the third party SP. The financial institution (IDP)
authenticates its users to grant them access to SP’s resources. �

In FIMs, an SP relies on the authentication information sent by the IDP when users request
access to services so to support Single Sign-on (SSO), namely allowing users to authenticate only
at their IDP without re-authenticating themselves to access services offered by SPs in the CoT.
In [7], architectural (and behavioural) aspects of FIMs are informally represented as a pattern for
a CoT where a single IDP is federated to multiple SPs. Other patterns are informally described
in [12]: (i) Bilateral Federation, (ii) Multiple IDPs Federation, (iii) Multiple SPs Federation,
and (iv) Arbitrary Federation. The differences among those patterns are described in [12] in
connection with trust relationships; each pattern has implication on trust management and what
security threats the corresponding FIMs are exposed to (e.g., privacy of user identities, business
data, access control, authentication). More precisely, patterns (i-iv) are ordered according to the

3 / 14 Volume 31 (2010)



Patterns of FIMs as Architectural Reconfigurations

security threats they are subject to, pattern (i) being the “most robust”. We now briefly comment
on the security threats hindering each pattern (see [12] for details).

In (i), a single IDP is federated to a single SP and they agree to deal with the private data
according to common policies. Since the access to services is mediated by the IDP, the latter is
aware of users’ activities (e.g., how often users communicate with the SP). The IDP may exploit
this kind of information to acquire knowledge on users’ behaviour and this is regarded as a threat
to users’ privacy. Also, SP receives information related to users’ identity from the IDP hence the
SP might disclose (i.e., to other SPs) such information without the consent of the IDP or the user.

In (ii), a single SP is federated to multiple IDPs; users may be registered at several IDPs and
they notify the SP about which IDPs will be used for authentication. The additional threat with
respect to pattern (i) is that some or all IDPs might decide to cross-check the information about
the accesses to the SP.

In (iii), a single IDP is federated to multiple SPs; a typical situation in this case is that delega-
tion of user authentication is necessary. For instance, a service in the federation may be delegated
(by an IDP or by another SP) to provide users’ credentials if it needs to invoke other services in
the federation. The additional threats with respect to pattern (ii) include unauthorised delegation
of authentication and “collusion” of SPs to accumulate identity information. The first threat may
happen when users invoke a complex service that needs to make further invocations to other
SPs in the federation. The second threat is quite serious as it would allow SPs to correlate their
information and accumulate data on users.

Pattern (iv) is the most vulnerable as it allows the free combination of patterns (i-iii) and is
exposed to all their threats.

2.2 Architectural Design Rewriting

The Architectural Design Rewriting (ADR) approach [4, 5] permits to design hierarchical and
reconfigurable software architectures. The main features of ADR include a rule-based approach,
hierarchical design, and an algebraic presentation. We borrow the main definitions of ADR
from [4] (where more details can be found).

Software architectures are modeled in ADR as hypergraphs whose edges represent compo-
nents and nodes (vertices) represent interconnections between the components.

Definition 1 ([4]) A (hyper)graph is a tuple G = 〈V,E, t〉 where V is the set of nodes, E is the
set of edges and t : E→V ∗ is the tentacle function.

Example 3 An ADR graph on the sets {},•} (of nodes) and {N,T} (of edges) can be graphi-
cally represented as

} Noo • Too (2)

The tentacle function is represented by the lines connecting edges ordered clockwise starting
from the arrow-headed tentacle; the tentacle function of (2) maps N to [},},•] and T to [•]. �

The vocabulary of an architecture is given by a distinguished graph, the type graph, over
which graphs are typed; edges are partitioned in terminal (not refinable) and non-terminal ones
(refinable). In Example 3 the doubly-lined box N is non-terminal while T is a terminal.

Proc. VFfP 2010 4 / 14



ECEASST

Definition 2 ([4]) A graph G is typed over a graph H when G is homomorphic to H, namely
when there are fV : VG→ VH and fE : EG→ EH preserving the tentacle functions, i.e. f ∗V ◦ tG =
tH ◦ fE , where f ∗V is the homomorphic extension of fV to V ∗G.

Architectures are modeled using designs which represent architectural components with their
interconnections. Architectures can be composed using design productions.

Definition 3 ([4]) A design is a graph with interface, i.e. a triple d = 〈Ld ,Rd , id〉, where Ld is a
(typed) graph consisting only of a nonterminal and by distinct nodes attached to its tentacles; Rd
is a (typed) graph without nonterminal edges; and id : VLd →VRd is a total function.

A (design) production p is a tuple 〈Lp, Rp, ip, l〉 where Lp is a (typed) graph consisting only
of a nonterminal labeled by say Ap and by distinct nodes attached to its tentacles; Rp is a (typed)
graph with both terminal and non-terminal edges; ip : VLp → VRp is a type preserving function;
and l is a bijection mapping the non-terminal edges of Rp on an initial segment [1,2, . . . ,np] of
positive numbers. Given a production p as above, call Lp the left-hand-side (LHS) of p and Rp

the right-hand-side (RHS) of p.

Productions allow top-down design by refinement, bottom-up typing of the actual architecture
and well-formed composition of the architectures. The set of design productions together with
the type graph represent the architectural style.

Example 4 Productions have a convenient graphical representation which we illustrate with an
example. The graphs G1 and G2 below can be typed over the graph (2) in the obvious way

graph G1

}
c1

C0oo }
c2

•
p1

graph G2

}
a C1oo

III
I }

b
C2oo

uuu
u

}
c

•
d

Ignoring the labelling function, the production with LHS G1 and RHS G2 (together with the
homomorphisms) can be drawn as

C0:N

}
c1

}
a C1:Noo b

}
C2:Noo c

}
c2
}

d•

p1•

(3)

where the outermost dotted box corresponds to G1, the inner graph is G2 (with the explicit typing
given by the homomorphism), and the dotted lines map the nodes of G1 to those of G2. �

If non-terminal edges are considered as ’types’ (of architectures), ADR productions have a
convenient “functional” reading illustrated continuing Example 4.

Example 5 Production (3) can be thought of as a function p : N×N → N taking two archi-
tectures of ’type’ N and returning a new architecture of type N so that productions become
constructors of a sorted algebra of architectures whose terms yield configurations. For instance,
if x and y are architecture of type N, the term p(p(x,y),x) is an architecture of type N. �

5 / 14 Volume 31 (2010)



Patterns of FIMs as Architectural Reconfigurations

In ADR, the design rules can be given an algebraic formulation where a term describes a par-
ticular style-proof (as p(p(x,y),x) in Example 5). Style-preserving reconfigurations are operated
at the level of style-proofs by exploiting term rewriting over style-proof terms. A graph transfor-
mation rule can be represented as a rewrite rule L −→ R; if L and R are terms of the same type
the rule is style-preserving [5].

Let us define a reconfiguration rule to add components (at abstract level) to the architectures
of type N given by the production in Example 5 and a production q : N→ N that takes a config-
uration of type N and returns another configuration of type N. To illustrate this, assume x and y
are architectures of type N and consider the reconfiguration rule

add(y) : q(x)−→ p(q(x),y)

where a sub-term q(x) of type N on the LHS of the rule is replaced by term p(q(x),y) of the same
type on the RHS. Now, we demonstrate how to apply such a rule to reconfigure an architecture
of type N. For instance, the reconfiguration

p(q(x1),y1)−→ p(p(q(x1),y2),y1)

is obtained by applying the rule add to the subterm q(x1) on the LHS so to yield the term on the
RHS where y2 is attached in the new configuration by means of the constructor p.

3 Modeling FIM systems in ADR

We define FIMs architectures in terms of ADR productions on the type graph depicted in (4)
which yields the vocabulary for the architectural elements of FIMs

CoT

��

• } federation chain

} P0

//

P1

//

IPs

��

SPs

oo

IDP

oo

SP

oo

◦ federation access

F

OO

◦ • provider access

(4)

The graph (4) yields the types of components and nodes represent the kind of ports used to
connect them. More precisely, federation chain nodes } are used to form chains of edges of type
F or CoT; federation access nodes ◦ connect IDP and SP providers with a federation F; provider
access nodes • connect providers. Formally, the type graph (4) and is defined as

VH = {},◦,•}
EH = {CoT,F,P0,P1, IPs,SPs, IDP,SP} tH :


CoT 7−→ [},},•]
F 7−→ [},},◦]
P0,P1, IPs,SPs, IDP,SP 7−→ [◦,•]

The non-terminal edges in (4) can be refined into complex graphs using the corresponding
design productions (described later) that define legal configurations of FIMs. The non-terminal
edge CoT will be refined into providers (i.e., IDP and SP) connected to each other and to their

Proc. VFfP 2010 6 / 14



ECEASST

chain : CoT×CoT→ CoT
ct0:CoT

}
c1

}
a C1:CoToo b

}
C2:CoToo d

}
c2
}

c•
p1•

(a) CoT Chain

fed : P1×P0→ CoT
ct0:CoT

c1
}

a
} f :Foo b

}
c2
}

c◦ pi:P0oo d•
p1•

ps:P1

ggOOOO ttt

(b) CoT in a federation

Figure 1: A CoT and a chain of CoT

federation in FIMs. These providers can be obtained by refining non-terminal edges; for exam-
ple, by refining non-terminal edges of type P0 and IPs configurations with identity providers can
be obtained, while configurations with service providers are obtained by refining non-terminal
edges of type P1 and SPs. The terminal edges F, IDP, and SP are the types for a federation, an
identity provider, and a service provider respectively.

Figure 1 shows productions chain and fed that refine non-terminal edge CoT into a federa-
tion of providers and chain of CoTs. Notice that LHS and RHS of productions are typed over
the graph (4). Production chain catenates CoTs C1 and C2 by connecting them on node b as
illustrated in Figure 1(a). Also, node c is used to connect C1 and C2 to providers and exported
together with a and d to possibly extend the chain. Production fed generates configurations of
CoT by connecting several providers (obtained by refining pi and ps) to each other and to a fed-
eration f as illustrated in Figure 1(b). Providers pi and ps interact with federation f through
node c of type ◦; nodes c1 and c2 allow f to connect to other CoT and node p1 to connect to
other providers. Observe that c1, c2, and p1 are the nodes of the LHS of fed corresponding to the
nodes of the RHS as specified by the dotted lines and ’exported’ in the interface of fed; also, p1
allows providers generated by ps and pi to connect to providers in other CoTs.

Figure 2 shows the productions to generate configurations of identity providers for P0 in pro-
duction fed. Production pips generates a configuration consisting of an IPs and an IDP. Pro-
duction ips generates configuration with many IPs (obtained by refining ip1 and ip2). Finally,
productions ip and noip yield non refinable configurations; ip generates a single identity provider
i while noip generates an empty configuration. The productions for generating service providers
are similar to those in Figure 2 and they are reported in Appendix A.

We illustrate how the legal configurations of FIMs in (5) can be derived using the productions
given above, by refining G1 into G2

G1 =
} C1:CoToo }

•
G2 =

} f :Foo
DDD

D } ps :P1

��
i:IDP // ◦ •

(5)

7 / 14 Volume 31 (2010)



Patterns of FIMs as Architectural Reconfigurations

pips : IPs→ P0 ips : IPs× IPs→ IPs ip :→ IPs noip :→ IPs

p 0
:P

0

◦ f 1
◦ a

p i
:I

Ps
oo

b •
p 1 •

i:I
D

P

ff N N
N N

u u u

ip
:I

Ps

◦ f 1
◦ a

ip
1:

IP
s

oo
b •

p 1 •

ip
2:

IP
s

ffM M
M M

u u u

ip
s:

IP
s

◦ f 1
◦ a

i:I
D

P
oo

b •
p 1 •

ip
s:

IP
s

◦ f 1
◦ a

b •
p 1 •

Figure 2: The Productions for Identity Providers

(G1 and G2 are typed over (4) in the obvious way). The initial sequence of reductions is

G1
fed→

} f :Foo }

◦ pi:P0oo •

ps:P1

bbFFFF {{{{

pips→

} f :Foo }

◦ i:IDPoo •

pi:IPs

bb

ps:P1

\\ JJJJ

noip→
} f :Foo

DDD
D } ps:P1

��
i:IDP // ◦ •

Namely, in the first step, fed is applied to generate the federation f ; then the edge pi is refined
by applying pips yielding a provider pi of type IPs and a provider i of type IDP. Finally, config-
uration G2 is obtained by applying noip which cancels the non-terminal pi. Any configuration
x refining P1 yields a term-like representation of G2 as fed(pips(noip),x) which highlights the
hierarchical structure of the FIMs configuration G2. In this way, the FIMs patterns can be gener-
ated and are illustrated in the next section.

4 Architectural configurations of the FIM patterns

We show how to generate the architectural configurations of the FIM patterns described in § 2.1.
It is worth remarking that a configuration in ADR is generated by applying productions. More-
over, ADR configurations can be given a representation as a term of a suitable algebra. Such
terms formalise FIMs patterns whose configuration is specified in the graphs corresponding to
terms. To illustrate this, we apply the productions for FIMs and the approach given in § 3 to
some simple examples.

Let us begin with the pattern (i). The configuration with a single IDP and a single SP is gener-
ated by applying production fed first then followed by a refinement of the non-terminal edges P0
and P1 (introduced by fed). In the second step indeed, productions pips generates the configura-
tion for P0 consisting of a terminal IDP and a non-terminal IPs (and, similarly, productions psps
generates the configuration for P1 that consists of a terminal SP and a non-terminal SPs). Observe
that the obtained graph contains non-terminal edges IPs and SPs (introduced by applying pips
and psps, respectively); these (spurious) non-terminal edges are cancelled using the productions
noip and nosp. As a result, we obtain the configuration of the pattern (i) which is graphically

Proc. VFfP 2010 8 / 14



ECEASST

c1
} :Foo c2

}

◦
f1

:IDP

<<xxx •
p1 :SP

bbDDD

(a) Bilateral federation

c1
} :Foo c2

}

:IDP //
FF

F
◦
f1

:IDP

<<xxx •
p1 :SP

bbDDD

(b) Multiple IDPs federation

Figure 3: Some architectural configurations of the CoT in FIMs

represented in Figure 3(a) (where edge names are omitted as immaterial). In ADR, such config-
urations can be given an algebraic formulation; for instance, the configuration in Figure 3(a) is
given by the term fed(pips(noip),psps(nosp)).

An example of bilateral federation can be given by a scenario where an airline is federated
to a hotel to allow a traveler to book a room after booking a flight; the traveler may use his/her
airline account to access the hotel and book a room without need to be re-authenticated (in this
case, the airline would act as IDP and the hotel as SP).

A configuration of pattern (ii) can be generated in a similar way as done for the configuration
of pattern (i). For instance, consider the case where two IDPs are federated to a single SP.
Initially, the same sequence of productions can be followed that is used above for generating
configuration of pattern (i) where a single IDP is federated to a single SP, with the difference
that before applying the noip production, the non-terminal pi in the production pips is further
refined using the production ips. This introduces an additional IDP where either ip1 or ip2 in
the production ips is on turn refined by applying production ip, while the other non-terminal is
canceled using productions noip. In this way, a configuration for pattern (ii) is obtained; its term
representation is

fed(pips(ips(ip,noip)),psps(nosp))

and its graphical representation is in Figure 3(b). Example 6 illustrates a scenario where this
pattern may be useful.

Example 6 Suppose that the scenario described above has to be modified so that travellers are
authenticated either by the airline company or via another account on train company. In other
words the airline and the train companies act as IDPs while the hotel is the SP. According to
pattern (ii), a traveler can book a room after booking a flight or a train. �

Configurations for the other patterns can be obtained in a similar way and examples are omitted
for space limits.

For pattern conformance, one has to check whether a configuration belongs to a FIM pattern
or not. In order to do so, one has to parse the corresponding term representation of the configura-
tion and consider the occurrences of the productions that represent terminal edges. For instance,
whenever productions pips and ip are applied each of them generate a single IDP; similarly,
productions psps and ip generate an SP. Noteworthy, productions pips and psps can be applied
only once to generate/part all the terms belonging to FIMs patterns. Such kind of conditions

9 / 14 Volume 31 (2010)



Patterns of FIMs as Architectural Reconfigurations

enforce the creation of a legal CoT having at least one IDP and SP i.e., pattern (i). For confor-
mance of rest of FIMs patterns i.e., patterns (ii-iv), one has to take into account the occurrences
of productions ip and sp in the terms to enumerate IDPs and SPs respectively.

In the next section we show how reconfigurations can be described.

5 Architectural reconfigurations of the FIM patterns

Architectural styles may offer a suitable modelling mechanism to guide the changes at the ar-
chitectural level; in fact, patterns for FIMs can be given in terms of ADR architectural style as
illustrated in §4.

At run time, systems may need to be reconfigured; for instance, adding one or more compo-
nents. Noticeably, such changes may need to be reflected at the architectural level, namely they
may induce architectural reconfiguration. FIMs are no exception. The architectures of FIMs
patterns may evolve during the life of their CoTs where IDPs and SPs can be added to the feder-
ations. For instance, the configuration of the pattern (i) consists of an airline (i.e., the IDP) and
a hotel (i.e., the SP) can be reconfigured by introducing a train service (i.e., a new IDP). Such
a change (adding an additional IDP) in the architecture reshapes the systems from pattern (i) to
pattern (ii) so to allow users to book a room after booking a flight or a train.

This change of pattern can be defined at basic level (namely, one IDP, or one SP, or one
instance of both is added) as well as at abstract level (namely, arbitrary collections of IDPs or
SPs are added at once).

ADR offers a graphical support and a formal mechanism to deal with style-preserving archi-
tectural reconfigurations, namely architectural reconfigurations that do not modify the style. We
remark that is crucial for FIMs as style preserving reconfigurations correspond to modifying con-
figurations by changing their pattern while preserving a valid (legal) architecture. ADR can also
express reconfigurations that violate styles. For instance, it is easy to define reconfiguration rules
that cancel components so to obtain configurations without e.g., IDPs that are not considered
valid FIMs. It is also worth remarking that the condition to preserve style is very simple; it is
just necessary to ensure that LHS and RHS of the reconfiguration rule have the same type.

As we have seen in § 3, the design rules can be given an algebraic formulation where a term
in ADR describes a particular style-proof.

In order to illustrate how ADR reconfiguration rules can describe variations of FIMs we con-
sider the following rules.

addIDP : noip−→ ips(ip,noip) (6)

addIDPs(X) : noip−→ ips(X,noip) (7)

Intuitively, such rules allow us to add components; more precisely, they respectively introduce a
new IDP and a set of many IDPs. Rule (6) is defined at basic level (terms without variables) to
add a single IDP and rule (7) is defined at abstract level (terms with variables) to add a collection
of IDPs to the configurations of FIMs patterns. Notice that in both rules the LHS and the RHS
terms have the same type; this is central to preserve the style. In other words, ADR guarantees,
by construction that when all reconfiguration rules preserve the types, then any derivation will

Proc. VFfP 2010 10 / 14



ECEASST

c1
} :Foo c2

}

◦
f1

:IDP

<<xxx •
p1 :SP

bbDDD

−→
c1
} :Foo c2

}

:IDP //
FF

F
◦
f1

:IDP

<<xxx •
p1 :SP

bbDDD

Figure 4: Rule to add an identity provider (from left to right)

not change the architectural style. Similarly, rules can be defined that add one or more SPs to the
configurations of FIM patterns.

Table 1: Effects of basic reconfiguration rules on FIMs patterns

Rules (i) to (ii) (i) to (iii) (ii) to (iv) (iii) to (iv) (i) to (iv)
Add a single IDP X X X
Add a single SP X X X

Table 1 shows the effects of basic reconfiguration rules that add a single IDP and a single SP
on FIMs patterns (i-iv). Figure 4 (for simplicity, names of the edges are omitted) illustrates the
reconfiguration of pattern (i) into pattern (ii) architecture by applying rule (6). The LHS graph
shows configuration of pattern (i) consisting of an IDP (i.e., an airline) and an SP (i.e., a ho-
tel). This architecture, is reconfigured by introducing an additional IDP (i.e., a train service) that
yields a new configuration (RHS graph) that confirms to pattern (ii) with multiple IDPs federa-
tion. To illustrate such a change in the configuration obtained by applying rule (6), transition

fed(pips(noip),psps(nosp))−→ fed(pips(ips(ip,noip)),psps(nosp))

describes the reconfiguration where the LHS term defines configuration of pattern (i) while the
RHS term defines the new configuration that represent pattern (ii). In this reconfiguration, sub-
term noip of type IPs on the LHS replaced with a new term ips(ip,noip) of same type on the
RHS. Such a transition preserve the FIMs style. Similarly, the effects of applying the rule that
adds an SP reconfigures the architecture of pattern (i) to pattern (iii). Moreover, rule (6) and the
rule that add an SP can be applied together to reconfigure the architecture of pattern (i) to pattern
(iv). Furthermore, these rules can be applied separately while moving from patterns (ii-iii) to
pattern (iv), for instance; rule (6) can be used to move from pattern (iii) to pattern (iv) and the
rule that add an SP to move from pattern (ii) to pattern (iv).

6 Related Work

Delessy et al. [7] describe a CoT that is informally represented as a pattern where a single IDP is
federated to multiple SPs. They considered structural and behavioural aspects of FIMs. We give
formal representation of various patterns of FIMs in terms of their structural and dynamic (i.e.,

11 / 14 Volume 31 (2010)



Patterns of FIMs as Architectural Reconfigurations

reconfiguration) aspects. In [12], various federation patterns are described in terms of security
and trust requirements. We formalise the patterns that are based on direct trust relationships,
namely relationships not relying on third parties (cf. [12]).

In [17] two new types of representation models are introduced; such models are called di-
mension graph (DG) and pattern graph (PG). The former shows the relationship (pattern-to-
dimension) of a pattern with respect to various “dimensions” (i.e., life cycle stage, architectural
level1, security concern, business domain, type of pattern, and regulations/policies) of classifica-
tion of security patterns. Instead, PG shows the relationship (pattern-to-pattern) of a pattern to
other patterns. In [17], the focus is on representing properties (e.g., what pattern can be used
for certain purposes) of the security patterns and relationships (e.g., what kind of patterns can be
used at the next stage to realise a given pattern) between the security patterns using a metamodel
in UML class diagram. The metamodel is then used to create DG and PG as its instances rep-
resented in UML object diagrams so to introduce an improved classification of security patterns
that helps the designers in analysing, finding, and understanding security patterns at each level
of the development process. We propose a generic architectural model that represents a class of
FIMs patterns using a formal and a graphical approach. Our goal is the modelling of (direct se-
curity and trust) relationships between the collaborating organisations at an abstract architectural
level. We represent FIMs patterns as instances (typed graphs) of the model whose corresponding
terms precisely show their construction. Moreover, reconfiguration rules and their relationships
have been defined in terms of their effects on the architectures of given FIMs patterns.

An informal pattern system for authentication and authorisation infrastructures (AAIs) has
been described in [8] by showing the possible interactions between the patterns given in [7, 14].
In [8], the focus is on security aspects at implementation level and can be used directly in the
software development process such as to deal with security in web services. The purpose of our
work is twofold, one to formally model FIMs as an architectural style and other to deal with
changes in their architectures while respecting the FIMs style. We provide a mechanism to for-
mally model FIM at an abstract level that may be used for concrete implementation for detailed
analysis of the FIMs properties (i.e., privacy) while allowing reconfiguration in the FIMs.

Finally, in [3] ADR has been promoted to model some aspects of SOA by proposing an archi-
tectural style for a modelling language featuring module composition. FIMs patterns could be
modelled following the approach described in [2] where ADR has been used as a formal support
of style-based designs and reconfiguration of a UML profile for SOA. However, such approach
would require OCL constraints to represent FIMs which are complex to deal with in the FIMs
context.

7 Summary and Future Work

In this paper, an architectural style for modeling the FIMs patterns is given in terms of ADR pro-
ductions. More precisely, an architectural style is used to formally generate the architectures of
the selected FIMs patterns that conform to the valid CoT configurations. Also, reconfigurations
of these patterns are addressed in a way that any application of the reconfiguration preserves the
style.

1 In [17] typical architectural layers are application, DBMS, operating system, distribution, and network.

Proc. VFfP 2010 12 / 14



ECEASST

Currently, we are working on some inductively defined reconfiguration rules for FIMs. More-
over, we also intend to investigate the possibility of modeling behavioural aspects using [9] in
order to support the execution of FIMs architectures.

Finally, one or more architectural styles for FIMs may be designed in the future to support
more complex patterns such as to model indirect trust relationships (i.e., through trusted third
parties) between the collaborating organisations.

Bibliography

[1] Latifa Boursas and Vitalian A. Danciu. Dynamic inter-organizational cooperation setup in
circle-of-trust environments. In NOMS, 2008.

[2] Roberto Bruni, Matthias M. Hölzl, Nora Koch, Alberto Lluch-Lafuente, Philip Mayer, Ugo
Montanari, Andreas Schroeder, and Martin Wirsing. A Service-Oriented UML Profile with
Formal Support. In ICSOC, 2009.

[3] Roberto Bruni, Alberto Lluch-Lafuente, Ugo Montanari, and Emilio Tuosto. Service ori-
ented architectural design. In TGC, pages 186–203, 2007.

[4] Roberto Bruni, Alberto Lluch-Lafuente, Ugo Montanari, and Emilio Tuosto. Service ori-
ented architectural design. In Gilles Barthe and Cédric Fournet, editors, Trustworthy Global
Computing, volume 4912 of LNCS, pages 186–203. Springer, March 2008. ISBN: 978-3-
540-78662-7.

[5] Roberto Bruni, Alberto Lluch-Lafuente, Ugo Montanari, and Emilio Tuosto. Style-Based
Architectural Reconfigurations. In Vladimiro Sassone, editor, EATCS Bull., number 94.
February 2008.

[6] Paul C. Clements. A survey of architecture description languages. In IWSSD ’96: Proceed-
ings of the 8th International Workshop on Software Specification and Design, Washington,
DC, USA, 1996. IEEE Computer Society.

[7] N. Delessy, E.B. Fernandez, and M.M. Larrondo-Petrie. A pattern language for identity
management. ICCGI 2007, 2007.

[8] Roland Erber, Christian Schlager, and Gunther Pernul. Patterns for authentication and
authorisation infrastructures. Database and Expert Systems Applications, International
Workshop on, 0:755–759, 2007.

[9] Gianluigi Ferrari, Dan Hirsch, Ivan Lanese, Ugo Montanari, and Emilio Tuosto. Syn-
chronised hyperedge replacement as a model for service oriented computing. In Frank S.
de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever, editors, Formal
Methods for Components and Objects: 4th International Symposium, FMCO, volume 4111
of LNCS, Amsterdam, The Netherlands, November 2005. Springer. Revised Lectures.

[10] Manish Gupta and Raj Sharman. Dimensions of Identity Federation: A Case Study in
Financial Services. J. of Information Assurance and Security, 3, 2008.

13 / 14 Volume 31 (2010)



Patterns of FIMs as Architectural Reconfigurations

[11] Ws-federation. http://www.ibm.com/developerworks/library/specification/ws-fed/, 2009.

[12] Uwe Kylau, Ivonne Thomas, Michael Menzel, and Christoph Meinel. Trust Requirements
in Identity Federation Topologies. AINA, pages 137–145, 2009.

[13] Liberty Aliance Specifications. http://www.projectliberty.org/, 2009.

[14] Patrick Morrison and Eduardo B. Fernandez. The credentials pattern. In PLoP ’06: Pro-
ceedings of the 2006 conference on Pattern languages of programs, pages 1–4, New York,
NY, USA, 2006. ACM.

[15] Security Assertion Markup Language (SAML). http://saml.xml.org/saml-specifications,
2009.

[16] Jon Oltsik. Services-Oriented Architecture (SOA) and Federated Identity Management
(FIM). White paper, ESG, 2006.

[17] Hironori Washizaki, Eduardo B. Fernández, Katsuhisa Maruyama, Atsuto Kubo, and
Nobukazu Yoshioka. Improving the classification of security patterns. In DEXA Work-
shops, pages 165–170, 2009.

A Productions for Generating Service Provider Configurations

Figure 5 shows the productions namely psps, sps, sp, and nosp that can be used to generate the
configurations of service providers in the FIMs patterns.

psps : SPs→ P1 sps : SPs×SPs→ SPs sp :→ SPs nosp :→ SPs

p 1
:P

1

◦ f 1
◦ a

sp
:S

Ps
oo

b •
p 1 •

s:
SP

ggN N
N N

t t t

sp
:S

Ps

◦ f 1
◦ a

sp
1:

IP
s

oo
b •

p 1 •

sp
2:

IP
s

nn
t t t

sp
s:

SP
s

◦ f 1
◦ a

s:
SP

oo
b •

p 1 •

sp
s:

SP
s

◦ f 1
◦ a

b •
p 1 •

Figure 5: The Productions for Service Providers

Proc. VFfP 2010 14 / 14

http://www.ibm.com/developerworks/library/specification/ws-fed/
http://www.projectliberty.org/
http://saml.xml.org/saml-specifications

	Introduction
	Background
	Federated Identity Management
	Architectural Design Rewriting

	Modeling FIM systems in ADR
	Architectural configurations of the FIM patterns
	Architectural reconfigurations of the FIM patterns
	Related Work
	Summary and Future Work
	Productions for Generating Service Provider Configurations

