
Electronic Communications of the EASST
Volume 36 (2010)

Proceedings of the
Workshop on OCL and Textual Modelling

(OCL 2010)

Support for Bidirectional Model-to-Text Transformations

Anthony Anjorin, Marius Lauder, Michael Schlereth and Andy Schürr

15 pages

Guest Editors: Jordi Cabot, Tony Clark, Manuel Clavel, Martin Gogolla
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/270295423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

Support for Bidirectional Model-to-Text Transformations

Anthony Anjorin1∗, Marius Lauder2†, Michael Schlereth3 and Andy Schürr4

1 anthony.anjorin@es.tu-darmstadt.de
2 marius.lauder@es.tu-darmstadt.de
4 andy.schuerr@es.tu-darmstadt.de

http://www.es.tu-darmstadt.de
Technische Universität Darmstadt, Real-Time Systems Lab,

Merckstr. 25, 64283 Darmstadt, Germany

3 michael.schlereth@siemens.com
Industry Sector, Industry Automation & Drive Technologies Divisions,

I IA&DT ATS 41, Siemens AG,
Gliewitzerstraße 555, 90475 Nuremberg, Germany

Abstract: In recent years, model-driven approaches and processes have established
themselves as pragmatic and feasible solutions with tangible advantages. Trans-
formations play a central role in any model-driven solution and, as interest in tex-
tual modelling grows, providing concepts and tools for supporting a high-level and
declarative specification of bidirectional model-to-text transformations becomes a
vital area of research. Our paper identifies important areas and scenarios for model-
to-text transformations that are not or only partially supported by currently existing
solutions. Based on the requirements of a real-world case study, we introduce a
new concept that has been inspired by a successful bidirectional model-to-model
transformation approach: Triple Graph Grammars.

Keywords: textual modelling, model-to-text transformations, bidirectional trans-
formations, pair grammars, triple graph grammars, AST

1 Introduction and Motivation

A model-driven approach requires the right abstraction or model for a certain task and estab-
lishes an appropriate Domain Specific Language (DSL), with which solutions can be expressed
in a high-level manner. A corresponding model-driven process or solution promises a series of
advantages including an improvement of software quality and better support for reusability. For
these reasons and many more, the model-driven paradigm is establishing itself as a realistic and
practical way of designing and improving software systems with a short turnaround time and
tangible advantages [SV05].

∗ Supported by the ‘Excellence Initiative’ of the German Federal and State Governments and the Graduate School of
Computational Engineering at TU Darmstadt.
† Supported by the ‘Excellence Initiative’ of the German Federal and State Governments and the Graduate School of
Computational Engineering at TU Darmstadt.

1 / 15 Volume 36 (2010)

mailto:anthony.anjorin@es.tu-darmstadt.de
mailto:marius.lauder@es.tu-darmstadt.de
mailto:andy.schuerr@es.tu-darmstadt.de
http://www.es.tu-darmstadt.de
mailto:michael.schlereth@siemens.com

Support for Bidirectional Model-to-Text Transformations

Transformations: model-to-model and model-to-text, unidirectional or bidirectional, play a
central role in successfully establishing a model-driven solution. In this paper, we focus on (bidi-
rectional) model-to-text transformations, which are of great relevance in the context of textual
modelling.

Based on the requirements of a real-world case study, our contribution shows scenarios that
are not or only partially supported by existing approaches and solutions. These include ignor-
ing large text fragments in a text-to-model transformation, catering for complex real-world pro-
gramming languages that require (partially) manually programmed parsers, and providing ex-
plicit support for traceability links and bidirectionality. As an answer to these requirements, we
present a novel bidirectional model-to-text transformation language inspired by so-called Triple
Graph Grammars (TGGs) [Sch94].

This paper is structured as follows: Section 2 introduces our case study, showcasing pertinent
requirements which are further discussed in Sec. 3, which considers state-of-the-art solutions,
identifies open problems, and presents preliminary results that culminate in our current vision for
a bidirectional model-to-text transformation language. This is informally introduced in Sec. 4
based on the requirements of the case study. Section 5 concludes with a brief summary and an
outlook on future work.

2 Case Study

In the last two years, we investigated the field of Model-Driven Automation Engineering (MDAE)
[SRS09, LSRS10] in cooperation with Siemens AG. Automation engineering is a complex dis-
cipline where experts of different domains work in parallel to set up highly complex machine
systems. As an example of such a system, we decided to explore a high-bay warehouse storage
and retrieval system that consists of many components such as motion control units, communica-
tion devices, and drive units. The different domain experts involved in the development process
typically use their own well established and trusted domain specific workflows, processes, and
tools.

To reduce the complexity of the case study, we focused on two typical types of information in
different domains: A set of commands in Statement List (STL)1 in automation engineering, and a
Location Oriented Structure (LOS)2 in electrical engineering. In this case study, we provide en-
gineers with a new tool that enables them to synchronise data created and/or modified using their
own different and established tools. Setting up such a tool integration requires close collabora-
tion with domain experts to identify relevant aspects of each tool in a corresponding metamodel3,
and to define a set of correspondences as traceability links that can be used to ensure consistency.
Keeping a program in STL consistent with an LOS model requires a bidirectional model-to-text
transformation as STL code must be parsed (text-to-model) and LOS models unparsed (model-
to-text).

As depicted in Fig. 1, the engineering tools involved are Comos ET (Fig. 1::1) for editing
LOS models, and SIMATIC STEP7 (Fig. 1::2) for editing STL code. To integrate these different

1 STL in SIMATIC STEP7 corresponds to the “Instruction List” language defined in IEC 61131-3.
2 Defined in IEC 61346-1.
3 A model that describes other models.

Proc. OCL 2010 2 / 15

ECEASST

Comos ET

Tool specific
export format

Tool specific
import format

[1]

LOS Metamodel

instance of

STL inspired Metamodel

instance of

Bidirectional
model-to-model
transformation

Bidirectional
model-to-text
transformation

High-level models
of relevant aspects

of STL code

[3] [5]

[7]

Tool adapter
for

Comos ET

LOS models

[4] [6]

SIMATIC STEP7

Changes to
code made
in SIMATIC
STEP7

[2]

Figure 1: Workflow and central components of our tool integration case study.

tools, an LOS metamodel (Fig. 1::3) was specified and a tool adapter (Fig. 1::4), to transform
from the export/import format used by Comos ET to instances of the LOS metamodel, was
implemented. An STL inspired metamodel (Fig. 1::5), representing relevant aspects of STL
programs, was also established, with which the LOS↔ STL integration could be implemented
via a bidirectional model-to-model transformation using TGGs (Fig. 1::6), and a bidirectional
model-to-text transformation (Fig. 1::7) from STL code models to corresponding STL programs.
The use of an appropriate STL inspired metamodel (Fig. 1::5), instead of directly mapping LOS
models to text and vice-versa, has two advantages: firstly, the model-to-text transformation is
simplified, as the STL inspired metamodel is conceptually closer to the textual syntax to be
handled, and secondly, the established model-to-text transformation can be reused in a totally
different context.

It is important to note that STL is neither a textual view nor a textual concrete syntax for an
STL model. STL is a programming language used to specify the tasks to be run on a SIMATIC
Programmable Logic Controller (PLC) and is defined by Siemens AG. In our context, the STL
inspired metamodel is intentionally incomplete and can be regarded as an abstraction of a com-
plex programming language, suitable for the specific integration. This metamodel is the result
of intense collaboration with domain experts and has been extended and refined in an iterative
manner.

Figure 2 depicts a simplified version of the STL inspired metamodel for our case study. A
program in STL consists of files that may either be organisational blocks (OBs) or functions
(FCs). An FC file contains concrete commands to control and/or use certain devices or device
items that are to be programmed, e.g. the movement of a motion unit dependent on the output of
some sensor. In an OB file, different environment variables are set and the execution order of the
FCs is coordinated. An FC can be used or invoked from an OB via CALL commands in the OB
file. These call commands are, for example, of the form CALL FC 32; where 32 is the address
of some FC. As a first iteration, we focused only on the usage of FCs by an OB, which has a title

3 / 15 Volume 36 (2010)

Support for Bidirectional Model-to-Text Transformations

OB

FC

Title

Comment

value: String

value: String

address: Integer

1

1 1

1 1

uses

Figure 2: A metamodel for a small excerpt of STL, relevant for our integration.

and a comment. All other details of STL are left out and handled as static text fragments.
The other data structure to be integrated is described by the LOS metamodel (Fig. 1::3) that

specifies the structure of a machine system from a more physical point of view. The system is
classified starting from the installation location and along its placement relationships (e.g. a de-
vice is placed inside a control cabinet). As our focus in this paper is on the required bidirectional
model-to-text transformation, we will not go into further details on the LOS metamodel.

LOS models and corresponding STL code have points of tangency, where information is rep-
resented in both forms. As an example, consider a certain drive device in an LOS model, repre-
senting an axis of a storage and retrieval machine of the high-bay warehouse system, which is
programmed via an FC file in STL. Such explicit coupling enables the exchange of information
in a bidirectional manner. The goal is to support engineers within their established workflows by
providing a powerful tool that enables fast information exchange and consistency checks. Once
again, as we focus on the necessary model-to-text transformation, the integration model for the
case study is not discussed further (cf. [LSRS10] for details).

The presented case study requires a tool integration technique that supports the following
requirements:

• Information has to be exchanged in both directions, from a specific STL program to a spe-
cific LOS model and vice-versa. Therefore, bidirectional transformations are necessary.

• Established workflows using standard engineering tools (e.g. Comos ET for LOS and
SIMATIC STEP7 for STL) have to be supported and complemented and cannot be changed
by enforcing the use of a new and different tool or editor. Therefore, a technique has to be
developed that enables us to use the data as provided by the corresponding tools.

• Clear and simple interfaces for integrating and using possibly preexisting parsers and meta-
models built with standard tools (parser generators, CASE-tools).

• The integration with a standard programming language requires an iterative process of
abstracting from irrelevant parts of the textual syntax and focusing on aspects that are
relevant for the integration. In our experience, this corresponds to how domain knowledge
is obtained in numerous discussions and meetings with domain experts.

Proc. OCL 2010 4 / 15

ECEASST

3 Related Work

State-of-the-art (bidirectional) model-to-text transformations can be grouped according to differ-
ent criteria. An important and very general classification is achieved by making a clear distinction
between approaches for supporting concrete textual syntaxes for new DSLs, and approaches for
dealing with arbitrary and often preexisting fixed textual (programming) languages.

3.1 Support for defining a new concrete textual syntax

When choosing a textual concrete syntax for a Domain Specific Language (DSL), one usually has
the freedom to define the textual representation from scratch – possibly inspired by a pre-existing
domain specific notation. For lightweight DSLs, it is furthermore vital to be able to implement
the textual concrete syntax and appropriate tool support, as fast and as easily as possible. For a
further detailed classification and evaluation of approaches that fall into this group, please refer
to [GBU10].

Current challenges in this group include automatically generating tool support, supporting in-
cremental updates, and providing an intuitive means of specifying the textual syntax, from which
a parser, possibly an unparser (if bidirectionality is to be supported), and tool support like edi-
tors, outlines etc. can be generated. A viable solution ([GBU09], [Nag96]) is to provide a syntax
driven editor, that treats the textual syntax as a view of the actual model. Furthermore, many
approaches are grammar-based ([Nag96], [EV06], [KRV08]) and require the user to specify the
textual syntax using usually an EBNF-like grammar, from which a metamodel, parser, editor etc.
are generated.

3.2 Support for arbitrary pre-existing textual languages

The second group of model-to-text transformation approaches – according to our general clas-
sification – aspires to cater for arbitrary textual languages and does not assume a direct 1:1
correspondence with a model. Moreover, the syntax of the targeted textual language is usually
fixed and cannot be changed at will. Members of this group include mostly unidirectional ap-
proaches such as parser generators (ANTLR [Par07]), and template languages (Xpand [EK06]).
In this group, bidirectional approaches [BGSZ10] are usually restricted to a specific metamodel
and are not meant as a general framework for specifying arbitrary model-to-text transformations.

Challenges here include explicit support for bidirectionality and traceability links, and a high-
level, intuitive and homogeneous language for specifying the actual transformations in both di-
rections simultaneously.

3.3 Identified challenges and open problems

Based on our case study (Sec. 2) and the experience gained working with our research partner
(Siemens AG), we were able to identify the following points that are indeed relevant for a wide
range of scenarios including tool-integration, and are not – or only partially – supported by state-
of-the-art solutions:

5 / 15 Volume 36 (2010)

Support for Bidirectional Model-to-Text Transformations

3.3.1 Enabling an iterative process:

Handling parts of the textual syntax that are irrelevant for the current model is an important
prerequisite for an iterative process. In our experience, domain knowledge about the textual
syntax is constantly extended and corrected in several meetings with clients and domain experts.
This is only possible if one is able to focus on a few aspects of the textual syntax at a time and
treat the rest as static textual fragments that have to be present, but are currently irrelevant for
model creation.

3.3.2 Working with arbitrary parsers:

Preexisting textual languages are usually already in use in a company or by a certain tool. This
implies that parsers probably already exist for the language and should not be reimplemented.
In some cases, the nature of the language (e.g. syntactical extensibility) requires a specific kind
of possibly hand-written parser. It is, therefore, sometimes problematical to require a certain
grammar and generate the corresponding parser automatically. A general solution must provide
a simple interface for connecting to arbitrary parsers, and not aspire to replace powerful and
stable parser generators.

3.3.3 Not enforcing a certain editor:

As is clearly the case in our case study based on SIMATIC STEP7 – it is often simply impossible
to impose a certain editor. In the context of tool-integration (Fig. 1), a major goal is to be able to
deal with changes made using the corresponding tools. Solutions that rely on specific features
of syntax driven editors are therefore not generally viable in the case.

3.3.4 Ensuring replaceable templates:

We propose keeping templates as simple as possible to ensure that they remain a clean, replace-
able view of the AST of the textual syntax [Par04].

3.3.5 Providing explicit support for bidirectionality:

Almost all approaches do not explicitly support bidirectionality and require the user to com-
pletely switch tools/languages. We propose providing support directly in the transformation
language and argue that bidirectionality is often a necessity (such as in our case study) and is
– in the majority of cases – always advantageous (e.g. for traceability links, handling manually
edited code, etc).

3.3.6 Providing an intuitive, high-level transformation language:

A major problem with many code generators is that the resulting system is on a low level of
abstraction and is hard to maintain, retarget or reuse in a different context. A solution would be
to use a high-level declarative transformation language. The possibility and advantages of using
Triple Graph Grammars (TGGs) to implement a bidirectional model-to-text transformation has

Proc. OCL 2010 6 / 15

ECEASST

been considered and argued by [Wag09]. However, as a concrete implementation of a necessary
parser and unparser is not discussed, we propose a solution that is inspired by TGGs but explicitly
caters for the necessary interaction of all components (parser, templates and metamodel).

3.4 Preparatory Work and Results

In the context of our research cooperation with Siemens AG, an initial prototype was imple-
mented for our case study. We chose a grammar-based approach, generating a parser, templates
and a rudimentary metamodel from a code specification in simple EBNF with additional lay-
out information. Our prototype supports fully bidirectional model-to-text transformations but
is restricted to languages that can be expressed by our grammar. The lessons that we learnt
and the experience gained include focusing on the actual transformation and interaction of stan-
dard parsers, user-defined templates and metamodels, rather than automatically generating the
necessary components. Further work on an ANTLR based solution, leveraging ANTLR’s tree
grammars for abstracting from a parse tree, has led to our final vision – discussed in the fol-
lowing chapter – which uses pattern matching to allow for a declarative (what and not how)
specification. Furthermore, it addresses all of the challenges identified in Sec. 3.

4 Code Adapters with Pair Grammars

Concepts in metamodelling in general and model transformations in particular, can be for-
malised, using the well researched and formally founded field of graph theory. As models con-
sist of objects (nodes) and links (edges), the terms model and graph can be used synonymously.
Along similar lines, model transformations can be formalised using graph grammars [EGL+05].

Triple Graph Grammars (TGGs), introduced by Schürr in 1994 [Sch94] were inspired by
Pratt’s Pair Grammars, originally presented in 1971 [Pra71]. The motivation for TGGs was
to establish a declarative, intuitive and bidirectional model-to-model transformation language.
Two models are coupled explicitly via correspondence links, by describing the coupling on the
meta-level using TGGs to integrate the metamodels of the two modelling languages, being con-
sidered. On this meta-level, a set of declarative rules is also defined that express under which
conditions elements from the two models are to be associated and how to create the appropriate
correspondence links. TGGs describe the simultaneous evolution of three models (source, target
and correspondence), which, although compact and intuitive to specify, cannot be used in prac-
tice. For this reason, different transformators are derived from a TGG that implement forward
and backward transformations, consistency checks, and correspondence link creation. These
transformators handle the necessary pattern matching and rule application conditions, as well as
object creation. The reader is referred to [SK08] for the latest state-of-the-art TGG theory.

The advantages of a model-to-text transformation language inspired by TGGs include explicit
support for bidirectionality and traceability links, a high-level intuitive specification of the trans-
formation [Wag09], and a seamless user experience for continuing with our bidirectional model-
to-model transformation language (TGGs). Our approach reflects back on the original idea and
motivation for using pair grammars, namely, coupling a textual syntax with a corresponding
graph grammar (metamodel).

7 / 15 Volume 36 (2010)

Support for Bidirectional Model-to-Text Transformations

MOFLON is a meta-case tool developed at the real-time lab at TU Darmstadt and supports,
amongst other things, setting up a tool integration environment [KRS09]. To communicate with
the tools involved, tool adapters are partly generated and have to be implemented to enable
communication with the corresponding tool, either online via a tool API, or offline via an im-
port/export of a tool-specific persistence format. We regard our pair grammar solution as a means
of implementing a code adapter, thereby treating a certain textual syntax as just another tool-
specific format in the context of a tool integration. Further applications include code generation
and model extraction for arbitrary models.

With our extension, MOFLON would not only be a framework for metamodelling and speci-
fying bidirectional model-to-model transformations, but also a flexible and homogeneous frame-
work for specifying bidirectional model-to-text transformations and thus code adapters, code
generators, or model extractors depending on the concrete use case.

4.1 MOCA (MOFLON Code Adapter Framework)

Figure 3 depicts all components and the data flow in our envisioned framework. The cen-
tral component here is a pair grammar (Fig. 3::1) that specifies the connection between in-
stances (Fig. 3::2) of the user-supplied metamodel (Fig. 3::3) and relevant parts of the text in an
AST (Fig. 3::4). In the following Sec. 4.2, we will discuss the declarative pair grammar for our
case study.

When going from model to text, the AST is generated for a corresponding model according
to the rules in the pair grammar and transformed into text by an unparser (Fig. 3::5). The textual
representation of an AST is unique as the tree structure can always be traversed in the same
way (e.g depth-first). Specifying the textual representation for the AST is an iterative process,
as the user starts with a default textual representation, and can add, change or replace templates
to decorate nodes in the AST and thereby structure and extend the textual output as required.
This set of templates (Fig. 3::6) defines the static parts of the textual syntax that were ignored
by the parser and should be added for a complete result. Fig. 3::7 represents the textual syntax
generated by the unparser and may consist of an arbitrary number of files.

For the text to model transformation, this code is passed on to the parser (Fig. 3::8) that decides
which parts of the text are relevant and which not. This abstraction results in a concise Abstract
Syntax Tree (Fig. 3::4) that is most suitable for the current transformation. The parser is an
important component that the user must provide if a text-to-model transformation is required –
for example using a parser generator or other means. The interface to our framework is a simple
AST structure that the supplied parser must adhere to. It is important to note that the parser must
focus on relevant parts of the text and should be iteratively extended to include more and more
aspects as they become necessary for the transformation.

In our opinion, this is a flexible, powerful framework that allows the user maximum freedom.
In our experience, the parser should usually be lenient and error tolerant with respect to the
input text, while the unparser should always produce well formatted and structured code. If the
user decides to retain white space or manually edited code and formatting, the parser can be
implemented to be white space sensitive and add the necessary text fragments as nodes in the
AST.

This means that one must distinguish between:

Proc. OCL 2010 8 / 15

ECEASST

Code

[7]

AST

[4]

Pair Grammar

[1]

instance of

STL inspired Metamodel

Model

[2]

[3]

Unparser

Parser

Templates

[8]

[5]

[6]

Figure 3: MOCA: MOFLON Code Adapter Framework

• static text fragments that are not to be manually edited and can be ignored by the parser
and subsequently added when generating code via templates,

• and text fragments that are currently irrelevant for model extraction but can be manually
edited/formatted by the user and should be preserved.

The latter cannot be completely ignored by the parser but should be added without further anal-
ysis as nodes in the AST. These can then be added to the model as simple attributes4 with the
corresponding textual content and written out unchanged when generating code. For simple tex-
tual syntaxes, [BGSZ10] shows that a rudimentary parser can be generated directly from the
specified templates and does not need to be implemented. Our framework fulfils all identi-
fied requirements in Sec. 3.3, and the focus is clearly on the specification of the transformation
(Fig. 3::1).

4.2 Pair grammar for our case study

A pair grammar consists of a set of rules. Each rule specifies how an AST fragment and a model
fragment are to be built in parallel. Analogous to TGG theory, a set of forward and backward
transformators can be derived from the rules that transform a model to an AST and vice-versa. As
the right part of every rule is always an instance of the same simple AST-metamodel, we propose
to simplify the specification by only requiring rules directly at the model level and deriving the
necessary rule schemas at the metamodel level automatically. This is possible, because the AST
metamodel is fixed and only contains simple concepts of a folder, a file and generic nodes with
single values.

Figure 4 shows the three rules necessary for a simplified version of our case study. The left
part of the rule is a valid fragment of an instance of the user supplied metamodel. Only elements
and associations compatible to the metamodel can be used. Elements annotated with a “++” are

4 With sensible default values.

9 / 15 Volume 36 (2010)

Support for Bidirectional Model-to-Text Transformations

transformOB:

<val>

CALLS
<val>

stl_project

OB1.STL
[] transformFC

[] transformCALL

1.

2.
3.

:OB

:Title
value = val

:Comment
value = val

++

++++++

++

++ ++

++
++

++

++

transformFC [name != `OB1.STL]:

<name>

:FC
address = val

<val>

1.

++

++

++
++

transformCALL [call == val]:

CALLS

<val>

OB1.STL

:OB

:FC

<name>

<call>
++

++uses

Figure 4: Pair grammar for our case study

Proc. OCL 2010 10 / 15

ECEASST

to be created by the rule and do not need to be present for the rule to match. Elements without a
“++” form the context of the rule and must be present for the rule to match5.

The right part of the first rule transformOB describes the overall structure of an STL
project. A folder (stl project) contains a single OB file (OB1.STL) and multiple FC files.
The OB file, as a file node in the AST, contains three ordered children: (1.) a node representing
the title, (2.) a node ’CALLS’ containing all function calls as children, and (3.) a node repre-
senting a comment. Nodes in the AST are either folders or files with names, or generic nodes
with a single value. The value can be explicitly specified (e.g. CALLS) or left variable (e.g.
<val>). The parts of the rule in square brackets are not part of the grammar and just indicate
that the subtrees, if present, would match the subrules transformFC and transformCALL.

The links between elements on different sides of the rules are so called traceability links
and constitute a correspondence model that can be used to transfer attribute values, and specify
further rules. This first rule transformOB consists only of elements marked with a “++” and,
therefore, has no prerequisites or context and can always be matched and executed. The rule
decides what model elements and nodes should be created by interpreting the corresponding
structure and order of children of nodes in the AST.

The second rule in Fig. 4 requires that a folder already exists (folder on the far right doesn’t
have a “++” and thus belongs to the context of the rule). If an existing folder is found (e.g.
after executing transformOB), every file whose name is not “OB1.STL” is linked to an FC
element with the appropriate address. The additional constraint is specified as a condition to the
rule and must be fulfilled for the pattern to match (transformFC[name != ‘OB1.STL’]).
The distinction between context and non-context elements in a rule allows for a declarative and
high-level specification of what and not how – and can be implemented with a pattern matching
engine [GSR05].

The last rule transformCALL, is a very interesting rule with a relatively complex context.
This rule enriches the model by searching for certain patterns in the AST. In this case, organisa-
tional blocks (OBs) use or call up functional blocks (FCs) if a corresponding call statement that
matches the address of the FC is found in the OB. This is expressed by the pattern on the right part
of the rule: a folder containing the OB and an arbitrary file are required. Both elements should
already be linked to model elements on the left part of the rule (already translated). Non-context
elements with a “++” specify that a “uses” association between an OB and an FC exists when
a “call” node is found in the OB file, which matches the name of an existing FC file with the
appropriate address (constraint is expressed again by the condition transformCALL[call
== val]).

4.3 Application of our pair grammar using an example:

In this section, we consider an instance of the STL inspired metamodel (Fig. 1) as our input
model and go through the steps of transforming it to STL code (model-to-text)6. The different
rules from Fig. 4 have to be applied to the input model. To this end, a so-called forward graph
transformator is derived from all rules, that expects all elements on the left of a rule to exist
already (i.e. context objects) and creates the appropriate elements on the right and the links
5 To increase readability, links in Fig. 4 are not annotated with “++” but of course, also have to be created.
6 Text-to-model is analogous and will not be discussed in detail.

11 / 15 Volume 36 (2010)

Support for Bidirectional Model-to-Text Transformations

in between7. Figure 5 depicts the graph triple after applying the transformOB rule on the

:FC
address = 13

:OB

:Title
value = OB1

:Comment
value = aComment OB1 CALLS

aComment

stl_project

OB1.STL
1.

2.

3.

uses

Figure 5: Model-to-text transformation after application of rule transformOB

model on the left. The result is the creation of a correspondence graph with its traceability links
(centre of Fig. 5) as well as an AST with a folder stl project and a file OB1.STL (right
part of Fig. 5). This file has child nodes (1.) OB1, that represents its title, and (3.) aComment,
representing a comment in the file. The child node (2.) CALLS is a structural node in the AST
that indicates that all child nodes thereof are “CALLs” in the OB file.

The next rule that can match is transformFC. Applying it to the input model creates an FC
file with a child node (1.) 13 and a link between the newly created FC file and its corresponding
FC object (Fig. 6).

:OB

:Title
value = OB1

:Comment
value = aComment OB1

aComment

stl_project

OB1.STL
1.

3.

uses

13

1.

:FC
address = 13

FC

CALLS
2.

Figure 6: Model-to-text transformation after application of rule transformFC

The “uses” connection between the FC object and the OB object now has to be established in
the AST. This is achieved by applying the transformCALL rule to the graph triple of Fig. 6.
The result is depicted in Fig. 7. A new child node (1.) 13 is added to the node CALLS, and
represents the corresponding call command in the OB file.

To complete the model-to-text transformation, MOCA serialises the AST by traversing it depth
first:

• Folder and file nodes are created in the file system.

7 Left→ right, hence “forward”.

Proc. OCL 2010 12 / 15

ECEASST

CALLS

FC

:FC
address = 13

13

1.

:OB

:Title
value = OB1

:Comment
value = aComment OB1

aComment

stl_project

OB1.STL
1.

3.

2.

13

1.

uses

Figure 7: Model-to-text transformation after application of rule transformCALLS

• For every other node, a search is made in the template archive for a corresponding template
for the node. If a template with the right name is found, it is instantiated and all child nodes
are passed as template parameters.

• If no appropriate template was found, MOCA simply uses the value of the node as the
default textual representation.

To complete the round-trip (Fig. 1) the user may now edit the generated code. For the text-to-
model transformation, this modified code is passed to the parser to produce the corresponding
AST (Fig. 3). With this AST now as the input model, the backward graph tranformator of the
specified pair grammar (Fig. 4) would create the new STL inspired model analogously to the
model-to-text transformation.

With this declarative and relatively simple grammar, our case study can be completed using
TGGs as a model-to-model transformation language to integrate our STL inspired metamodel
(Fig. 2) with the LOS metamodel and achieve our goal of integrating LOS models with corre-
sponding STL code artifacts (Fig. 1). Furthermore, a central goal is to achieve – from a user
perspective – a homogeneous and conceptually seamless change from model-to-text to model-
to-model transformations as required for the complete tool integration (LOS↔ STL).

5 Summary and Outlook

In this paper, we identified a series of important open problems that we introduced with a real-
world case study. As there is currently little or no support from existing approaches to address
these challenges, we presented an informal description of a new bidirectional model-to-text trans-
formation language, inspired by Triple Graph Grammars [Sch94] and the original concept of a
Pair Grammar [Pra71], and argued benefits using our case study as a concrete example.

In future work, we will present a formal specification of our bidirectional model-to-text trans-
formation language and underline similarities and differences to existing TGG theory. We will
continue work on our prototype and strive to share a common core with our existing TGG imple-
mentation in MOFLON. As the current pattern matching engine [GSR05] in use relies heavily on
types, we will implement pattern matching on the AST (generic and poorly typed) using different
algorithms that do not require types and instead exploit the tree structure.

13 / 15 Volume 36 (2010)

Support for Bidirectional Model-to-Text Transformations

Numerous applications are planned including a MATLAB tool adapter [ALSS08], our current
research cooperation with Siemens AG (LOS↔ STL), our internal code generator in MOFLON
to further bootstrap MOFLON with our own technology, and textual syntaxes for our modelling
and transformation languages (MOF, TGG, SDM) that currently only have a graphical concrete
syntax. With the experience obtained from all of these diverse use cases, we hope to be able to
distill a set of common requirements and features (scopes, declaration and definition, primitive
types, etc.) that can be supported directly as special edges and nodes in the AST fragments of our
pair grammars. Last but not least, we regard a suitable, intuitive, graphical and textual syntax
for our transformation language as very critical for its acceptance and success.

Bibliography

[AKK+08] C. Amelunxen, F. Klar, A. Königs, T. Rötschke, A. Schürr. Metamodel-based Tool
Integration with MOFLON. In Proc. of the 30th ICSE. Pp. 807–810. ACM Press,
May 2008. Formal Research Demonstration.

[AKRS06] C. Amelunxen, A. Königs, T. Rötschke, A. Schürr. MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In Rensink and
Warmer (eds.), Proc. of the 2nd ECMDA-FA. LNCS 4066, pp. 361–375. Springer,
2006.

[ALSS08] C. Amelunxen, E. Legros, A. Schürr, I. Stürmer. Checking and Enforcement of
Modeling Guidelines with Graph Transformations. In AGTIVE 2008. LNCS 5088,
pp. 313–328. Springer, 2008.

[BGSZ10] M. Bork, L. Geiger, C. Schneider, A. Zündorf. Towards Roundtrip Engineering -
A Template-Based Reverse Engineering Approach. In Proc. of the 4th ECMDA-FA.
LNCS 5095, pp. 33–47. Springer, 2010.

[EGL+05] Model transformation by graph transformation: A comparative study. 2005.

[EK06] S. Efftinge, C. Kadura. oAW 4.1 Xpand. Language reference. August 2006.
http://www.eclipse.org/gmt/oaw/doc/

[EV06] oAW xText: A framework for textual DSLs. 2006.

[GBU09] T. Goldschmidt, S. Becker, A. Uhl. Textual Views in Model Driven Engineering. In
Proc. of the 35th SEAA. Pp. 133–140. IEEE Computer Society, 2009.

[GBU10] T. Goldschmidt, S. Becker, A. Uhl. Classification of Concrete Textual Syntax Map-
ping Approaches. In Model Driven Architecture – Foundations and Applications.
LNCS 5095, pp. 169–184. Springer, 2010.

[GSR05] Template-and modelbased code generation for MDA-Tools. 2005.

[KLKS10] F. Klar, M. Lauder, A. Königs, A. Schürr. Extended Triple Graph Grammars with
Efficient and Compatible Graph Translators. Springer, 2010. Accepted for publica-
tion.

Proc. OCL 2010 14 / 15

http://www.eclipse.org/gmt/oaw/doc/

ECEASST

[KRS09] F. Klar, S. Rose, A. Schürr. TiE - A Tool Integration Environment. In Proc. of the 5th
ECMDA Traceability Workshop. CTIT Workshop Proceedings WP09-09, pp. 39–48.
2009.

[KRV08] H. Krahn, B. Rumpe, S. Völkel. Monticore: Modular development of textual domain
specific languages. Objects, Components, Models and Patterns, 2008.

[LSRS10] M. Lauder, M. Schlereth, S. Rose, A. Schürr. Model-Driven Systems Engineering:
State-of-the-Art and Research Challenges. Bulletin of the Polish Academy of Sci-
ences, Technical Sciences, 2010. Accepted for publication.

[Nag96] M. Nagl (ed.). Building tightly integrated software development environments: the
IPSEN approach. Springer, 1996.

[Par04] T. J. Parr. Enforcing strict model-view separation in template engines. In Proc. of
WWW ’04. Pp. 224–233. ACM, 2004.

[Par07] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Programmers. Pragmatic Bookshelf, first edition, May 2007.

[Pra71] T. W. Pratt. Pair grammars, graph languages and string-to-graph translations. J.
Comput. Syst. Sci. 5(6):560–595, 1971.

[Sch94] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In Tin-
hofer (ed.), 20th International Workshop on Graph-Theoretic Concepts in Computer
Science. LNCS 903, pp. 151–163. Springer, 1994.

[SK08] A. Schürr, F. Klar. 15 Years of Triple Graph Grammars - Research Challenges, New
Contributions, Open Problems. In Proc. of the 4th ICGT. LNCS 5214, pp. 411–425.
Springer, Nov. 2008.

[SRS09] M. Schlereth, S. Rose, A. Schürr. Model Driven Automation Engineering - Charac-
teristics and Challenges. In 5th Workshop on MBEES. 2009.

[SV05] T. Stahl, M. Voelter. Model-Driven Software Development. Wiley, 2005.

[Wag09] R. Wagner. Inkrementelle Modellsynchronisation: Univ., Diss.–Paderborn, 2009.
Logos-Verlag, 2009.

15 / 15 Volume 36 (2010)

	Introduction and Motivation
	Case Study
	Related Work
	Support for defining a new concrete textual syntax
	Support for arbitrary pre-existing textual languages
	Identified challenges and open problems
	Enabling an iterative process:
	Working with arbitrary parsers:
	Not enforcing a certain editor:
	Ensuring replaceable templates:
	Providing explicit support for bidirectionality:
	Providing an intuitive, high-level transformation language:

	Preparatory Work and Results

	Code Adapters with Pair Grammars
	MOCA (MOFLON Code Adapter Framework)
	Pair grammar for our case study
	Application of our pair grammar using an example:

	Summary and Outlook

