
Electronic Communications of the EASST
Volume 29 (2010)

Proceedings of the
Ninth International Workshop on

Graph Transformation and
Visual Modeling Techniques

(GT-VMT 2010)

A lightweight abstract machine for interaction nets

Abubakar Hassan, Ian Mackie and Shinya Sato

12 pages

Guest Editors: Jochen Küster, Emilio Tuosto
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/270295418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

A lightweight abstract machine for interaction nets

Abubakar Hassan1, Ian Mackie2 and Shinya Sato3

1 Department of Informatics, University of Sussex, Falmer, Brighton BN1 9QJ, UK

2 LIX, CNRS UMR 7161, École Polytechnique, 91128 Palaiseau Cedex, France

3 Himeji Dokkyo University, Faculty of Econoinformatics, 7-2-1 Kamiohno, Himeji-shi, Hyogo
670-8524, Japan

Abstract: We present a new abstract machine for interaction nets and demonstrate
that an implementation based on the ideas is significantly more efficient than existing
interaction net evaluators. The machine, which is founded on a chemical abstract
machine formulation of interaction nets, is a simplification of a previous abstract
machine for interaction nets. This machine, together with an implementation, is
at the heart of current work on using interaction nets as a new foundation as an
intermediate language for compiler technology.

Keywords: Interaction nets, programming languages, abstract machine

1 Introduction

Interaction nets [Laf90] are a graphical model of computation. It is possible to program with
interaction nets [HMS09, Mac05] and they also serve as an intermediate language for imple-
menting other programming languages. Some examples are encodings of λ -calculus, and simple
functional programming languages (amongst others, see for instance [AG98, GAL92, Mac98]).

One reason why they have been very successful at implementing other programming lan-
guages is that a compilation must explain all the components of a computation. What is rare, is
that the compilation can give something back, and this has been observed with the encodings on
the λ -calculus where new strategies for reduction have been found. One of the reasons for this
is because interaction nets naturally capture sharing, indeed one has to work hard to simulate
reduction strategies where duplication of work takes place.

In [FM99] a calculus was given which provided a foundation for the operational understanding
of interaction nets. This calculus led to the development of an abstract machine [Pin00], which
in turn led to a very efficient implementation of interaction nets.

Recently, there have been new developments in the foundations for a calculus of interaction
nets. The purpose of this paper is to outline these ideas which led to the main contribution of
the paper which is an abstract machine founded on the new calculus. This in turn has led to the
development of new implementations of interaction nets which are the most efficient that we are
aware of to date.

One of the main hopes of this work is that it provides a new foundation for a research pro-
gramme to build implementations of programming languages through interaction nets: an im-
provement in the implementation technology for nets will have an impact on all the compilers

1 / 12 Volume 29 (2010)

Interaction nets

developed.
The main contributions of this paper are:

• We define a new term calculus of interaction nets. The novelty is that the notion of substi-
tution is simplified in that it just replaces a name.

• We simplify and improve Pinto’s abstract machine [Pin00] by using this calculus. The
main improvement is due to the fact that we no longer need to maintain lists of names, and
consequently the transition rules become significantly more simple.

• We have built a prototype implementation based on the ideas. We demonstrate that we
get a factor of ten improvement over previous implementations, and this implementation
is thus the most efficient evaluator to date.

Overview. The rest of this paper is structured as follows. In the next section we review what
we need about interaction nets. In Section 3 we give our new calculus. Section 4 gives the
abstract machine, and gives studied properties of it. We conclude the paper in Section 5.

2 Interaction nets

Here we review the basic notions of interaction nets. We refer the reader to [Laf90] for a more
detailed presentation. Interaction nets are specified by the following data:

• A set Σ of symbols. Elements of Σ serve as agent (node) labels. Each symbol has an
associated arity ar that determines the number of its auxiliary ports. If ar(α) = n for
α ∈ Σ, then α has n+1 ports: n auxiliary ports and a distinguished one called the principal
port.

…x1 xn�
• A net built on Σ is an undirected graph with agents at the vertices. The edges of the net

connect agents together at the ports such that there is only one edge at every port. A port
which is not connected is called a free port. A set of free ports is called an interface.

• Two agents (α,β) ∈ Σ×Σ connected via their principal ports form an active pair (analo-
gous to a redex). An interaction rule ((α,β)−→ N) ∈Rin replaces the pair (α,β) by the
net N. All the free ports are preserved during reduction, and there is at most one rule for
each pair of agents. The following diagram illustrates the idea, where N is any net built
from Σ.

…�…�x1 xn y1 ym N… …x1 xn y1 ym…�…�
Proc. GT-VMT 2010 2 / 12

ECEASST

Sadd addSr y x r y x
Zaddr y r y

Rules: add addZ ZS Z ZS S Z
Example of reductions:

SSaddadd addaddSSr y x r y x
ZZaddaddr y r y

Rules: addadd addaddZZ ZZSS ZZ ZZSS SS ZZ
Example of reductions:

Figure 1: An example of a system of interaction nets

We use the relation−→ for the one step reduction and−→∗ for its transitive and reflexive closure.
Interaction nets have the following property [Laf90]:

Proposition 1 (Strong Confluence) Let N be a net. If N −→ N1 and N −→ N2 with N1 6= N2,
then there is a net N3 such that N1 −→ N3 and N2 −→ N3.

Figure 1 shows a classical example of an interaction net system that encodes the addition
operation. We can represent numbers using the agents S to represent the successor function
(n 7→ n+1) and Z to represent the number 0. The left of the figure contains the two addition rules
which we leave the reader to relate to the standard equational term rewriting system definition
of addition. The right of the figure gives an example reduction sequence which shows how a net
representing 0+1 is reduced to 1 using the given rules.

2.1 The calculus for interaction nets

In this section we review the calculus for interaction nets proposed by Fernández and Mackie [FM99].
We begin by introducing a number of syntactic categories:

Names Let N be a set of names ranged over by x,y,z,x1,x2, We write x̄, ȳ, . . . for sequences
of names. We assume N and Σ are disjoint.

Terms are built from Σ and N using the grammar: t ::= x | α(t1, . . . , tn), where t1, . . . , tn are
terms, α ∈ Σ and ar(α) = n. If ar(α) = 0, then we omit brackets and write just α . We use
t,s,u, . . . to range over terms and t̄, s̄, ū, . . . over sequences of terms.

Equations have the form: t = s, where t and s are terms. Equations are elements of computa-
tion. Given t̄ = t1, . . . , tk and s̄ = s1, . . . ,sk, we write t̄ = s̄ to denote the list t1 = s1, . . . , tk =
sk. We use ∆,Θ, . . . to range over multisets of equations.

Configurations have the form: 〈 t̄ | ∆ 〉, where t̄ is a sequence of terms representing the
interface of the net and ∆ is a sequence of equations. All names occur at most twice in
a configuration. We use C1,C2, ... to range over configurations. Configurations that differ
only on names are considered equivalent.

3 / 12 Volume 29 (2010)

Interaction nets

Interaction rules have the form: α(t1, ..., tn) on β (s1, ...,sk), where α(t1, ..., tn) and β (s1, ...,sk)
are terms. This notation for rules was introduced by Lafont [Laf90] and we refer to it as
Lafont’s style. All names occur exactly twice in a rule, and there should be at most one rule
between any pair of agents in R. R is closed under symmetry, thus if α(t̄) on β (s̄) ∈R
then β (s̄) on α(t̄) ∈R.

Definition 1 (Bound names) If a name x occurs twice in a term t, then we say x is bound. We
extend this notion to equations, sequences of terms, and multiset of equations.

The calculus consists of three reduction rules which reduce (valid) configurations.

Indirection:
〈 t̄ | x = t,u = s,∆ 〉−→i〈 t̄ | u[t/x] = s,∆ 〉 where x occurs in u,

Collect:
〈 t̄ | x = t,∆ 〉 −→c 〈 t̄[t/x] | ∆ 〉 where x occurs in t̄,

Interaction:
〈 t̄ | α(t̄1) = β (t̄2),∆ 〉 −→on 〈 t̄ | t̄1 = s̄l, t̄2 = ūl,∆ 〉

where α(s̄) on β (ū) ∈R and s̄l and ūl are the result of replacing each occurrence of a
bound name x for α(s̄) on β (ū) by a fresh name xl respectively.

Example 1 The example rules in Figure 1 can be represented using Lafont’s style 1 as:

add(S(x),y) on S(add(x,y)), add(x,x) on Z

The example net in Figure 1 can be represented using the configuration:

〈 a | add(a,Z) = S(Z) 〉
and the following is a possible reduction sequence using the calculus rules above:

〈 a | add(a,Z) = S(Z) 〉 −→on 〈 a | a = S(x′),Z= y′,Z= add(x′,y′) 〉
−→c 〈 S(x′) | Z= y′,Z= add(x′,y′) 〉
−→i 〈 S(x′) | Z= add(x′,Z) 〉
−→on 〈 S(x′) | x′ = x′′,Z= x′′ 〉
−→c 〈 S(x′′) | Z= x′′ 〉
−→c 〈 S(Z) | 〉

3 Refining the calculus

The calculus given in the previous section has nice properties and provides a simple static and
dynamic semantics for interaction nets. However, the calculus introduces extra computational
steps to reduce a given net to normal form. For example, the example net in Figure 1 reduces
in two steps using the graphical setting while the same net reduces in six steps using the textual
calculus (see Example 1). In this section, we answer the following question in the positive: can
we optimise the calculus to obtain more efficient computations? The result of this question is
our lightweight calculus which will form the basis of the lightweight abstract machine.
1 see [Laf90, HMS08] for a more detailed description of Lafont’s style syntax

Proc. GT-VMT 2010 4 / 12

ECEASST

Interaction rules. The notation of Lafont’s style generates (redundant) equations which will
be reduced by the Indirection rule. In particular, if an auxiliary port of an interacting agent in
a rule is connected to another auxiliary port, the application of an Interaction rule will generate
an equation with a variable x on one side of the equation. Since all variables appear twice in a
rule, x will eventually be eliminated using the Indirection rule. For example, this can be traced in
Example 1 where the equation Z= y′ is generated in the configuration after applying the first rule
add(S(x),y) on S(add(x,y)). In other words, the application of an Interaction rule to an active
pair (α,β) where α(t̄1,x, t̄2) on β (s̄1)∈R will generate a configuration where an Indirection rule
is applicable.

In order to eliminate the generation of redundant equations we introduce an alternative nota-
tion to represent interaction rules. We represent rules using the syntax: lhs −→ rhs where lhs
consists of an equation between the two interacting agents and rhs is a list of equations which
represent the right-hand side net. All rules α(t̄) on β (s̄) in Lafont’s style can be written using our
notation:

α(t̄1) = β (s̄1)−→ t̄1 = t̄, s̄1 = s̄ where t̄1, s̄1 are meta-variables for terms.

As a concrete example, the rule add(S(x),y) on S(add(x,y)) can be represented as

add(t1, t2) = S(u1)−→ t1 = S(x), t2 = y,u1 = add(x,y)

moreover we can simplify rules by replacing equals for equals. The above rule can be simplified
to:

add(t1, t2) = S(u1)−→ t1 = S(x),u1 = add(x, t2)

Therefore we obtain a more efficient computation by using the notation of term rewriting sys-
tems.

Definition 2 (Lightweight interaction rules) A lightweight rule r ∈Rlt is of the form:

α(t1, ..., tn) = β (s1, ...,sk)−→ ∆

where α,β ∈ Σ, ar(α) = n,ar(β) = k, and t1, ..., tn,s1, ...,sk are meta-variables for terms. Each
meta-variable occurs exactly twice in a rule: once on the lhs and once on the rhs. The set
Rlt contains at most one rule between any pair of agents; Rlt is closed under symmetry — if
α(t̄) = β (s̄)−→ ∆ ∈Rlt then β (s̄) = α(t̄)−→ ∆ ∈Rlt.

Indirection rules. Let us now examine the Indirection rule of the calculus which eliminates
bound variables by means of variable substitution. The application of this rule will search
through the list of terms to locate a term which contains an occurrence of a particular variable.
In order to reduce the searching costs, Pinto’s abstract machine [Pin00], which is based on this
calculus, attaches a list of variables to the head of every term. This again introduces management
overheads, hence the increase in the number of operations required to perform rewirings.

Taking into consideration that every change of connection does not affect interactions directly,
it turns out that we do not have to perform all substitutions eagerly. Therefore we decompose
the Indirection rule into: communication rules that will replace just a name, and substitution rule
that will perform other substitutions.

5 / 12 Volume 29 (2010)

Interaction nets

Definition 3 (Lightweight reduction rules) We define Lightweight reduction rules as follows:

Communication:
〈 t̄ | x = t,x = u,∆ 〉 com−→ 〈 t̄ | t = u,∆ 〉,

Substitution:
〈 t̄ | x = t,u = s,∆ 〉 sub−→ 〈 t̄ | u[t/x] = s,∆ 〉 where u is not a name and x occurs in u,

Collect:
〈 t̄ | x = t,∆ 〉 col−→ 〈 t̄[t/x] | ∆ 〉 where x occurs in t̄,

Interaction:
〈 t̄ | α(t̄1) = β (t̄2),∆ 〉

int−→ 〈 t̄ | Θl,∆ 〉
where α(s̄) = β (ū) −→ Θ ∈ Rlt and Θl is the result of replacing each occurrence of

a bound name x for Θ by a fresh name xl and replacing each occurrence of s̄, ū by t̄1, t̄2
respectively.

We use just −→ instead of com−→,
sub−→,

col−→,
int−→ when there is no ambiguity. We define C1 ⇓C2

by C1 −→∗ C2 where C2 is in normal form. From now on, we use T,S,U, ... for non-variable
terms.

Example 2 Rules in Figure 1 can be represented as follows:

add(x1,x2) = S(y) −→ x1 = S(w),y = add(w,x2)
add(x1,x2) = Z −→ x1 = x2

and the following computation can be performed:

〈 a | add(a,Z) = S(Z) 〉 int−→ 〈 a | a = S(w′),Z= add(w′,Z) 〉
col−→ 〈 S(w′) | Z= add(w′,Z) 〉
int−→ 〈 S(w′) | w′ = Z 〉
col−→ 〈 S(Z) | 〉

3.1 Properties of lightweight reduction rules

In this section, we present some properties of the lightweight reduction rules. First, we show that
we can postpone the application of Collect rules as in Abramsky’s Computational interpretations
of linear logic [Abr93].

Lemma 1 If C1
col−→ · com−→C2 then C1

com−→ · col−→C2.

Proof. Let C1 = 〈 t̄ | x = t,u = y,y = v,∆ 〉 col−→ 〈 t̄[t/x] | u = y,y = v,∆ 〉 com−→ 〈 t̄[t/x] | u =
v,∆ 〉= C2. Then, C1

com−→ 〈 t̄ | x = t,u = v,∆ 〉 col−→C2.

Lemma 2 If C1
col−→ · sub−→C2 then C1

sub−→ · col−→C2.

Proc. GT-VMT 2010 6 / 12

ECEASST

Lemma 3 If C1
col−→ · int−→C2 then C1

int−→ · col−→C2.

By Lemma 1, 2, 3, the following holds.

Lemma 4 If C1 ⇓ C2 then there is a configuration C such that C1 −→∗ C col−→
∗

C2 and C1 is
reduced to C without the application of any Collect rule.

Next, we examine whether or not we can postpone the application of Substitution rules. Note
that applying the Substitution rule to an equation does not generate any other equations which
require the application of an Interaction rule. Therefore the following properties hold.

Lemma 5 If C1
sub−→ · com−→C2 then C1

com−→ · sub−→C2.

Lemma 6 If C1
sub−→ · int−→C2 then C1

int−→ · sub−→C2 or C1
int−→ · com−→C2.

By Lemma 4, 5 and 6 the following theorem holds.

Theorem 1 If C1 ⇓C2 then there is a configuration C such that C1 −→∗ C sub−→
∗
· col−→

∗
C2 and

C1 is reduced to C by applying only Communication and Interaction rules.

This theorem shows that all Interaction rules can be performed without applying Substitution
rules. We define C1 ⇓ic C2 by C1 −→∗ C2 where C2 is a { int−→,

com−→}−normal form.

4 Lightweight abstract machine

In this section we define the Lightweight abstract machine which is based on the lightweight
rewriting rules.

Definition 4 (Machine configuration) A configuration of our abstract machine state is given by
a 5-tuple (Γ | φ | t̄ |Θ | ∆) where

Γ is an environment which maps a variable to a term. We use [] as an empty map and the
following notation:

Γ[x 7→ t](z) =
{

t (z is x)
Γ(z) (otherwise)

φ is a connection map. When φ(x) is undefined, we use the following notation:

φ [x↔⊥](z) =
{

undefined (z = x)
φ(z) (otherwise)

t̄ is a sequence of terms

Θ is a sequence of error codes that are not executable

7 / 12 Volume 29 (2010)

Interaction nets

∆ is a sequence of equations which we also regard as codes. We write “−” for an empty
sequence of codes.

In Figure 2 we give the semantics of the machine as a set of transitional rules of the form:
(Γ | φ | t̄ | Θ | ∆) =⇒ (Γ′ | φ ′ | t̄ | Θ′ | ∆′). The functions interaction(S = T) and error(S = T)
are defined as follows:

interaction(S = T) =

{
∆1 (when 〈 | S = T 〉 int−→ 〈 | ∆1 〉),
− (otherwise)

error(S = T) =

{
− (when 〈 | S = T 〉 int−→ 〈 | ∆1 〉),
S = T (otherwise)

For readability purposes we present the transitions in a table format. For example, the entry:

Before After
II.0 Connections φ [x↔⊥] φ [x↔⊥]

Env. Γ [x 7→ ⊥] Γ [x 7→U]
Code x = U, ∆ ∆

corresponds to:

(Γ [x 7→ ⊥] | φ [x↔⊥] | t̄ | − | x = U, ∆) =⇒ (Γ [x 7→U] | φ [x↔⊥] | t̄ | − | ∆)

4.1 Correctness

In order to show the correctness of our abstract machine, we first define a decompilation function
from configurations to terms. Several lemmas follow before the correctness theorem.

Definition 5 (Decompilation) We define a translation b.cenv from an environment Γ into a mul-
tiset of equations as follows:

b[]cenv
def= empty,

bΓ[x 7→ t]cenv
def= x = t,bΓcenv.

The function b.ccon translates a connection map φ into a multiset of equations as follows:

b[]ccon
def= empty,

bφ [x↔ y]ccon
def= x = y,bφccon.

We write just b.c instead of b.cenv, b.ccon when there is no ambiguity.

The machine will stop when there is no executable code. These cases arise not only when the
code sequence is empty, but also when names are included in both the domains of Γ and φ . We
define the latter case as inconsistent:

Proc. GT-VMT 2010 8 / 12

ECEASST

Before After

I Error Θ error(U = T),Θ
Code U = T, ∆ interaction(U = T), ∆

II.0 Connections φ [x↔⊥] φ [x↔⊥]
Env. Γ [x 7→ ⊥] Γ [x 7→U]
Code x = U, ∆ ∆

II.c Connections φ [x↔ y] φ [x↔⊥][y↔⊥]
Env. Γ [x 7→ ⊥][y 7→ ⊥] Γ [x 7→ ⊥][y 7→U]
Code x = U, ∆ ∆

II.e Connections φ [x↔⊥] φ [x↔⊥]
Env. Γ [x 7→ T] Γ [x 7→ ⊥]
Code x = U, ∆ T = U, ∆

II.− Code U = x,∆ x = U, ∆

III.0 0 Connections φ [x↔⊥][y↔⊥] φ [x↔ y]
Env. Γ [x 7→ ⊥][y 7→ ⊥] Γ [x 7→ ⊥][y 7→ ⊥]
Code x = y,∆ ∆

III.0 c Connections φ [x↔⊥][y↔ w] φ [x↔ w][y↔⊥]
Env. Γ [x 7→ ⊥][y 7→ ⊥] Γ [x 7→ ⊥][y 7→ ⊥]
Code x = y, ∆ ∆

III.0 e Connections φ [x↔⊥][y↔⊥] φ [x↔⊥][y↔⊥]
Env. Γ [x 7→ ⊥][y 7→U] Γ [x 7→U][y 7→ ⊥]
Code x = y, ∆ ∆

III.c 0 Connections φ [x↔ z][y↔⊥] φ [x↔⊥][y↔ z]
Env. Γ [x 7→ ⊥][y 7→ ⊥] Γ [x 7→ ⊥][y 7→ ⊥]
Code x = y, ∆ ∆

III.c c Connections φ [x↔ z][y↔ w] φ [x↔⊥][y↔⊥][z↔ w]
Env. Γ [x 7→ ⊥][y 7→ ⊥] Γ [x 7→ ⊥][y 7→ ⊥]
Code x = y,∆ ∆

III.c e Connections φ [x↔ z][y↔⊥] φ [x↔⊥][y↔⊥][z↔⊥]
Env. Γ [x 7→ ⊥][y 7→U] Γ [x 7→ ⊥][y 7→ ⊥][z 7→U]
Code x = y,∆ ∆

III.e 0 Connections φ [x↔⊥][y↔⊥] φ [x↔⊥][y↔⊥]
Env. Γ [x 7→ T][y 7→ ⊥] Γ [x 7→ ⊥][y 7→ T]
Code x = y, ∆ ∆

III.e c Connections φ [x↔⊥][y↔ w] φ [x↔⊥][y↔⊥][w↔⊥]
Env. Γ [x 7→ T][y 7→ ⊥] Γ [x 7→ ⊥][y 7→ ⊥][w 7→ T]
Code x = y, ∆ ∆

III.e e Connections φ [x↔⊥][y↔⊥] φ [x↔⊥][y↔⊥]
Env. Γ [x 7→ T][y 7→U] Γ [x 7→ ⊥][y 7→ ⊥]
Code x = y, ∆ T = U, ∆

Figure 2: Transitions (Γ | φ | t̄ |Θ | ∆) =⇒ (Γ′ | φ ′ | t̄ |Θ′ | ∆′)

9 / 12 Volume 29 (2010)

Interaction nets

Definition 6 (Consistency of a machine state) A state (Γ | φ | t̄ |Θ | ∆) is consistent iff

• 〈 t̄ | bΓc,bφc,Θ,∆ 〉 is a configuration, thus every name occurs at most twice,

• for every x ∈N , x is not included in both domains of Γ and φ .

The following lemma shows that consistency is preserved during transitions:

Lemma 7 Let M1 be a consistent state. If M1 =⇒M2, then M2 is also consistent.

Let M1 and M2 be two abstract machine states. We define M1 ⇓M2 by M1 =⇒∗ M2 where M2 is
a =⇒−normal form.

Lemma 8 Let M1 be a consistent state, If M1 ⇓ (Γ | φ | t̄ |Θ | ∆), then ∆ is empty.

Proof. There exists a transition which can be applied to an equation t = s whenever (Γ | φ | t̄ |
Θ | t = s,∆) is consistent.

Lemma 9 Let M1 be a consistent state (Γ1 | φ1 | t̄ | Θ1 | ∆1). If M1 =⇒ (Γ2 | φ2 | t̄ | Θ2 | ∆2),
then one of the following holds:

• 〈 t̄ | bΓ1c,bφ1c,Θ1,∆1 〉= 〈 t̄ | bΓ2c,bφ2c,Θ2,∆2 〉,

• 〈 t̄ | bΓ1c,bφ1c,Θ1,∆1 〉
int−→ 〈 t̄ | bΓ2c,bφ2c,Θ2,∆2 〉,

• 〈 t̄ | bΓ1c,bφ1c,Θ1,∆1 〉
com−→ 〈 t̄ | bΓ2c,bφ2c,Θ2,∆2 〉,

• 〈 t̄ | bΓ1c,bφ1c,Θ1,∆1 〉
com−→ · com−→ 〈 t̄ | bΓ2c,bφ2c,Θ2,∆2 〉.

Theorem 2 Let 〈 t̄ | ∆ 〉 be a configuration. If ([] | [] | t̄ | − | ∆) terminates at (Γ | φ | t̄ |Θ | ∆′),
then ∆′ is empty and 〈 t̄ | ∆ 〉 ⇓ic 〈 t̄ | bΓc,bφc,Θ 〉.

Proof. By Lemma 8, ∆′ is empty. Since (Γ | φ | t̄ | Θ | −) is consistent by Lemma 7, bΓc and
bφc cannot contain equations that are reducible using the Communication rule. Therefore, by
Lemma 9, 〈 t̄ | ∆ 〉 ⇓ic 〈 t̄ | bΓc,bφc,Θ 〉.

Definition 7 We define the operation update as follows:

• update(Γ | φ [x↔ y] | t̄ |Θ | −) = update(Γ[x/y] | φ | t̄[x/y] |Θ | −),

• update(Γ[x 7→ s] | [] | t̄ |Θ | −) = update(Γ[s/x] | [] | t̄[s/x] |Θ | −),

• update([] | [] | t̄ |Θ | −) = t̄.

Each execution of update corresponds to an application of either Substitution or Collect rules.
Therefore, we can show the following property:

Theorem 3 (Correctness) Let 〈 t̄ | ∆ 〉 be a configuration. If ([] | [] | t̄ | − | ∆) ⇓ (Γ | φ | t̄ |
Θ | ∆′), then ∆′ is empty and there is a reduction path such that 〈 t̄ | ∆ 〉 ⇓ 〈 ū | Θ′ 〉 where
update(Γ | φ | t̄ |Θ | −) = ū.

Proc. GT-VMT 2010 10 / 12

ECEASST

AMINE Light AMINE/Light
255II 14.07 0.09 156.33
264II 50.02 0.14 357.29
256II 119.93 0.23 521.43
A 3 6 4.14 0.18 23.00
A 3 7 40.15 0.71 57.04
A 3 8 612.19 1.70 360.11

Table 1: The execution times in seconds on Linux PC (2.6GHz, Pentium 4, 512MByte)

Example 3 The computation of 〈 r | Add(r,Z) = S(Z) 〉 is given below:
([] | [] | r | − | Add(r,Z) = S(Z))

=⇒ ([] | [] | r | − | r = S(x),Z= Add(x,Z)) (I)
=⇒ ([r 7→ S(x)] | [] | r | − | Z= Add(x,Z)) (II.0)
=⇒ ([r 7→ S(x)] | [] | r | − | x = Z) (I)
=⇒ ([r 7→ S(x)][x 7→ Z] | [] | r | − | −) (II.0).

update([r 7→ S(x)][x 7→ Z] | [] | r | − | −)
= update([r 7→ S(Z)] | [] | r | − | −) = S(Z).

4.2 Benchmark results

We compare the lightweight version with Pinto’s implementation (AMINE). Both are written in
C language. Table 1 shows execution times in seconds of our implementation and AMINE. The
final column gives the ratio between the two. The first three input programs are applications
of church numerals where n = λ f .λx. f nx and I = λx.x. The encodings of these terms into
interaction nets are given in [Mac98]. The next programs compute the Ackermann function. The
following rules are the interaction net encoding of the Ackermann function:

Pred(Z) on Z, Dup(Z,Z) on Z,
Pred(x) on S(x), Dup(S(a),S(b)) on S(Dup(a,b)),
A(r,S(r)) on Z, A1(Pred(A(S(Z),r)),r) on Z,
A(A1(S(x),r),r) on S(x), A1(Dup(Pred(A(r1,r)),A(y,r1)),r) on S(y),

and A 3 6 means computation of 〈 r | A(S(S(S(S(S(S(Z)))))),r) = S(S(S(Z))) 〉.
The results that we have obtained are better than previous implementation results, and allow

substantially larger classes of functions to be executed very efficiently. Depending on the archi-
tecture used, these results will vary slightly. We however invite the reader to try some of these
examples by downloading our implementation: http://www.interaction-nets.org/.

5 Conclusion

The aim of this paper is to report on current work on the foundations of the implementations
of interaction nets. Specifically, we have presented a new implementation that is the most effi-
cient to date. In the work where interaction nets are considered as an intermediate language for
compilation, this work gives a speedup by a factor of ten or more.

11 / 12 Volume 29 (2010)

http://www.interaction-nets.org/

Interaction nets

Implementation work for interaction nets is currently being investigated very actively, and
although this step is a considerable one, we believe that there is still much more to do. Our im-
plementations are still very much prototype in nature, and no program optimisations have been
included here. Future work will be directed towards developing stable and efficient implementa-
tions for both sequential and parallel architectures.

Bibliography

[Abr93] S. Abramsky. Computational Interpretations of Linear Logic. Theoretical Computer
Science 111:3–57, 1993.

[AG98] A. Asperti, S. Guerrini. The Optimal Implementation of Functional Programming
Languages. Cambridge Tracts in Theoretical Computer Science 45. Cambridge Uni-
versity Press, 1998.

[FM99] M. Fernández, I. Mackie. A Calculus for Interaction Nets. In Nadathur (ed.), Pro-
ceedings of the International Conference on Principles and Practice of Declarative
Programming (PPDP’99). LNCS 1702, pp. 170–187. Springer-Verlag, 1999.
ftp://lix.polytechnique.fr/pub/mackie/papers/calin.ps.gz

[GAL92] G. Gonthier, M. Abadi, J.-J. Lévy. The Geometry of Optimal Lambda Reduction. In
Proceedings of the 19th ACM Symposium on Principles of Programming Languages
(POPL’92). Pp. 15–26. ACM Press, Jan. 1992.

[HMS08] A. Hassan, I. Mackie, S. Sato. Interaction nets: programming language design and
implementation. ECEASST 10, 2008.

[HMS09] A. Hassan, I. Mackie, S. Sato. Compilation of Interaction Nets. Electron. Notes Theor.
Comput. Sci. 253(4):73–90, 2009.
doi:http://dx.doi.org/10.1016/j.entcs.2009.10.018

[Laf90] Y. Lafont. Interaction Nets. In Seventeenth Annual Symposium on Principles of Pro-
gramming Languages. Pp. 95–108. ACM Press, San Francisco, California, 1990.

[Mac98] I. Mackie. YALE: Yet Another Lambda Evaluator Based on Interaction Nets. In Pro-
ceedings of the 3rd ACM SIGPLAN International Conference on Functional Program-
ming (ICFP’98). Pp. 117–128. ACM Press, September 1998.
ftp://lix.polytechnique.fr/pub/mackie/papers/yalyal.ps.gz

[Mac05] I. Mackie. Towards a Programming Language for Interaction Nets. Electronic Notes
in Theoretical Computer Science 127(5):133–151, May 2005.

[Pin00] J. S. Pinto. Sequential and Concurrent Abstract Machines for Interaction Nets. In
Tiuryn (ed.), Proceedings of Foundations of Software Science and Computation Struc-
tures (FOSSACS). Lecture Notes in Computer Science 1784, pp. 267–282. Springer-
Verlag, 2000.

Proc. GT-VMT 2010 12 / 12

ftp: //lix.polytechnique.fr/pub/mackie/papers/calin.ps.gz
http://dx.doi.org/http://dx.doi.org/10.1016/j.entcs.2009.10.018
ftp: //lix.polytechnique.fr/pub/mackie/papers/yalyal.ps.gz

	Introduction
	Interaction nets
	The calculus for interaction nets

	Refining the calculus
	Properties of lightweight reduction rules

	Lightweight abstract machine
	Correctness
	Benchmark results

	Conclusion

