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Abstract: Given a set of unquantified conditionals considered as default rules or a
set of quantified conditionals such as probabilistic rules, an agent can build up its
internal epistemic state from such a knowledge base by inductive reasoning tech-
niques. Besides certain (logical) knowledge, epistemic states are supposed to allow
the representation of preferences, beliefs, assumptions etc. of an intelligent agent.
If the agent lives in a dynamic environment, it has to adapt its epistemic state con-
stantly to changes in the surrounding world in order to be able to react adequately to
new demands. In this paper, we present a high-level specification of the CONDOR

system that provides powerful methods and tools for managing knowledge repre-
sented by conditionals and the corresponding epistemic states of an agent. Thereby,
we are able to elaborate and formalize crucial interdependencies between differ-
ent aspects of knowledge representation, knowledge discovery, and belief revision.
Moreover, this specification, using Gurevich’s Abstract State Machines, provides
the basis for a stepwise refinement development process of the CONDOR system
based on the ASM methodology.

Keywords: knowledge representation, agent model, epistemic state, belief change,
abstract state machine

1 Introduction

Any intelligent agent must be capable to represent knowledge internally and to reason about it.
The internal epistemic state of an agent represents the full cognitive state of the agent, including
its beliefs, assumptions and preferences. The epistemic state should allow to evaluate and to
compare statements, formulas or possible worlds with respect to their plausibility, possibilty,
necessity, probability, etc. Furthermore, any agent living in a dynamic environment must be able
to dynamically change its own epistemic state in the light of new information. In this paper, we
are concerned with formally modelling such an agent’s epistemic state, how it can be initialzed
from a given knowledge base and how it may evolve in time within a dynamically changing
environment.

Commonsense and expert knowledge is most generally expressed by rules, connecting a pre-
condition and a conclusion by an if-then-construction. If-then-rules are more formally denoted
as conditionals, and often they occur in the form of probabilistic (quantitative) conditionals like
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rules, evidence, assumptions, queries, . . .
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Figure 1: A bird’s-eye view of the CONDOR-Systems

“Students are young with a probability of (about) 80 %” and “Singles (i.e. unmarried people)
are young with a probability of (about) 70 %”, where this commonsense knowledge can be ex-
pressed formally by {(young|student)[0.8],(young|single)[0.7]}. In another setting, qualitative
conditionals like (expensive|Mercedes)[n] are considered where n∈N indicates a degree of plau-
sibility for the conditional “Given that the car is a Mercedes, it is expensive”.

The crucial point with conditionals is that they carry generic knowledge which can be applied
to different situations. This makes them most interesting objects in Artificial Intelligence, in
theoretical as well as in practical respect. Within the CONDOR project (Conditionals - discovery
and revision), we develop methods and tools for discovery and revision of knowledge expressed
by conditionals.

Figure 1 provides a bird’s-eye view of the CONDOR system. CONDOR can be seen as an agent
being able to take rules, evidence, queries, etc., from the environment and giving back sentences
it believes to be true with a degree of certainty. Basically, these degrees of belief are calculated
from the agent’s current epistemic state which is a representation of its cognitive state at the given
time. The agent is supposed to live in a dynamic environment, so it has to adapt his epistemic
state constantly to changes in the surrounding world and to react adequately to new demands.

In the following, we will develop a high-level, abstract model called CONDORASM, pro-
viding the top-level functionalities of the CONDOR system as they are indicated by the but-
tons in Figure 1. CONDORASM uses the methodology of Abstract State Machines (ASM)
[Gur95, SSB01, BS03]. At the level of abstraction chosen for CONDORASM, we are not only
able to decribe precisely the common functionalities for dealing with both quantitative and qual-
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itative approaches. We also work out crucial interdependencies between e.g. inductive know-
ledge representation, knowledge discovery, and belief revision in a conditional setting. More-
over, CONDORASM provides the basis for a stepwise refinement development process of the
CONDOR system.

The rest of this paper which is a revised and extended version of [BK03] is organized as
follows: In Section 2, we provide very brief introductions to qualitative and quantitative logics
and to the concept of Abstract State Machines. In Section 3, the universes of CONDORASM
and its overall structure are introduced, while in Section 4 its top-level functions are specified.
Section 5 contains some conclusions and points out further work.

2 Background

2.1 Qualitative and Quantitative Logic in a Nutshell

We start with a propositional language L , generated by a finite set Σ of atoms a,b,c, . . .. The for-
mulas of L will be denoted by uppercase Roman letters A,B,C, . . .. For conciseness of notation,
we will omit the logical and-connector, writing AB instead of A∧B, and overlining formulas will
indicate negation, i.e. A means ¬A. Let Ω denote the set of possible worlds over L ; Ω will be
taken here simply as the set of all propositional interpretations over L and can be identified with
the set of all complete conjunctions over Σ. The notation ω |= A means that the propositional
formula A ∈L holds in the possible world ω ∈Ω.

By introducing a new binary operator |, we obtain the set (L |L ) = {(B|A) | A,B ∈ L }
of conditionals over L . (B|A) formalizes “if A then B” and establishes a plausible, probable,
possible etc. connection between the antecedent A and the consequent B. Here, conditionals are
supposed not to be nested, that is, antecedent and consequent of a conditional will be proposi-
tional formulas.

To give appropriate semantics to conditionals, they are usually considered within richer struc-
tures such as epistemic states. Besides certain (logical) knowledge, epistemic states also allow
the representation of preferences, beliefs, assumptions etc of an intelligent agent. Basically, an
epistemic state allows one to compare formulas or worlds with respect to plausibility, possibility,
necessity, probability etc.

Well-known qualitative, ordinal approaches to represent epistemic states are Spohn’s ordinal
conditional functions, OCFs, (also called ranking functions) [Spo88], and possibility distribu-
tions [BDP92], assigning degrees of plausibility, or of possibility, respectively, to formulas and
possible worlds. In such qualitative frameworks, a conditional (B|A) is valid (or accepted), if
its confirmation, AB, is more plausible, possible etc. than its refutation, AB; a suitable degree of
acceptance is calculated from the degrees associated with AB and AB.

In a quantitative framework, most appreciated representations of epistemic states are pro-
vided by probability functions (or probability distributions) P : Ω→ [0,1] with ∑ω∈Ω P(ω) = 1.
The probability of a formula A ∈ L is given by P(A) = ∑ω|=A P(ω), and the probability of a

conditional (B|A) ∈ (L |L ) with P(A) > 0 is defined as P(B|A) =
P(AB)
P(A)

, the corresponding

conditional probability. Note that, since L is finitely generated, Ω is finite, too, and we only
need additivity instead of σ -additivity.
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2.2 Abstract State Machines

For a general introdcution to ASMs and also to stepwise refinement using ASMs we refer the
reader to [Gur95], [Gur00], [SSB01], or [BS03]. Here we will only give a very brief summary,
introducing the ASM concepts used in this paper and fixing our notation.

Each ASM has an ASM-signature ΣASM containing a finite collection of function names each
of which has an arity. Nullary function names are also called constants. Function names are
either static or dynamic, and each ASM signature contains the static constants undef, true, false.

A state A for an ASM signature ΣASM is a non-empty set X together with an interpretation
f A : Xn → X for any n-ary function name f in ΣASM. dom( f A) is the set of tuples over X for
which f A yields a value different from undef. A function having only the values true and false
is viewed as a relation.

The set X is also called superuniverse. The superuniverse may be devided into (sub-)universes
which are represented by unary relations. The domain and codomain of a function name may
also be given as a sequence of universes. For instance, if EpState is a universe (of epistemic
states) and currstate is a nullary function name, the delaration

currstate : EpState

expresses that in any state A (the interpretation of) currstate yields an element of the universe
EpState.

An abstract state machine M consists of an ASM signature ΣASM, an initial state for ΣASM, and
a set of transition rules. For instance, f (t1, . . . , tn) := t0 with ground terms ti is an update rule.
Evaluating this rule in an ASM state A yields the (singleton) update set U = {(l, tA0 } where the
pair l = ( f ,(tA1 , . . . , tAn )) is a location in A . Applying U to A results in a new state A ′ that
coincides with A except that f A ′

applied to the tuple (tA1 , . . . , tAn ) yields tA0 . (Note that f must
be a dynamic function; static functions are never changed.) For instance, in the state resulting
from executing the update rule

currstate := inductive(rule base)

the nullary function currstate has a new value which is obtained by applying the function induc-
tive to the nullary function rule base.

There are also conditional rules, let rules, parallel executions rules, etc [BS03]. In general,
a set of rules yields a set of updates. If this set is consistent – i.e., it does not contain different
values for the same location – all updates are used to generate the new ASM state. A run of an
ASM is a (finite or infinite) sequence of states, reflecting how the ASM evolves in time. It starts
in its initial state, and each subsequent state is obtained from the previous one by applying all
applicable rules simultaneously.

In the following sections, we will develop the abstract state machine CONDORASM which
models an agent as sketched in Figure 1. The agent’s interaction with the environment is mod-
elled by using three kinds of dynamic functions (cf. [SSB01]):

controlled functions : changed by the ASM only
monitored functions : changed by the environment only
interaction functions : may be changed by both

Further details about the ASM methodology can be found in the references cited above.
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3 The formal framework of CONDORASM

3.1 Universes

At a first and still very abstract level we do not distinguish between qualitative and quantitative
conditionals. Therefore, we use Q as the universe of qualitative and quantitative scales.

The universe Σ of propositional variables provides a vocabulary for denoting simple facts. The
universe Ω contains all possible worlds that can be distinguished using Σ. FactU is the set of all
(unquantified) propositional sentences over Σ, i.e. FactU consists of all formulas from L . The
set of all (unquantified) conditional sentences from (L |L ) is denoted by RuleU .

The universe of all sentences without any qualitative or quantitative measure is given by

SenU = FactU ∪ RuleU

with elements written as A and (B|A), respectively. Additionally, SimpleFactU denotes the set
of simple facts Σ⊆ FactU , i.e. SimpleFactU = Σ.

Analogously, in order to take quantifications of belief into account, we introduce the universe
SenQ of all qualitative or quantitative sentences by setting

SenQ = FactQ ∪ RuleQ

whose elements are written as A[x] and (B|A)[x], respectively, where A,B ∈ FactU and x ∈ Q.
For instance, the measured conditional (B|A)[x] has the reading if A then B with degree of belief
x. The set of measured simple facts is denoted by SimpleFactQ ⊆ FactQ.

The universe of epistemic states is given by EpState⊆ {Ψ |Ψ : Ω→Q}. We assume that each
Ψ∈ EpState uniquely determines a function (also denoted by Ψ) Ψ : SenU →Q. For instance, in
a probabilistic setting, for Ψ = P : Ω→ [0,1] we have P(A) = ∑ω|=A P(ω) for any unquantified
sentence A ∈ SenU .

Finally, there is a binary satisfaction relation (modelled by its characteristic function in the
ASM framework) |=Q ⊆ EpState×SenQ such that Ψ |=Q S means that the state Ψ satisfies the
sentence S. Typically, Ψ will satisfy a sentence like A[x] if Ψ assigns to A the degree x (“in Ψ, A
has degree of probability / plausibility x”).

In this paper, our standard examples for epistemic states are probability distributions, but note
that the complete approach carries over directly to the ordinal framework (see eg. [KI01a]).

Example 1 In a probabilistic setting, conditionals are interpreted via conditional probability.
So for a probability distribution P, we have P |=Q (B|A) [x] iff P(B|A) = x (for x ∈ [0,1]).

For instance, consider the three propositional variables a - being a student, b - being young,
and c - being unmarried. Let P be a probability distribution over the set of possible worlds
Ω generated by Σ = {a, b, c} with P(abc) = 0.1950, P(abc) = 0.1758, P(abc) = 0.0408, and
P(abc) = 0.0519. Then we have, e.g., P |=Q (b|a)[0.8] since:

P(b|a) =
P(ab)
P(a)

=
0.1950+0.1758

0.1950+0.1758+0.0408+0.0519
=

0.3708
0.4635

= 0.8
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3.2 Overall structure

In the CONDORASM, the agent’s current epistemic state is denoted by the controlled nullary
function

currstate : EpState

The agents beliefs returned to the environment can be observed via the controlled function

believed sentences : P(SenQ)

with P(S) denoting the power set of S.
As indicated in Figure 1, there are seven top-level functions that can be invoked, ranging from

initialization of the system to the automatic discovery of conditional knowledge (CKD). Thus,
we have a universe

WhatToDo = { Initialization,Load,Query,Revision,
Diagnosis,What-If-Analysis,CKD}

The nullary interaction function

do : WhatToDo

is set by the environment in order to invoke a particular function. We tacitly assume that do is
reset to undef by CONDORASM after each corresponding rule execution.

The appropriate inputs to the top-level functions are modelled by monitored nullary functions
set by the environment. For instance, simply querying the system takes a set of (unquantified)
sentences from SenU , asking for the degree of belief for them. Similarly, the What-If-Analysis
realizes hypothetical reasoning, taking a set of (quantified) sentences from SenQ as assumptions,
together with a set of (unquantified) sentences from SenU as goals, asking for the degree of
belief for these goals under the given assumptions. Figure 2 summarizes all monitored functions
serving as inputs to the system; their specific usage will be explained in detail in the following
section along with the corresponding top-level functionalities.

4 Top-level Functions in the CONDOR-System

4.1 Initialization

In the beginning, a prior epistemic state has to be built up on the basis of which the agent can
start his computations. If no knowledge at all is at hand, simply the uniform epistemic state,
modelled by the nullary function

uniform : EpState

is taken to initialize the system. For instance, in a probabilistic setting, this corresponds to the
uniform distribution where all possible worlds have the same probability.
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input type monitored nullary function

P(SenQ) : rule base
new information
assumptions

P(SenU ) : queries
goals

P(FactQ) : evidence

P(SimpleFactU ) : diagnoses

EpState : stored state
distribution

RevisionOp : rev op

Figure 2: Monitored function in CONDORASM

If, however, default knowledge or a set of probabilistic rules is at hand to describe the problem
area under consideration, an epistemic state has to be found to appropriately represent this prior
knowledge. To this end, we assume an inductive representation method to establish the desired
connection between sets of sentences and epistemic states. Whereas generally, a set of sentences
allows a (possibly large) set of models (or epistemic states), in an inductive formalism we have
a function

inductive : P(SenQ)→ EpState

such that inductive(S) selects a unique, “best” epistemic state from all those states satisfying
S. Starting with the no-knowledge representing state uniform can be modelled by providing the
empty set of rules since the constraint

uniform = inductive( /0)

must hold.
Thus, we can initialize the system with an epistemic state by providing a set of (quantified)

sentences S and generating a full epistemic state from it by inductively completing the knowledge
given by S. For reading in such a set S, the monitored nullary function rule base : P(SenQ) is
used:

if do = Initialization
then currstate := inductive(rule base)

Selecting a “best” epistemic state from all all those states satisfying a set of sentences S is an
instance of a general problem which we call the inductive representation problem (cf. [BK05]).
There are several well-known methods to model such an inductive formalism, a prominent one
being the maximum entropy approach.
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Example 2 In a probabilistic framework, the principle of maximum entropy associates to a
set S of probabilistic conditionals the unique distribution P∗ = MaxEnt(S ) that satisfies all
conditionals in S and has maximal entropy, i.e., MaxEnt(S ) is the (unique) solution to the
maximization problem

argmaxH(P′) =−∑
ω

P′(ω) logP′(ω) (1)

s.t. P′ is a probability distribution with P′ |= S .

The rationale behind this is that MaxEnt(S ) represents the knowledge given by S most faith-
fully, i.e. without adding information unnecessarily (cf. [Par94, PV97, KI98]).

We will illustrate the maximum entropy method by a small example.

Example 3 Consider again the three propositional variables a - being a student, b - being young,
and c - being unmarried from Example 1. The commonsense knowledge “Students and unmar-
ried people are mostly young” an agent may have can be expressed probabilistically e.g. by the
set S = {(b|a)[0.8],(b|c)[0.7]} of conditionals. The MaxEnt-representation P∗ = MaxEnt(S )
is given in the following table1:

ω P∗(ω) ω P∗(ω) ω P∗(ω) ω P∗(ω)

abc 0.1950 abc 0.1758 abc 0.0408 abc 0.0519
abc 0.1528 abc 0.1378 abc 0.1081 abc 0.1378

4.2 Loading an epistemic state

Another way to initialize the system with an epistemic state is to load such a state directly from
the environment (where it might have been stored during a previous run of the system; this could
be modelled easily by an additional top-level function). Therefore, there is a monitored nullary
function stored state : EpState which is used in the following rule:

if do = Load
then currstate := stored state

4.3 Querying an epistemic state

The function

belief : EpState×P(SenU )→P(SenQ)

is the so-called belief measure function which is subject to the condition

belief(Ψ,S ) = {S[x] | S ∈S and Ψ |=Q S[x]}

for every Ψ ∈ EpState and S ⊆ SenU . For a given state Ψ, the call belief(Ψ,S) returns, in the
form of measured sentences, the beliefs that hold with regard to the set of basic sentences S ⊆
1 MaxEnt(S ) has been computed with the expert system shell SPIRIT [RK97a, RK97b, RRK06].
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SenU . The monitored function queries : P(SenU ) holds the set of sentences and is used in the
rule:

if do = Query
then believed sentences := belief (currstate, queries)

Example 4 Suppose the current epistemic state is currstate = MaxEnt(S ) from Example 3
above, and our query is “What is the probability that unmarried students are young?”, i.e.
queries = {(b|ac)}. The system returns belief(currstate,queries) = {(b|ac)[0.8270]}, that is,
unmarried students are supposed to be young with probability 0.8270.

4.4 Revision of Conditional Knowledge

Belief revision, the theory of dynamics of knowledge, has been mainly concerned with propo-
sitional beliefs for a long time. The most basic approach here is the AGM-theory presented in
the seminal paper [AGM85] as a set of postulates outlining appropriate revision mechanisms in
a propositional logical environment. This framework has been widened by Darwiche and Pearl
[DP97a] for (qualitative) epistemic states and conditional beliefs. An even more general ap-
proach, unifying revision methods for quantitative and qualitative representations of epistemic
states, is described in [KI01a]. The crucial meaning of conditionals as revision policies for belief
revision processes is made clear by the so-called Ramsey test [Ram50], according to which a
conditional (B|A) is accepted in an epistemic state Ψ, iff revising Ψ by A yields belief in B:

Ψ |= (B|A) iff Ψ∗A |= B (2)

where ∗ is a belief revision operator (see e.g. [Ram50, BG93]).
Note, that the term “belief revision” is a bit ambiguous: On the one hand, it is used to de-

note quite generally any process of changing beliefs due to incoming new information [Gär88].
On a more sophisticated level, however, one distinguishes between different kinds of belief
change. Here, (genuine) revision takes place when new information about a static world arrives,
whereas updating tries to incorporate new information about a (possibly) evolving, changing
world [KM91]. Expansion simply adds new knowledge to the current beliefs, in case that there
are no conflicts between prior and new knowledge [Gär88]. Focusing [DP97b] means apply-
ing generic knowledge to the evidence present by choosing an appropriate context or reference
class. Contraction [Gär88] and erasure [KM91] are operations inverse to revision and updating,
respectively, and deal with the problem of how to “forget” knowledge. In this paper, we will
make use of this richness of different operations, but only on a surface level, without going into
details. The explanations given above will be enough for understanding the approach to be de-
veloped here. An interested reader may follow the mentioned references. For a more general
approach to belief revision both in a symbolic and numerical framework, cf. [KI01a]. The revi-
sion operator ∗ used above is most properly looked upon as a revision or updating operator. We
will stick, however, to the term revision, and will use it in its general meaning, if not explicitly
stated otherwise.

The universe of revision operators is given by

RevisionOp = {Update,Revision,Expansion,Contraction,Erasure,Focusing}
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and the general task of revising knowledge is realized by a function

revise : EpState×RevisionOp×P(SenQ)→ EpState

A call revise(Ψ,op,S ) yields a new state where Ψ is modified according to the revision operator
op and the set of sentences S . Note that we consider here belief revision in a very general and
advanced form: We revise epistemic states by sets of conditionals – this exceeds the classical
AGM-theory by far which only deals with sets of propositional beliefs.

The constraints the function revise is expected to satisfy depend crucially on the kind of revi-
sion operator used in it and also on the chosen framework (ordinal or e.g. probabilistic). There-
fore, we will merely state quite basic constraints here, which are in accordance with the AGM
theory [AGM85] and its generalizations [DP97a, KI01a].

The first and most basic constraint corresponds to the success postulate in belief revision
theory: if the change operator is one of Update,Revision,Expansion, the new information is
expected to be present in the posterior epistemic state:

revise(Ψ,Revision,S ) |=Q S

revise(Ψ,Update,S ) |=Q S

revise(Ψ,Expansion,S ) |=Q S

Furthermore, any revision process should satisfy stability – if the new information to be incor-
porated is already represented in the present epistemic state, then no change shall be made:

If Ψ |=Q S then:

revise(Ψ,Revision,S ) = Ψ

revise(Ψ,Update,S ) = Ψ

revise(Ψ,Expansion,S ) = Ψ

Similarly, for the deletion of information we get:

If not Ψ |=Q S then:

revise(Ψ,Contraction,S ) = Ψ

revise(Ψ,Erasure,S ) = Ψ

To establish a connection between revising and retracting operations, one may further impose
recovery constraints:

revise(revise(Ψ,Contraction,S ),Revision,S ) = Ψ

revise(revise(Ψ,Erasure,S ),Update,S ) = Ψ

A correspondence between inductive knowledge representation and belief revison can be es-
tablished by the condition

inductive(S) = revise(uniform,Update,S). (3)

Thus, inductively completing the knowledge given by S can be taken as revising the non-
knowledge representing epistemic state uniform by updating it to S.

In CONDORASM, revision is realized by the rule

Adaptive and Mobile Processes 10 / 17
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if do = Revision
then currstate := revise(currstate, rev op, new information)

where the monitored functions rev op : RevisionOp and new information : P(SenQ) provide the
type of revision operator to be applied and the set of new sentences to be taken into account,
respectively.

Example 5 In a probabilistic framework, a powerful tool to revise (more appropriately: up-
date) probability distributions by sets of probabilistic conditionals is provided by the principle
of minimum cross-entropy which generalizes the principle of maximum entropy in the sense of
(3): Given a (prior) distribution, P, and a set, S , of probabilistic conditionals, The MinEnt-
distribution PME = MinEnt(P,S ) is the (unique) distribution that satisfies all constraints in S
and has minimal cross-entropy with respect to P, i.e. PME solves the minimization problem

argminR(P′,P) = ∑
ω

P′(ω) log
P′(ω)
P(ω)

(4)

s.t. P′ is a probability distribution with P′ |= S

If S is basically compatible with P (i.e. P-consistent, cf. [KI01a]), then PME is guaranteed to
exist (for further information and lots of examples, see [Csi75, PV92, Par94, KI01a]). The
cross-entropy between two distributions can be taken as a directed (i.e. asymmetric) information
distance [Sho86] between these two distributions. So, following the principle of minimum cross-
entropy means to revise the prior epistemic state P in such a way as to obtain a new distribution
which satisfies all conditionals in S and is as close to P as possible. So, the MinEnt-principle
yields a probabilistic belief revision operator, ∗ME, associating to each probability distribution P
and each P-consistent set S of probabilistic conditionals a revised distribution PME = P∗ME S
in which S holds.

Example 6 Suppose that some months later, the agent from Example 3 has changed his mind
concerning his formerly held conditional belief (young|student) – he now believes that students
are young with a probability of 0.9. So an updating operation has to modify P∗ appropriately.
We use MinEnt-revision to compute P∗∗ = revise(P∗,Update,{(b|a)[0.9]}). The result is shown
in the table below.

ω P∗∗(ω) ω P∗∗(ω) ω P∗∗(ω) ω P∗∗(ω)

abc 0.2151 abc 0.1939 abc 0.0200 abc 0.0255
abc 0.1554 abc 0.1401 abc 0.1099 abc 0.1401

It is easily checked that indeed, P∗∗(b|a) = 0.9 (only approximately, due to rounding errors, since

P∗∗(b|a) =
P∗∗(ab)
P∗∗(a)

=
0.2151+0.1939

0.2151+0.1939+0.0200+0.0255
=

0.4090
0.4545

≈ 0.8999

holds).
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4.5 Diagnosis

Having introduced these first abstract functions for belief revision, we are already able to intro-
duce additional functions. As an illustration, consider the function

diagnose : EpState×P(FactQ)×P(SimpleFactU )→P(SimpleFactQ)

asking about the status of certain simple facts D ⊆ SimpleFactU = Σ in a state Ψ under the
condition that some particular factual knowledge S (so-called evidential knowledge) is given.
It is defined by

diagnose(Ψ,S ,D) = belief(revise(Ψ,Focusing,S ),D)

Thus, making a diagnosis in the light of some given evidence corresponds to what is believed in
the state obtained by adapting the current state by focusing on the given evidence.

Diagnosis is realized by the rule

if do = Diagnosis
then believed sentences := diagnose(currstate, evidence, diagnoses)

where the monitored functions evidence : P(FactQ) and diagnoses : P(SimpleFactU ) provide
the factual evidence and a set of (unquantified) facts for which a degree of belief is to be deter-
mined.

Example 7 In a probabilistic framework, focusing on a certain evidence is usually done by
conditioning the present probability distribution correspondingly. For instance, if there is certain
evidence for being a student and being unmarried – i.e. evidence = {student∧unmarried[1]} –
and we ask for the degree of belief of being young – i.e. diagnoses = {young} – for currstate =
P∗ from Example 3, the system computes

diagnose(P∗,{student∧unmarried[1]},{young}) = {young[0.8270]}

and update believed sentences to this set. Thus, if there is certain evidence for being an unmar-
ried student, then the degree of belief for being young is 0.8270.

4.6 What-If-Analysis: Hypothetical Reasoning

There is a close relationship between belief revision and generalized nonmonotonic reasoning
described by

R |∼
Ψ

S iff Ψ∗R |=Q S

(cf. [KI01a]). In this formula, the operator ∗ may be a revision or an update operator. Here,
we will use updating as the operation to study default consequences. So, hypothetical reasoning
carried out by the function

nmrupd : EpState×P(SenQ)×P(SenU )→P(SenQ)
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can be defined by combining the belief -function and the revise-function:

nmrupd(Ψ,Sq,Su) = belief(revise(Ψ,Update,Sq),Su)

The assumptions Sq used for hypotherical reasoning are being hold in the monitored function
assumptions : P(SenQ) and the sentences Su used as goals for which we ask for the degree of
belief are being hold in the monitored function goals : P(SenU ). Thus, we obtain the rule

if do = What-If-Analysis
then believed sentences := nmrupd(currstate, assumptions, goals)

Example 8 With this function, hypothetical reasoning can be done as is illustrated e.g. by
“Given P∗ in Example 3 as present epistemic state – i.e. currstate = P∗ –, what would be the
probability of (b|c) – i.e. goals = {(b|c)} –, provided that the probability of (b|a) changed to 0.9
– i.e. assumptions = {(b|a)[0.9]} ?” CONDOR’s answer is believed sentences = {(b|c)[0.7404]}
which corresponds to the probability given by P∗∗ from Example 6.

4.7 Conditional Knowledge Discovery

Conditional knowledge discovery is modelled by a function

CKD : EpState→P(SenQ)

that extracts measured facts and rules from a given state Ψ that hold in that state, i.e.
Ψ |=Q CKD(Ψ). More significantly, CKD(Ψ) should be a set of “interesting” facts and rules,
satisfying e.g. some minimality requirement. In the ideal case, CKD(Ψ) yields a set of mea-
sured sentences that has Ψ as its “designated” representation via an inductive representation
formalism inductive. Therefore, discovering most relevant relationships in the formal repre-
sentation of an epistemic state may be taken as solving the inverse representation problem (cf.
[KI00, BK02, FKB07]):

Given an epistemic state Ψ find a set of (relevant) sentences S that has Ψ as its
designated representation, i.e. such that inductive(S) = Ψ.

The intended relationship between the two operations inductive and CKD can be formalized by
the condition

inductive(CKD(Ψ)) = Ψ

which holds for all epistemic states Ψ.
This is the theoretical basis for our approach to knowledge discovery. In practice, however,

usually the objects knowledge discovery techniques deal with are not epistemic states but statis-
tical data. We presuppose here that these data are at hand as some kind of distribution, e.g. as a
frequency distribution or an ordinal distribution (for an approach to obtain possibility distribu-
tions from data, cf. [GK97]). These distributions will be of the same type as epistemic states in
the corresponding framework, but since they are ontologically different, we prefer to introduce
another term for the arguments of CKD-functions:

distribution : EpState
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if do = CKD
then believed sentences := CKD(distribution)

For instance, in a quantitative setting, Ψ may be a (rather complex) full probabilistic dis-
tribution over a large set of propositional variables. On the other hand, CKD(Ψ) should be a
(relatively small) set of probabilistic facts and conditionals that can be used as a faithful repre-
sentation of the relevant relationships inherent to Ψ, e.g. with respect to the MaxEnt-formalism
(cf. Section 4.1). So, the inverse representation problem for inductive = MaxEnt reads like this:
Find a set CKD(Ψ) such that Ψ is the uniquely determined probability distribution satisfying
Ψ = MaxEnt(CKD(Ψ)).

We will illustrate the basic idea of how to solve this inverse MaxEnt-problem by continuing
Example 3.

Example 9 The probability distribution we are going to investigate is P∗ from Example 3.
Starting with observing relationships between probabilities like

P∗(abc) = P∗(abc),

P∗(abc)
P∗(abc)

=
P∗(abc)
P∗(abc)

,

P∗(abc)
P∗(abc)

=
P∗(abc)
P∗(abc)

,

the procedure described in [KI01b] yields the set Su = {(b|a),(b|c)} of unquantified (structural)
conditionals not yet having assigned any probabilities to them. Associating the proper probabil-
ities (which are directly computable from P∗) with these structural conditionals, we obtain

S = CKD(P∗) = {(b|a)[0.8], (b|c)[0.7]}

as a MaxEnt-generating set for P∗, i.e. P∗ = MaxEnt(S ). In other words, the probabilistic
conditionals

(young|student)[0.8],
(young|unmarried)[0.7]

that have been generated from P∗ fully automatically, constitute a consise set of uncertain rules
that faithfully represent the complete distribution P∗ in an information-theoretically optimal way.
So indeed, we arrived at the same set of conditionals we used to build up P∗ in Example 3. Thus,
in this case we have

CKD(MaxEnt(S )) = S

But note, that in general, CKD(P) will also contain redundant rules so that only

CKD(MaxEnt(S )) ⊇ S

will hold.
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5 Conclusions and Further Work

Starting from a bird’s-eye view of the CONDOR system, we developed a high-level ASM spec-
ification for a system that provides powerful methods and tools for the modelling of an agent’s
epistemic state and its dynamic changes. Thereby, we were able to elaborate crucial interdepen-
dencies between different aspects of knowledge representation, knowledge discovery, and belief
revision.

Whereas in this paper, we deliberately left the universe Q of quantitative and qualitative scales
abstract, aiming at a broad applicability of our approach, in a further development step described
in [BK07], we refined CONDORASM to a qualitative approach using unquantified conditionals
as default rules and using ordinal conditional functions as its models [Spo88]. In vertical re-
finement steps, the abstract functions like belief and revise are elaborated by realizing them at
lower-level data structures, following the ASM idea of stepwise refinement.
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Forschungsgemeinschaft (grants BE 1700/5-1, BE 1700/7-1 and KE 1413/2-1).
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