
Electronic Communications of the EASST
Volume 61 (2013)

Selected Revised Papers from the
4th International Workshop on

Graph Computation Models
(GCM 2012)

XL4C4D – Adding the Graph Transformation Language XL to
CINEMA 4D

Ole Kniemeyer and Winfried Kurth

10 pages

Guest Editors: Rachid Echahed, Annegret Habel, Mohamed Mosbah
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Electronic Communications of the EASST (European Association of Software Science and Technology)

https://core.ac.uk/display/270295401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

XL4C4D – Adding the Graph Transformation Language XL to
CINEMA 4D

Ole Kniemeyer1 and Winfried Kurth2

1 o kniemeyer@maxon.net
MAXON Computer GmbH, Max-Planck-Str. 20, 61381 Friedrichsdorf, Germany

2 wk@informatik.uni-goettingen.de
Georg-August-University Göttingen, Department of Ecoinformatics,

Biometrics and Forest Growth, Büsgenweg 4, 37077 Göttingen, Germany

Abstract: A plug-in for the 3D modeling application CINEMA 4D is presented
which allows to use the graph transformation language XL to transform the 3D
scene graph of CINEMA 4D. XL extends Java by graph query and rewrite facilities
via a data model interface, the default rewrite mechanism is that of relational growth
grammars which are based on parallel single-pushout derivations. We illustrate the
plug-in at several examples, some of which make use of advanced 3D features.

Keywords: Scene graph, L-system, relational growth grammar, CINEMA 4D

1 Introduction

Most 3D modeling systems represent their 3D content as a scene graph. In general, this is
a directed acyclic graph or even just a tree, where nodes contain geometry data and further
properties, while edges define spatial and logical relations between nodes. E.g., the coordinate
system of a node is typically inherited to its children, and often this also holds for properties like
the color.

To create and modify the scene graph, 3D modeling applications typically do not only provide
direct user interaction, but also built-in (textual or visual) programming languages. But none of
these languages makes use of graph transformation techniques, although they suggest themselves
for such a language, given the underlying scene graph.

What has been used for 3D scene graph creation are L(indenmayer)-systems [PL90], starting
with the successful specification of 3D plant models, and nowadays this parallel string-rewriting
formalism is directly supported by many 3D modeling applications. But as it is based on strings,
it necessitates an additional interpretation step from strings to graphs. In previous research, we
developed relational growth grammars as a rewriting mechanism for graphs which incorporates
both the possibilities and ease of use of L-systems (but applied to graphs) and of true graph
transformations based on single-pushout derivations [KBHK08, Kni09].

We also developed a textual programming language XL which extends Java by graph transfor-
mation syntax and semantics. This can be used to implement relational growth grammars, and
there is a ”reference implementation” within the Java-based open-source 3D platform GroIMP
[KHK]. This software has been developed with the needs of relational growth grammars and

1 / 10 Volume 61 (2013)

mailto:o_kniemeyer@maxon.net
mailto:wk@informatik.uni-goettingen.de

XL4C4D

plant modeling in mind, so it provides strong support for this field of application, while it has
fewer general 3D features than traditional all-purpose 3D modeling systems.

Through the data model interface of XL, it is possible to let XL operate on any kind of graph.
We will present an implementation for the scene graph of CINEMA 4D [MAX] as a plug-in, and
we will show some examples of its application.

2 Relational Growth Grammars

In this section, we will sketch relational growth grammars (RGG for short) to have a formal basis
for the following applications. We do not give complete definitions here as this would become
too lengthy, they can be found in [Kni09].

At first, the graph model has to be specified. To be able to use type hierarchies known from
object-oriented programming for nodes and edges, and to store attributes at nodes, we are using
typed attributed graphs with inheritance [EEPT06]. Since the semantics of edges within the
RGG formalism is to stand for plain relationships between their incident nodes, we exclude the
possibility of edge attributes, and parallel edges of the same type are not allowed. The latter
means that the edges of a graph G are simply represented as a subset of GV×ΛE×GV , where GV

denotes the nodes of G and ΛE is the set of edge types.
The rewriting mechanism of relational growth grammars is based on the algebraic single-

pushout (SPO) approach [EHK+97]. The SPO approach has the nice properties that dangling
edges are removed automatically, and that deletion is prefered over preservation in case of a
conflict. This is very useful for the domain of models we are interested in: E.g., think of an
animal being represented as a node, then there might be a rule describing death because of
ageing which simply deletes the animal node. Without the automatic deletion of dangling edges,
we would have to take into account all possible edges of the animal in the death rule, which would
be cumbersome in practice. If there is a second rule for the animal which models its movement,
and if both rules are applied in parallel, there is a conflict between deletion and preservation, but
it makes perfect sense to prefer deletion as the death rule models a deliberate and rather drastic
event.

In order to instantiate the SPO approach for RGG graphs, we have to define a corresponding
category RGGGraph of graphs and their homomorphisms. The single-pushout approach works
with partial homomorphisms HomP(G,H), i. e., graph homomorphisms G→ H which are de-
fined on some subgraph of their domain G. To integrate the inheritance relation in the notion of
a graph homomorphism, we use a technique based on [PEM87]: A homomorphism f : G→ H
in RGGGraph is a structure-preserving mapping such that for every object (node or edge) x∈G
the type of its image f (x) is a subtype of the type of x.

To be convenient for the modeling of scene graphs of plants and other structures, RGG rules
have to be sufficiently expressive. Basically, the application of a rule shall remove the match
of its left-hand side (LHS, the predecessor) from the host graph and insert its right-hand side
(RHS, the successor) into the derived graph. The exact definition of a rule is based on SPO
productions [EHK+97], but we allow the right-hand side to dynamically depend on the match.
As an example, consider a reproduction rule of an animal where the number of children depends
on some properties of the animal. If we were constrained to conventional productions, we would

Selected Revised Papers from GCM 2012 2 / 10

ECEASST

have to either specify several productions (one for each possible number of children) or to use
several derivation steps. Both solutions are not feasible from a practical point of view. The
dependence of the right-hand side on the match provides a solution to this problem (cf. [Kur94,
PKL07, CJ92]). As a result, an RGG rule consists of a left-hand side L, an application condition
c and a mapping p which maps a match m for L to the actual SPO production p(m) to be used
for the derivation:

Definition 1 (Application Condition) Let L be a graph. An application condition c on the set
Hom(L, ·) of all total graph homomorphisms with domain L is a boolean-valued function on
Hom(L, ·).

Definition 2 (Simple RGG Rule) Let L be a graph. A simple RGG rule r = (L,c, p) is given
by a graph L, an application condition c, and a mapping p : Hom(L, ·)→ MonP(·, ·), where
MonP(·, ·) denotes the set of all partial, injective homomorphisms, such that for some m : L→
G ∈ Hom(L, ·) the image p(m) is an SPO production M(m)

p(m)−−→ R(m) whose domain (in the
categorical sense) M(m) is a subgraph of G and a supergraph of m(L).

Definition 3 (Match) A match for a simple rule r = (L,c, p) in a host graph G is a total graph
homomorphism m : L→ G such that the application condition c is fulfilled (c(m) = true).

Definition 4 (Simple RGG Derivation) Let m : L→G be a match for a simple rule r = (L,c, p).
A direct derivation using r via m, denoted as G

r,m
=⇒ H, is given by a direct SPO derivation using

M(m)
p(m)−−→ R(m) via the inclusion M(m) ↪→ G, i. e., by the following commutative diagram in

the category RGGGraph, where the square is a pushout:

L

m

((

// m(L) �
� // M(m)

p(m) //
_�

��

R(m)

��

G // H

The following is an example for a simple RGG rule which moves some sort of animal (A-
typed node) along a path of X-typed nodes if its energy is above the threshold 1 and creates some
children at the left location, the number depending on the energy.

L =

a
�� ��A

x
�� ��X //

OO

y
�� ��X

, c(m) = (m(a).energy > 1) , p(m) = m(L)→ Rbm(a).energyc

with R1 =

a
�� ��A

x
�� ��X //y

�� ��X

OO
, R2 =

�� ��A a
�� ��A

x
�� ��X //

OO

y
�� ��X

OO
, R3 =

�� ��A
�� ��A a

�� ��A

x
�� ��X //

OO``

y
�� ��X

OO
, . . .

3 / 10 Volume 61 (2013)

XL4C4D

Nodes are represented as oval boxes around their type, node identifiers are placed before the
upper left corner. m(a).energy refers to the value of the energy attribute of the match for the
A-typed node a, and bxc denotes the integral part of x (floor function). The mapping p(m) is
indicated by the reuse of node identifiers of the LHS for the RHS.

Because processes in a living system happen in parallel, there has to be the possibility to apply
RGG rules in parallel. For a family of simple RGG rules with corresponding matches, we can
create a parallel derivation from the generated SPO productions pi(mi) as defined in [EHK+97].
The following shows such a parallel RGG derivation for the single example rule from above
using the two obvious matches, if we assume that the energy of node a is 1.5 and that of b is 3.5.

G
a
�� ��A b

�� ��A

�� ��X //
�� ��X //

OO �� ��X //

OO �� ��X //
�� ��X

+3 H �� ��A
�� ��A

a
�� ��A b

�� ��A

�� ��X //
�� ��X //

�� ��X

XX FF

//

OO �� ��X

OO

//
�� ��X

Unfortunately, this straightforward parallelism fails if rule application successors of neigh-
bouring parts shall be connected by edges, which is a very important case and needed by the
embedding of L-systems in the RGG formalism. Several connection mechanisms were studied
in [LR76] to address this problem, of which the operator approach [Nag76, Nag79] turns out
to be a suitable technique for relational growth grammars. The application of a rule to a match
also establishes connection transformations which are given by a quintuple (s,(A,d,γ), t) with a
node s from the match, a node t from the right-hand side, an operator A, a direction flag d (either
“source” or “target”) and an edge type γ . An operator A yields for every node n ∈G of the match
a set AG(n) of related nodes (e. g., its neighbours).

We may think of such a connection transformation as an arrow which points from a node
s in the host graph G to a node t in the derived graph H resulting from the simple RGG
derivation. The operator mechanism then shifts connections within the host graph along a pair
of matching arrows to the derived graph: For a matching arrow pair (s1,(A1,“source”,γ), t1),
(s2,(A2,“target”,γ), t2) where the host graph nodes s1,s2 are related according to the operators,
i. e., s2 ∈ A1(s1) and s1 ∈ A2(s2), an additional γ-typed edge from t1 to t2 is created within the
derived graph H.

Definition 5 (RGG Rule) An RGG rule r = (L,c, p,z) is a simple RGG rule (L,c, p) together
with a mapping z which assigns to each match m : L→ G for the simple rule a set of connection
transformations (s,(A,d,γ), t) with s ∈M(m) (domain of p(m)), t ∈ R(m) (codomain of p(m)),
an operator A, a direction d (either “source” or “target”) and an edge type γ .

3 The XL Programming Language

XL is a proper extension of Java. The main new features are rule blocks and graph queries. A
rule block can be used everywhere where Java allows a normal code block, it is distinguished by

Selected Revised Papers from GCM 2012 4 / 10

ECEASST

square brackets instead of the usual curly braces. The following example shows the translation
of the animal movement and reproduction RGG rule from above:

[
x:X [a:A] y:X, (a.energy > 1) ==>>

x for(in t i = 2; i <= a.energy; ++i) ([A]) y [a];
]

x:X is a pattern which matches a node of Java class X and assigns the identifier x to the match.
Within left- and right-hand sides, square brackets are used to enclose branches, so that the left-
hand side of the example has to be read as: Find an X-typed node x which has an A-typed child
a and an X-typed successor y. Child and successor relationships are represented by distinct edge
types. The left-hand side also contains an application condition in round parentheses.

The right-hand side depends on the match because the for-loop expands into a variable number
of nodes, depending on a.energy: If the energy is less than 2, we have x y [a] which just
moves a to y. If it reaches 2, we get x [A] y [a]. This creates a new A node (because there
is no node identifier A) as a child of x. For higher energies, we get even more new A nodes.

Cycles of non-tree-like structures are obtained by repeating a node identifier. E.g., the pattern
a:A B C a represents a circular graph of three nodes of types A, B, C.

Graph queries are expressions which use the syntax of left-hand sides within (* *). E.g., the
expression count((* x [A] *)) contains a query for all A-typed children of a given node
x, and counts the number of matches.

All graph operations of XL are defined on top of an abstract data model interface. By im-
plementation of this interface, XL can operate on any kind of graph. The most sophisticated
implementation exists for GroIMP, but there are also implementations for XML documents or
minimalistic Sierpinski graphs [Kni09].

In the following, we will show some more examples of XL. An in-depth description can be
found in [Kni09].

4 The Plug-In XL4C4D and Its Application

The 3D modeling system CINEMA 4D [MAX] uses a scene graph to represent spatial and logical
relations between objects. In fact it is rather a tree than a graph, but objects can have additional
link attributes which may point to arbitrary objects in the scene tree, thus yielding a true graph.

Each object has its own local 3D coordinate system. As usual for scene graphs, this is de-
fined by the coordinate system of the parent object, multiplied with a transformation attribute
of the object itself, so that an object moves together with its descendants when one modifies
the transformation of the object. There are objects with a geometry such as Cube, Sphere, or
PolygonObject for a general polygon mesh, but also a Null object which has no geometry itself,
but can be used to group its children and to inherit its transformation to them. Instance objects
also have no geometry themselves, but a link to another object. They show the geometry of the
linked object within their own coordinate system. This saves a lot of memory when one wants to
place the same geometry at several locations.

CINEMA 4D provides a C++ SDK which allows to write custom plug-ins. With the help of
the Java Native Interface as a bridge between Java and C++, we implemented XL’s data model

5 / 10 Volume 61 (2013)

XL4C4D

(a)

(b)

(c)

Figure 1: (a) Screenshot showing the plug-in with a binary tree; (b,c) polymerization model

interface for CINEMA 4D’s scene graph. The plug-in (available at [KHK]) adds the following
features to CINEMA 4D:

• The XL Console shows output from XL execution, and it allows to directly type in XL
code which is then executed.

• There is a new scene graph object XL Object. It has a code attribute which allows to
enter a complete XL program. Methods of the program may be invoked interactively, and
parameters defined in the program are accessible in the attribute manager.

• The XL Instance object behaves similar to a normal Instance object. It has additional
attributes for scaling and translation which are more convenient for XL models than the
normal transformation attributes.

Figure 1(a) shows a screenshot of CINEMA 4D at the example of a simple 3D binary tree.
The code properties of the single XL Object are opened. The complete code for the model is

public class Main extends XLObject {
module Tip extends Sphere(20).(setMaterial("Green"));
public void init() [==>> ˆ Tip;]
public void grow()
[Tip ==> F(100) [RU(30) RH(90) Tip] [RU(-30) RH(90) Tip];]

}

Selected Revised Papers from GCM 2012 6 / 10

ECEASST

The code shows the basic structure of an XL model within XL4C4D: The actual code has to
be surrounded by a class extending XLObject. Parameterless public void methods of that
class can be invoked interactively by choosing them in a drop-down menu and clicking on an
Invoke-button, so one typically puts the actual rules within such methods. In the example there
is an init-method with a simple RGG rule with empty LHS: Out of nothing, the rule creates
a two-node graph starting at the XL Object itself, which is represented by ˆ, and followed by
an instance of Tip. The Java class Tip itself is specified in a module declaration which is a
simplified class declaration and in this case corresponds to a Sphere object in the scene graph
with a radius of 20 units and the material named ”Green”.

A Tip-node represents a leaf (in the mathematical sense) of the tree, therefore for a growth of
a binary tree such a node has to be replaced by an inner node bearing two new Tip-nodes. This
is implemented by the grow-method which uses a non-simple RGG rule to replace (in parallel)
each Tip-node by an F-node with two branches. The branches do not consist of Tip-nodes only,
but also of 3D rotation nodes of the types RU and RH put in front. An F-node corresponds to an
XL Instance object in the scene graph which instantiates a Cylinder object, the parameter 100 to
the F-constructor scales this cylinder to a height of 100 units, and it also shifts the coordinate
system by 100 units along the cylinder axis (the local y-axis). Together with the rotations around
the local x- and y-axes (RU and RH, respectively), this places the base of the cylinder at the
location of the previous Tip, and adds the two new tips at the top of the cylinder, but with a
rotated coordinate system such that the new branches emerge in different directions in 3D space.

The grow-rule requires connection transformations (there are no common nodes on LHS and
RHS for gluing). They can be specified for each pair of LHS/RHS-nodes, but for convenience
two such transformations are automatically added if one uses the rule arrow ==>, namely one
from the leftmost (unbracketed) LHS node to the leftmost (unbracketed) RHS node and one for
the rightmost nodes. This is exactly what is needed for an L-system rule when it shall be applied
not to a string but to a graph.

Besides Sphere, F, RU and RH, the plug-in also provides RL for rotation around the z-
axis, M for y-translation, Scale for uniform scaling, Null for general transformations, Cube,
Box, Instance, and even Spring for physics simulations. Each node of such a Java class
corresponds to a CINEMA 4D object of suitable type, e.g., pure transformation nodes are rep-
resented as Null objects in the scene graph. The general BaseObject class corresponds to
CINEMA 4D’s BaseObject C++ class. With its methods and the numerical IDs from CINEMA
4D’s resource files it is possible to create objects of any type, and to set most of their attributes.
Attributes of the CINEMA 4D types Bool, LONG, Real, Vector, Matrix, String and BaseLink are
supported, the same holds for additional user data attributes.

One of CINEMA 4D’s advanced features is the Dynamics module which provides a rigid body
simulation. With its help we can create a toy model of polymerization: A lot of monomers of two
types (MonomerA and MonomerB) move around according to the laws of rigid body physics.
At each frame (i.e., each simulation step), it is checked if two monomers of different type come
close to each other. If so, the rule triggers and creates a bond in the form of a Spring object for
the rigid body simulation:

public class Main extends XLObject {
module MonomerA extends Sphere(20).(setColor(1, 0, 0));

7 / 10 Volume 61 (2013)

XL4C4D

module MonomerB extends Sphere(20).(setColor(0, 1, 0));
public void init() [...]
public void step()
[
a:MonomerA, b:MonomerB,
((distance(a, b) <= 50) && empty((* Spring(a, b) *)))
==>> a, b, ˆ Spring(a, b).(setBoolean(FORCE_ALWAYS_VISIBLE, true));

]
}

The bonding rule step looks for two monomers a, b which, due to the comma inbetween, need
not have any relationship in the graph. Its application condition tests if a, b are close to each
other (at most 50 units in 3D space) and makes sure by a graph query that no Spring node
already exists. The RHS repeats a, b so that they don’t get deleted, and it creates and initializes
a new Spring node linked to them.

The setup of the simulation environment for the example is done manually. Figure 1(b) shows
the initial situation with monomers randomly placed in 3D space above a Floor object. The result
after some simulation steps is shown in Figure 1(c). For the simulation it is necessary to put the
bonding rule in a method named step because a method of this name is automatically invoked
by the plug-in during the simulation whenever the document time changes.

Figure 2 shows the result of a more advanced example which combines XL with Dynamics
and collision detection via CINEMA 4D’s built-in visual programming language XPresso: The
large sphere rolls along the floor, and whenever it collides with one of the small grid points, this
is detected by XPresso which then sets a user attribute on the grid point object. This in turn can
be evaluated by XL to let a simple binary tree grow at such a point until it is eventually dissolved
by XL into a set of light particles which fall down according to Dynamics.

5 Discussion

The structure of CINEMA 4D’s scene graph is well-suited for the application of XL. The shown
examples could be adapted from their original GroIMP implementations [Kni09] without major
changes, and they could easily be combined with advanced features like Dynamics. In fact, the
GroIMP implementation of the polymerization has to include some simple simulation rules for
monomer movement which are superfluous for XL4C4D. There are a lot more features from
animation to sophisticated rendering from which one can benefit.

On the other hand, the Java Native Interface introduces a performance bottleneck, and CIN-
EMA 4D isn’t able to handle very large amounts of objects or deep structures efficiently. So the
system is not suitable for graphs of million nodes, which may appear in detailed plant models and
which can be handled by GroIMP. E.g., for the classical example of the Koch snowflake curve,
the plug-in allows only up to three iterations, reaching a graph depth of 384. Within GroIMP,
nine iterations resulting in a depth of more than 1.5 million are possible without any problems.

Therefore, in its current state, XL4C4D is a useful addition for CINEMA 4D if one wants to
create and modify the graph of scenes within typical domains of CINEMA 4D such as motion
graphics. In motion graphics, visually interesting effects have to be achieved, but they need not

Selected Revised Papers from GCM 2012 8 / 10

ECEASST

Figure 2: The sphere triggers tree growth, eventually trees dissolve into light particles.

be realistic. Also the graph structures are typically relatively simple, but still too extensive to be
modeled by hand. The last example can be seen as a (somewhat unskilled) representative of this
kind of computer graphics.

XL4C4D operates on the scene graph level. A much more complex kind of 3D modeling
happens at the deeper level of actual geometry. This is usually represented as a polygon mesh,
i.e., another kind of graph. Typical operations on a mesh like extrusion [BPA+10] or subdivision
[SMG10, BPA+10] can be modelled as graph transformations. We haven’t implemented such
facilities for the plug-in, but it could be done based on the vv approach [SPS03, Kni09].

Bibliography

[BPA+10] T. Bellet, M. Poudret, A. Arnould, L. Fuchs, P. L. Gall. Designing a Topologi-
cal Modeler Kernel: A Rule-Based Approach. In Shape Modeling International.
Pp. 100–112. IEEE Computer Society, 2010.

[CJ92] T. W. Chien, H. Jürgensen. Parameterized L Systems for Modelling: Potential and
Limitations. In Rozenberg and Salomaa (eds.), Lindenmayer Systems. Pp. 213–229.
Springer, Berlin, 1992.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Springer, Secaucus, NJ, USA, 2006.

[EHK+97] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, A. Corradini. Alge-
braic Approaches to Graph Transformation II: Single Pushout Approach and Com-

9 / 10 Volume 61 (2013)

XL4C4D

parison with Double Pushout Approach. In Rozenberg (ed.), Handbook of Graph
Grammars and Computing by Graph Transformations, Volume 1: Foundations.
Chapter 4, pp. 247–312. World Scientific, 1997.

[KBHK08] O. Kniemeyer, G. Barczik, R. Hemmerling, W. Kurth. Relational Growth Gram-
mars – A Parallel Graph Transformation Approach with Applications in Biology
and Architecture. In Schürr et al. (eds.), AGTIVE 2007. Lecture Notes in Computer
Science 5088, pp. 152–167. Springer, 2008.

[KHK] O. Kniemeyer, R. Hemmerling, W. Kurth. GroIMP. http://www.grogra.de.

[Kni09] O. Kniemeyer. Design and Implementation of a Graph Grammar Based Language
for Functional-Structural Plant Modelling. PhD thesis, BTU Cottbus, 2009.

[Kur94] W. Kurth. Growth Grammar Interpreter GROGRA 2.4 – A software tool for the 3-
dimensional interpretation of stochastic, sensitive growth grammars in the context of
plant modelling. Introduction and Reference Manual. Berichte des Forschungszen-
trums Waldökosysteme, B 38, Göttingen, 1994.

[LR76] A. Lindenmayer, G. Rozenberg (eds.). Automata, Languages, Development. North
Holland, Amsterdam, 1976.

[MAX] MAXON Computer GmbH. CINEMA 4D. http://www.maxon.net.

[Nag76] M. Nagl. On a Generalization of Lindenmayer-Systems to Labelled Graphs.
Pp. 487–508 in [LR76].

[Nag79] M. Nagl. Graph-Grammatiken: Theorie, Anwendungen, Implementierungen.
Vieweg, Braunschweig, 1979.

[PEM87] F. Parisi-Presicce, H. Ehrig, U. Montanari. Graph Rewriting with Unification
and Composition. In Ehrig et al. (eds.), Third International Workshop on Graph-
Grammars and Their Application to Computer Science. Lecture Notes in Computer
Science 291, pp. 496–514. Springer, 1987.

[PKL07] P. Prusinkiewicz, R. Karwowski, B. Lane. The L+C plant modelling language. In
Vos et al. (eds.), Functional-Structural Plant Modelling in Crop Production. Wa-
geningen UR Frontis Series 22, pp. 27–42. Springer, 2007.

[PL90] P. Prusinkiewicz, A. Lindenmayer. The Algorithmic Beauty of Plants. Springer, New
York, 1990.

[SMG10] A. Spicher, O. Michel, J.-L. Giavitto. Declarative Mesh Subdivision Using Topo-
logical Rewriting in MGS. In Ehrig et al. (eds.), ICGT. Lecture Notes in Computer
Science 6372, pp. 298–313. Springer, 2010.

[SPS03] C. Smith, P. Prusinkiewicz, F. F. Samavati. Local Specification of Surface Subdivi-
sion Algorithms. In Pfaltz et al. (eds.), AGTIVE 2003. Lecture Notes in Computer
Science 3062, pp. 313–327. Springer, 2003.

Selected Revised Papers from GCM 2012 10 / 10

	Introduction
	Relational Growth Grammars
	The XL Programming Language
	The Plug-In XL4C4D and Its Application
	Discussion

