
Electronic Communications of the EASST
Volume 19 (2009)

Proceedings of the
Second International DisCoTec Workshop on
Context-aware Adaptation Mechanisms for

Pervasive and Ubiquitous Services
(CAMPUS 2009)

TOTAM: Scoped Tuples for the Ambient

Christophe Scholliers, Elisa Gonzalez Boix and Wolfgang De Meuter

15 pages

Guest Editors: Romain Rouvoy, Michael Wagner
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/270295399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

TOTAM: Scoped Tuples for the Ambient

Christophe Scholliers1, Elisa Gonzalez Boix2 and Wolfgang De Meuter3

1 cfscholl@vub.ac.be, 2 egonzale@vub.ac.be, 3 wdmeuter@vub.ac.be

Programming Technology Lab
Vrije Universiteit Brussels, Belgium

Abstract: Coordination of mobile applications posses a number of issues. Devices
should be able to communicate with each other without being connected with each
other at the same time while maintaining privacy and limited network traffic. Cur-
rent tuple based approaches solve these issues partially but none of them solves all
of them. We propose a novel tuple space-based approach where tuple spaces are
annotated with tuple space descriptors used to determine the scope of a tuple. The
novelty of our approach lies in the use of these tuple space descriptors to determine
that a tuple should be propagated before it is transmitted. This enhances privacy and
decreases the burden on the network traffic in a wide range of applications.

Keywords: mobile ad hoc networks, distributed computing, tuple spaces, scopes

1 Introduction

Advances in wireless communication technology and the increasing minutarization of computing
devices have given rise to a growing body of research in pervasive computing which deals with
mobile ad hoc networks. Such networks are composed of mobile devices which are connected
by wireless communication links with a limited communication range [MCE02].

Developing applications for mobile networks is substantially complicated because of two dis-
criminating properties which clearly set mobile networks apart from traditional, fixed computer
networks [VMG+07]: nodes in the network only have intermittent connectivity (due to the lim-
ited communication range of wireless technology combined with the mobility of the devices)
and applications need to discover and collaborate with one another in an ad hoc manner without
relying on any centralized coordination facility. As a result, applications must deal with a highly
dynamic environment and adapt their behaviour to changes on their physical and computation
context. Mobile ad hoc applications range from collaborative text editors or file sharing services,
to slightly more futuristic applications where e.g. cities are equipped with wireless base stations
allowing commuters to obtain traffic information of their itinerary.

Tuple-space based middleware has shown to provide an appropriate computational model for
dealing with such characteristics [MCE02]. Several tuple space-based coordination middle-
ware have been specially developed for mobile computing (including LIME [MPR01], L2imbo
[DFWB98] and TOTA[MZ04]). However, none of those approaches provides a dynamic scoping
mechanism which limits the physical transportation of tuples. TOTA is one of the most dynamic
tuple-based solutions for mobile networks: rather than merging local tuple spaces upon network
connection, tuples themselves decide how to propagate from a tuple space to another. As TOTA

1 / 15 Volume 19 (2009)

mailto:cfscholl@vub.ac.be
mailto:egonzale@vub.ac.be
mailto:wdmeuter@vub.ac.be

TOTAM: Scoped Tuples for the Ambient

tuples allow to express application-specific propagation rules, they can be exploited to achieve
context-awareness in an adaptive way, making this model ideal for a mobile ad hoc setting. In
TOTA, the participation of intermediate tuple spaces is exploited to reach a target tuple space.
One important observation is that as all devices can potentially access all information, informa-
tion cannot be hidden or scoped. Some mobile applications may require privacy in their commu-
nication, e.g. the payment of a product should be a private activity between a vending machine
and a cellular phone. Not only may requiring the participation of all tuple spaces be unacceptable
for certain applications, it also generates network flooding and has performance repercussions
on mobile devices which are likely to have scarce resources, such as limited battery power.

In this paper, we propose a novel framework called TOTAM (”Tuples on the Ambient”) which
extends TOTA with dynamically scoped tuples. We provide the programmer with means to
scope the tuples themselves, i.e the tuples can dynamically adjust their scope as they hop from
location to location. This scope is determined before the tuple is transmitted, thus allowing the
programmer to prevent the physical transportation of tuples to devices which are not targeted.
Scoped tuples have a number of benefits: tuples carry the definition of the target tuple spaces
enhancing privacy and avoiding unnecessary exchange of tuples.

2 Motivation

The main motivation for TOTAM stems from the characteristics that set mobile networks apart
from traditional computer networks. We first introduce a simple yet representative scenario that
exhibits a number of issues that have to be dealt with by the distributed computational model.

2.1 Scenario: Ambient Game

Consider a multi player game running on mobile devices where users can use their PDA’s to
chase dangerous (virtual) gangsters around the campus (in the outdoors). Players are organized
in teams which determine their role in the game. For example, the blue team are policemen and
the red team are gangsters. Players have a representation of all nearby team members on their
PDA which allows them to keep track of their location (e.g. using GPS coordinates) and to orient
themselves in the campus in order to coordinate their movements. For example, proximate team
players can send messages to each other in order to decide on a group strategy to defeat the other
team. Additionally, players carry (virtual) objects which can be used to damage members of the
opposite team. For example, gangsters could throw bombs to the nearby policemen.

In order to implement the scenario described we identify five important issues which are de-
rived from the distinguishing hardware characteristics of mobile ad hoc networks:

Discovery Players need to detect and interact with other players not known beforehand. In
a mobile network where devices spontaneously join and leave the network unannounced,
relying on a centralized infrastructure for service discovery may not be possible when they
meet out in the open and setup an ad hoc network. As a result, devices need to discover
each other spontaneously in an ad hoc manner.

Context-awareness Players need to react to frequent changes in the environment, such as change
of location, or the appearance and disappearance of other players at any time. Due to the

Proc. CAMPUS 2009 2 / 15

ECEASST

very nature of mobile networks, applications are exposed to an extremely dynamic context
requiring contextual adaptations of their behaviour.

Communication Players should not be excluded from the team coordination when they move
out of communication range. Upon reconnection, players expect to resume their computa-
tion and receive information about team members positions or the strategy being followed.
Such information can also be provided by nearby team members which the player did not
meet yet. In other words, two players do not need to be connected with each other at any
time to coordinate their movements and positions as information can be carried around by
other team members.

Privacy The information shared amongst members of the same team (e.g their positions or the
agreed strategy) should not be accessed by the other team players which could use it to
their own advantage. Non-targeted or non-authorized devices should not be exposed to
sensitive information to avoid endangering privacy.

Scarce resources PDA’s have scarce resources, such as limited battery power and limited com-
munication range. This may require applications to achieve their goal with limited com-
putational and communication efforts, e.g. minimizing network traffic.

We consider the ambient game application presented in this section to be an illustrative ex-
ample which exhibits a set of key issues that are typical in collaborative ad hoc networking
applications.

2.2 Tuple space-based middleware

None of the existing tuple space-based approaches deals with all the issues that we have identified
for the development of collaborative ad hoc networking applications. In this section we briefly
explain the concept of a tuple space and explain why current tuple space-based approaches do
not address all of the issues.

Tuple spaces were first introduced in the coordination language Linda [Gel85]. A tuple space
is a shared associative memory used by processes to communicate. Processes can post and read
tuples using three basic operations: out to insert a tuple into the tuple space, in to remove a tuple
from the tuple space and rd to check if a tuple is present in the tuple space (without removing it).
Tuples are anonymous and are extracted from the tuple space by means of pattern matching on
the tuple contents. Tuple space communication is decoupled both in space and time: processes
do not have to know each other beforehand nor to be available at the same time since tuples can
be inserted and extracted independently. These forms of decoupling address the discovery and
communication issues making the model suitable for mobile networks. However, maintaining a
globally shared tuple space is not feasible in a mobile setting.

Some adaptations of tuple spaces targeting the mobile environment, such as LIME, have ex-
tended this model with the notion of federated tuple spaces. In this model every node in the
network keeps a local tuple space. The tuples in the local tuple space of all devices in range
are conceptually merged into a federated tuple space. Nodes can post and read tuples from this
federated tuple space by means of the typical tuple space operations. When devices move out of

3 / 15 Volume 19 (2009)

TOTAM: Scoped Tuples for the Ambient

range their tuples are no longer shared and removed from the federated tuple space. LIME sup-
ports physical context-awareness based on connectivity. A disadvantage of LIME is that tuples
can only be exchanged when the communication partner that issued a tuple space operation is in
range of the device offering the requested tuple.

TOTA improves on this model by allowing tuples to be replicated from node to node loosen-
ing the restriction that the sender and the receiver of a tuple have to be connected at the same
time. Rather than merging local tuple spaces when devices discover, tuples are equipped with
a propagation rule that determines how a tuple hops from one tuple space to another one. The
propagation rule can also change the tuple information, thus tuples can be dynamically adapted
while getting propagated in the network. These propagation rules are crucial to provide pro-
grammers with a flexible mechanism to express more elaborated kinds of information sharing
than simple merging of information supported by LIME. Tuples can be exploited to achieve
context-awareness based not only on connectivity but also on semantic information. Tuples in
TOTA are sent to all communication partners in range. Upon arrival at the receiver side, the tu-
ple itself decides whether it has to be stored in that tuple space. By transmitting tuples potential
malicious or non-intended users are provided with sensitive information. Not only does sending
all tuples blindly to all communication partners in range raise privacy issues, it also creates a
network traffic overhead.

In order to deal with these issues, LIME-based systems have introduced some notion of scope
on the tuple space [DFWB98, MW00, IA06, CMMP06, SJ07]. However, to the best of our
knowledge, none of those approaches (1) provide the fine grained specification of propagations
rules found in TOTA and (2) have support to dynamically change the scope of a tuple. In scoped-
based approaches tuples are inserted in a certain scope which can not be changed after its publi-
cation. In order to change it, tuples have to be removed and inserted again in the new scope.

In summary, we observe that LIME-based approaches deal with the discovery, (physical)
context-awareness, privacy and scarce-resource issues distilled from the scenario introduced in
the previous section. However, they fall short of the communication issue as they do not al-
low tuples to be transported through multiple hops while the sender and receiver devices are not
connected at the same time. On the other hand, TOTA deals with this communication issue as
it provides flexible tuples which can hop from device to device and supports adaptive context-
awareness. However, TOTA suffers from privacy issues and the network overhead which is
incompatible with the fact that resources are scarce.

The contribution of this paper is the proposition of scoped tuples in a TOTA-based framework
for the development of mobile ad hoc networking applications. This framework allows program-
mers to dynamically control the scope of tuples by preventing the transportation of tuples to
devices which are not targeted. In the remainder of this paper, we describe in detail the TOTAM
framework and the implementation of our case study in TOTAM. Before concluding, we outline
the impact of our solution on the network traffic.

3 Scoped Tuples for the Ambient

Any TOTAM system is built from a number of locations. Every location x has a local tuple
space Tx containing a set of tuples. Tuples hop from location to location in a wireless mobile ad

Proc. CAMPUS 2009 4 / 15

ECEASST

hoc network by applying the TOTAM propagation protocol in every location. Tuples themselves
carry behavior with them under the form of a number of operations. These operations are called
on them in order to determine that they should be stored or propagated once they arrive at a
certain location. To decide this the tuple has access to the local tuple space of the location
where it arrives. Besides checking that the receiving tuple space is interested in a certain tuple
at the receiving side, the TOTAM platform allows the tuple to check this before it is being
physically transmitted. To be able to check this, each tuple space has a tuple space descriptor.
This descriptor contains semantic information that can be used by the hopping tuples at sending
time to decide whether a certain location is in their scope (by means of the inScope operation). For
example, the descriptor for the ambient game application contains information about to which
team the player belongs.

When two locations in the TOTAM network x and y move into each other’s range, instead of
immediately exchanging all tuples they first exchange their descriptors. Based on the received
descriptor Dy, the location x sends a subset of its tuples Tx to location y. The subset of tuples
Tx→y sent from x to y is defined as follows:

t ∈ Tx→y⇔ t ∈ Tx∧ t.inScope(Dy) (1)

Equation 1 defines that the tuples transfered from location x to location y which are exactly the
subset of tuples t that are elements of the set of tuples of x with a scope extending to y. Checking
that the scope of a tuple extends to a certain location y is done by applying the inScope operation
of the tuple to the descriptor of the receiving tuple space, i.e. Dy.

Exchanging tuples according to this protocol allows the definition of flexible propagation
strategies as the tuples themselves decide that they will be exchanged. This differentiates from
techniques where the tuple space itself is scoped and tuples have to be inserted in a certain scope
which can not be changed after its publication. By applying the concept of scope to the tuple,
the tuple itself contains all the information to change it scope dynamically when hopping from
location to location.

By disallowing the transportation of a tuple to a location which is not in its scope, potential
routers of information are eliminated. Such routers carry tuples from one location to another
without using them. This does not mean that routers are precluded by design in a TOTAM
system. Within the scope of the tuple, TOTAM locations may still be used as routers. However,
TOTAM locations forming part of the scope are considered as potential targets and the received
information is not sensitive to them. For example, in the ambient game scenario, messages
meant for a specific user in the blue team can be transported by other team members. But, such
messages are never carried around by members of the red team which could use this information
to their own advantage. Of course we cannot prevent malicious users in the scope of a tuple.
This issue can be alleviated by combining scoped tuples with encryption techniques.

Figure 1 illustrates how a scoped tuple is propagated through the TOTAM network. It depicts
two types of locations, the blue and red locations corresponding to the two teams of the ambient
game scenario. The scope of the propagated tuple has been limited to blue locations. Figure 1(a)
illustrates that a tuple is injected from the location with a star. This location is connected to four
blue locations and one red location. As the scope of the tuple is limited to blue locations the
tuple is only sent to the four blue locations. From those four locations the tuple is transitively
propagated obeying the scope of the tuple until all connected blue locations are reached without

5 / 15 Volume 19 (2009)

TOTAM: Scoped Tuples for the Ambient

Blue

Red
Red

Red

Red

Red

Red
Blue

Blue

Blue

Blue

Blue

Location

Descriptor

Tuple sent

Tuple Not sent

Start

Blue

Red
Red

Red

Red

Red

Red

Blue
Blue

Blue

Blue

Blue

Connected

(A) (B)

Blue

Movement

Figure 1: Operational sketch of a scoped tuple

being transmitted to a red location. Note that one blue location is not transitively connected to
the sending device and thus does not receive the tuple. Figure 1(b) illustrates that a blue location
moved into the range of the isolated blue location and thus, transmits the tuple to it. Again the
tuple is not transmitted to nearby red locations. It is important to note from this operational
sketch that the first isolated location receives a tuple without being connected at any time with
the start location in which the tuple was originally inserted.

4 Programming in TOTAM

In this section we describe the set of operations provided by the TOTAM middleware to create
tuple spaces, read and write from them and to define scoped tuples. TOTAM operations extend
TOTA operations with the concept of scope by means of tuple space descriptors. Our middle-
ware has been implemented on top of AmbientTalk, a distributed object-oriented programming
language designed for mobile ad hoc networks [VMG+07]. TOTAM relies on an object-oriented
tuple space and tuple representation. We introduce the necessary AmbientTalk syntax and fea-
tures needed to understand our middleware while explaining the TOTAM operations.

4.1 TOTAM Primitives

In order to create a TOTAM location and add it to the network, programmers can call the makeTu-

pleSpace operation as follows:

def TOTAM := makeTupleSpace(descriptor);

Variable definitions are defined with the keyword def and assigned to a value with the assign-
ment symbol (:=). The operation makeTupleSpace takes a descriptor as parameter and initiates a
new TOTAM location which exports itself to the ambient, i.e. the TOTAM network.

From then on the newly created location will look for other nodes in the TOTAM network and
exchange its descriptor with them.The descriptor contains semantic information relevant to the
propagation of tuples as explained later. The return value of this operation is an object which
represents a newly created local tuple space which has a set of methods to interact with the
middleware.

Proc. CAMPUS 2009 6 / 15

ECEASST

In order to insert tuples into the TOTAM network, the inject: operation can be called on the
local tuple space as follows:

TOTAM.inject: tuple;

Once injected the tuple starts propagating in the TOTAM network according to the propagation
rule (encapsulated in the tuple itself) and can be read and deleted from a location using the
following two primitives.

TOTAM.read(template);
TOTAM.delete(template);

The read method defined on the local tuple space returns a collection (an array) of the tuples
which matches the template passed by parameter. Reading does not remove the tuples from the
tuple space and thus allows the tuples to be further propagated to other hosts. When this is not
the wanted behavior the programmer should use the delete operation. This operation removes all
tuples matching the template from the local tuple space and returns them to the caller in an array.
In addition to these two operations, TOTAM provides an asynchronous operation when:matches:

to register an observer on the local tuple space.

def subs := TOTAM.when: { |tuple| is: tuple taggedAs: Location } matches: { |tuple|
// update visual representation of the nearby player with the new position.
};

The when:matches: operation takes as argument a template and a closure which serves as an event
handler. The handler will be called whenever a matching tuple is added to the local tuple space.
In this example, an observer is placed on tuples transporting location information (checked by
the is:taggedAs: function). The operation returns an object which can be used to cancel the
matching subscription, by invoking subs.cancel().

4.2 TOTAM tuples

The TOTAM framework defines a number of operations which have to be implemented by a
tuple to control its scope and propagation. These operations with their default implementation
are listed below and are provided to the programmer as the prototypical tuple.

def inScope(descriptor){ true };
def doAction(tupleSpace){};
def changeTupleContent(tupleSpace){ self };
def decideStore(tupleSpace){ true };

The operations of this prototypical tuple define a default propagation protocol (corresponding
to a tuple which always propagates to every tuple space encountered as explained later). This
prototypical tuple can be extended to encode custom propagation protocols by overriding the
propagation methods. Once a tuple is created and inserted into the network it will be subject to
the TOTAM protocol which calls the operations defined on the tuple in order to control its scope
and propagation. The internal workings of this protocol are shown below.

// sending TOTAM location
if: tuple.inScope(descriptor){

send(tuple, locationOf(descriptor));
};

7 / 15 Volume 19 (2009)

TOTAM: Scoped Tuples for the Ambient

//receiving TOTAM location
tuple.doAction(tupleSpace);
tuple := tuple.changeTupleContent(tupleSpace);
if: tuple.decideStore(tupleSpace) then: { tupleSpace.add(tuple)};

The inScope method is executed each time before transmitting a tuple to another location.
It takes as parameter the descriptor of the receiving location and returns a boolean indicating
whether it should be transported to that location. The default behavior of the inScope operation
(defined by the prototypical tuple) returns true, the tuple is propagated to all connected locations.

At the receiver side, the first method executed upon tuple arrival (doAction) allows the tuple to
perform some operations on the local tuple space (received by parameter) in which it has been
propagated, i.e read, delete or inject tuples. A tuple can also add other tuples to the local tuple
space by means of the add primitive. Successively, changeTupleContent is called on the tuple to
update itself during the propagation process. The prototypical tuple doesn’t change its content
while it is propagated and thus this method just returns the tuple itself (i.e. self). Finally, the
decideStore operation is called to determine whether the tuple has to be stored in the local tuple
space. The prototypical tuple returns true and thus is stored in all the local tuple spaces of the
locations where it arrives. Note that only tuples which store themselves in the local tuple store
will be subject to propagation to other locations. The next section puts in practice the above tuple
propagation protocol in the ambient game scenario introduced in section 2.1.

5 Implementation of the Ambient Game

This section describes how the TOTAM framework can be used to realise the ambient game
scenario. We focus our discussion on the distributed coordination aspects of the game.

The ambient game application running on each player’s PDA creates a TOTAM location which
makes a player go online in the network. Every player is identified by a descriptor, called
myDescriptor, encapsulating its username and the team that they belong to. Players periodi-
cally send their latest location information (e.g. GPS coordinates) to any nearby team member
by means of location tuples. A location tuple can be encoded in TOTAM as follows:

def makeLocationTuple(username, location){
extendTuple: makeTuple() with: { |myDescriptor|

// propagation methods
def inScope(descriptor) { descriptor.team == myDescriptor.team };

} taggedAs: Location;
};
TOTAM.inject: makeLocationTuple(myDescriptor.username, [positionX, positionY]);

AmbientTalk objects are created by cloning and adapting existing prototypical objects, rather
than created from a class. The makeTuple primitive returns the prototypical tuple object which is
extended by means of the extendTuple:with:taggedAs: primitive. A location tuple has two fields
(to store the username and the coordinates) and it is associated with the Location type tag (which
we assume has been previously defined). Type tags are used in AmbientTalk to categorise objects
explicitly by a nominal type. In this case, the type tag identifies the type of a tuple.

The player injects a new location tuple with the latest position (passed as argument). The
tuple overrides the default propagation protocol to be only propagated to nearby team members.

Proc. CAMPUS 2009 8 / 15

ECEASST

In order to update the visual representation of nearby team members, for example a dot in the
campus map, players subscribe to the arrival of location tuples as follows:

TOTAM.when: { |tuple| is: tuple taggedAs: Location } matches: { |tuple|
// update visual representation of the nearby player with the new position.

};

when:matches: subscribes a players to tuples associated with the Location type tag. The
is:taggedAs: function returns true if the object passed as parameter (tuple) is tagged as a given
type tag (Location). In order for players to send each other messages to agree on a group strategy,
a message tuple is modeled as follows:

def makeMessageTuple(from, content, to := nil){
extendTuple: makeTuple() with: { |myDescriptor|

def isTargeted(username){
if: (to != nil) then: { to == username // message targeting a single team member
} else: { true // message targeting all team members };

};
// propagation methods
def inScope(descriptor){ descriptor.team == myDescriptor.team };

} taggedAs: Message;
};

A message tuple has fields to store the content of the tuple (i.e. a text message) and the sender
and the receiver of the text message. The receiver of the text message is initialized by default to
nil (by means of the to optional parameter in the constructor function) which allows players to
send messages to particular team member or to the whole team as follows:

TOTAM.inject: makeMessageTuple(myDescriptor.username,"policemen in front of building M");
TOTAM.inject: makeMessageTuple(

myDescriptor.username, "policeman creeping up on you. Run!","tom");

A message tuple created without a particular receiver is sent to the whole team. With the
isTargeted method players test whether the message targets the entire team or a particular team
member. Note that team members can be used as routers to transport messages to a particular
player of their team. This behaviour is useful in the ambient game in order for players to receive
messages from a particular team member even if they were never connected at the same time.
However, as the content may not be interesting for the routers, players may just subscribe to
messages targeted to them directly or to all team members as follows:

TOTAM.when: { |tuple| (is: tuple taggedAs: Message) &&
tuple.isTargeted(myDescriptor.username) } matches: { |tuple|
// display text message on the gui

};

Finally, a player can drop a bomb (tuple) that affects players of the opposite team in a certain
range (defined by the numbers of hops from the player that drop it):

def makeBombTuple(range){
extendTuple: makeTuple() with: { |myDescriptor|

def inScope(descriptor) { (descriptor.team != myDescriptor.team) && (range > 0)};
def doAction(ts) { // notify the player that she/he has been bombed! }
def changeTupleContent(ts) { range := range - 1; self};

} taggedAs: Bomb;
};

9 / 15 Volume 19 (2009)

TOTAM: Scoped Tuples for the Ambient

A bomb tuple has a field (range) to store the number hops it can perform. inScope returns
true when the receiver tuple space is a member of the opposite team and the tuple has not been
already propagated to all tuple spaces reachable in n-hops. doAction notifies the reached players
that they were bombed. A more advanced implementation of the bomb tuple could affect a player
by e.g. decreasing his/her life total. changeTupleContent updates the tuple being propagated by
decreasing the range value by one at every hop.

6 Discussion and Evaluation of network traffic

In this section, we evaluate TOTAM in view of the issues identified in Section 2. As TOTAM
adopts a tuple-based model inspired by the TOTA middleware, our approach inherits the so-
lutions for the discovery, context-awareness and communication issues: (1) TOTAM locations
can discover each other spontaneously, (2) the propagation protocol equipped in tuples cater to
context-awareness in an adaptive way, and (3) TOTAM locations do not have to be available in
the network at the same time to exchange tuples.

TOTAM addresses the privacy and scarce resources issues by introducing the notion of scope
on tuples. By making use of tuple space descriptors, programmers can scope their tuples pre-
venting them to be transported to unwanted locations. These descriptors are crucial to provide
programmers with a hook to encode privacy strategies. Although the descriptors in the ambient
game are limited to be simple objects carrying the team identifier this can be extended to com-
pute an encryption challenge. By avoiding the unnecessary tuple transportation, our approach
can minimize network traffic. Tuple space descriptors are exchanged between two locations
when they meet for the first time and whenever a location decides to change its description. In
case descriptors stay constant and prevent the propagation of tuples they can drastically reduce
the burden on the network. In the other case when descriptors change a lot or do not prevent the
transportation of tuples the danger exists that the network traffic gets dominated by the transmis-
sion of descriptors. In the remainder section we evaluate when the use of tuple space descriptors
is beneficial and in which cases it is not in terms of network traffic.

6.1 Worst Case

In the worst case there is one message that has to be transported to all connected locations. This
means that the exchange of the tuple space descriptors is an overhead as the tuple was unlimited
in its scope i.e. the tuple floods the network. The network traffic generated for this tuple to be
sent over the network when two locations meet can be computed as follows. Every location x
connecting to a location y will first receive the descriptor Dy over the network and then receive
the tuple tx1. The total amount of network traffic for this tuple can thus be computed by summing
the exchange of all descriptors with the total amount of exchanged tuples. This is shown in the
following equation where n represents the number of connected locations.

NetworkTra f f ic = (
n

∑
x=0

n

∑
y=0

Dy)+n.tx1 (2)

Proc. CAMPUS 2009 10 / 15

ECEASST

In case the descriptors do not change they will only be transported once when two locations
discover each other. This means that from the second communicated tuple the cost of the de-
scriptor is dropped in the above equation. The resulting equation is exactly the traffic that is
normally transferred (n.Tx1) when not making use of tuple space descriptors. However in the
worst case all connected locations change their descriptors for every transmitted tuple. In this
case the overhead of transferring the descriptors is given by the following equation where N is
the number of transferred tuples.

NetworkOverhead = (
n

∑
x=0

n

∑
y=0

Dy)∗N (3)

The overhead of exchanging the descriptors will be quadratic to the number of connected
locations over time. This clearly shows that when descriptors change a lot and tuples have to be
sent to all connected locations encountered it is not beneficial to use tuple space descriptors.

6.2 Best Case

In the best meaningful case1 the sent tuples are sculpted to be only sent to one location and the
tuple space descriptors do not change over time. We illustrate this case by a tuple that hops from
location to location in a ring. In every hop the tuple adjusts its scope to the next hop in the ring
configuration. We have illustrated the network traffic generated by this scenario for TOTAM and
traditional approaches in figure 2. It is important to split up the network traffic generated by
TOTAM in the case for the first tuple and the successive ones. As can be observed on the top
left of the figure, before sending the first tuple over the ring all descriptors have to be exchanged.
However, when this tuple is further propagated over the ring exchanging the descriptors is not
necessary anymore so the number of exchanged tuples for one round equals the size of the ring
(as shown in the second and third step of the figure). This is in contrast to approaches where the
tuples are not scoped, in these cases the number of exchanged tuples for one round is quadratic
to the number of locations participating in the ring.

xTuple Space

Descriptor

Tuple send

Descriptor send

1

4

3

2

Totam T1

Traditional approaches T1

Totam T2

1

4

3

2

Traditional approaches T2

Totam T3

Traditional approaches T3

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

Figure 2: Set-up of best case scenario

1 The theoretical best case is when the tuple is meant for nobody and thus does not generate network traffic at all.

11 / 15 Volume 19 (2009)

TOTAM: Scoped Tuples for the Ambient

After evaluating the worst and the best case it is clear that the use of tuple space descriptors in
combination with scoped tuples has the potential to drastically reduce the network traffic when
1) the tuples will be prevented from hopping to other locations and 2) the descriptors do not
change often relative to the number of tuples in the system.

7 Related Work

A number of approaches support scoping mechanisms in the context of tuple spaces. Coordina-
tion with Scopes [MW00] introduces the concepts of scope for a tuple space. A scope represents
a view on a flat tuple space. A set of operations is defined on those views allowing scopes to
be joined, nested, intersected and subtracted. Tuples may thus be visible from several different
scopes. This mechanism is mainly used to structure tuple spaces according to different view-
points on a flat tuple space. However, they do not limit the propagation of tuples, i.e. the tuple
is propagated to other tuple spaces but it may not be visible for certain scopes. Since the system
was not devised for mobile computing applications, they rely on centralized infrastructure. In
contrast, TOTAM does not rely on any fixed infrastructure and tuples can be propagated through
spontaneously formed mobile ad hoc networks.

CAMA[IA06] is an agent-based tuple space system which allows the definition of a scope
which agents can join and leave. Scopes are defined as containers in a tuple space and can be
nested to form hierarchical structures. This notion of scope improves on coordination with scopes
since inserted tuples are only transmitted to agents which reside in the same scope. However,
in order to send tuples to other scopes the agent first needs to change its scope. Tuples which
are inserted in a specific scope can not be propagated automatically to other scopes. In TOTAM,
by allowing the tuple itself to decide whether it should be propagated, more fine-grained sharing
strategies can be expressed.

L2imbo is a tuple-space based platform for mobile computing which provides special features
for quality of service. Similar to CAMA, L2imbo introduces the concept of multiple tuple spaces
but suffers from the same limitations as tuples do not have the ability to change to which tuple
space they should be propagated. It is interesting to note that L2imbo supports time-outs to be
associated with tuples which makes possible for the system to reorder tuples to make optimal use
of the available network connectivity. This behaviour can be achieved in TOTAM by manually
encoding it in the tuple propagation protocol.

Evolving tuples [SJ07] have a field destination that they can change while they are hopping.
This destination field is used to determine where the tuple will be transmitted to after leaving a
host. However, the destination field can only be a broadcast address or a specific host address. In
order to send the tuple to two broadcast addresses the programmer will have to read the tuple and
reinsert it to another broadcast address. Our approach uses semantic information to determine
where it can be transmitted thus allowing more fine-grained propagation rules.

Inspired by LIME, TeenyLIME [CMMP06] introduces abstractions specially designed for
wireless sensor networks (WSN). Every tuple space in TeenyLIME is shared only with one-
hop neighbours, limiting the scope of tuples to one hop. Such limitation fits natural with WSN
architectures where every node typically needs access to nearby information [CMMP06]. Scop-
ing was introduced to address the scarce resources issue in the context of WSN. However, no

Proc. CAMPUS 2009 12 / 15

ECEASST

other means are provided to express different propagation protocols, which need to be expressed
in terms of single-hop operations.

Other loosely decoupled communication models like publish/subscribe systems have explored
the concept of scope. In publish/subscribe systems, subscribers register for events and are asyn-
chronous notified when a publisher generates a matching event. Matching is usually performed
by an event broker which publishers post events to and subscribers register themselves with. In
larger systems this event broker is extended to be an acyclic connected graph of event brokers,
such as in REBECA [M0̈2]. In this discussion we do not consider systems which use such a graph
of fixed event brokers as it does not scale for mobile networks. In scoped REBECA [LMMB02]
systems can create a scope in which events will be published. A scope can be extended and
thus form a tree of scopes. Subscribers will only receive events of publishers which are in the
same scope or have a common ancestor in the scope hierarchy. Similar to CAMA, publishing an
event in an other scope requires the publisher to change it scope first. STEAM [MC03] allows
publish/subscribe based on physically location, but it is hard to describe scopes based on se-
mantic information as shown in the ambient game. Location-based publish/subscribe [EGH05]
suffers from the same limitation. Frey et al. [FR07] allow the limitation of publications and sub-
scriptions on both physical and semantic information (from the publishing and receiving nodes).
However, events in their system cannot adapt themselves while being propagated.

8 Conclusion and Future Work

We have introduced a novel tuple space-based approach which provides a dynamic scoping
mechanism that limits the transportation of tuples. By means of tuple space descriptors, pro-
grammers can scope their tuples preventing them to be propagated to unwanted locations. These
descriptors are exchanged between two locations when they meet for the first time and whenever
a location decides to change its description. The novelty of our approach lies in the use of these
tuple space descriptors to determine the scope of tuples before they are being transmitted. This
enhances privacy and decreases the burden on the network traffic in a wide range of applications.

We would like to extend the doAction propagation operation with a guard-like predicate that
is periodically evaluated until it allows the doAction to be triggered. This is different from per-
forming the same predicate check in the doAction as this operation is evaluated only once when
the tuple arrives at its new location. We are currently developing a toolkit for ambient applica-
tions called UrbiFlock on top of TOTAM. Urbiflock is a Facebook-like application framework
specially designed to enable spontaneous interaction of people in the campus of the Vrije Uni-
versiteit Brussels by means of mobile devices (such as their cell phones). We believe that the
implementation of UrbiFlock will help to identify possible shortcomings and points to improve.

Acknowledgements: Christophe Scholliers is funded by a doctoral scholarship of the Institute
for the Promotion through Science and Technology in Flanders (IWT-Vlaanderen). Elisa Gon-
zalez Boix is funded by the Prospective Research for Brussels program of the Institute for the
encouragement of Scientific Research and Innovation of Brussels (IWOIB-IRSIB). The authors
would like to thank Tom Van Cutsem, Stijn Mostinckx and the anonymous reviewers for their
helpful comments and suggestions for improvement.

13 / 15 Volume 19 (2009)

TOTAM: Scoped Tuples for the Ambient

Bibliography

[CMMP06] P. Costa, L. Mottola, A. Murphy, G. Picco. TeenyLIME: transiently shared tuple
space middleware for wireless sensor networks. In MidSens ’06: Proceedings of the
international workshop on Middleware for sensor networks. Pp. 43–48. ACM, New
York, NY, USA, 2006.

[DFWB98] N. Davies, A. Friday, S. Wade, G. Blair. L2imbo: a distributed systems platform for
mobile computing. Mob. Netw. Appl. 3(2):143–156, 1998.

[EGH05] P. Eugster, B. Garbinato, A. Holzer. Location-based Publish/Subscribe. Fourth IEEE
International Symposium on Network Computing and Applications, pp. 279–282,
2005.

[FR07] D. Frey, G. Roman. Context-Aware Publish Subscribe in Mobile Ad Hoc Networks.
In 9th International Conference on Coordination Models and Languages (COOR-
DINATION). Lecture Notes in Computer Science 4467, pp. 37–55. Springer-Verlag,
June 2007.

[Gel85] D. Gelernter. Generative communication in Linda. ACM Transactions on Program-
ming Languages and Systems 7(1):80–112, Jan 1985.

[IA06] A. Iliasov, R. A. Structured coordination spaces for fault tolerant mobile agents.
Advanced Topics in Exception Handling Techniques 4119:181–199, 2006.

[LMMB02] F. Ludger, M. Mezini, G. Mühl, A. Buchmann. Engineering Event-Based Systems
with Scopes. In ECOOP ’02: Proceedings of the 16th European Conference on
Object-Oriented Programming. Pp. 309–333. Springer-Verlag, London, UK, 2002.

[M0̈2] G. Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis,
Darmstadt University of Technology, 2002.

[MC03] R. Meier, V. Cahill. Exploiting Proximity in Event-Based Middleware for Collabo-
rative Mobile Applications. In Proceedings of the 4th IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS’03). 2003.

[MCE02] C. Mascolo, L. Capra, W. Emmerich. Mobile Computing Middleware. In Advanced
lectures on networking. Pp. 20–58. Springer-Verlag New York, Inc., 2002.

[MPR01] A. Murphy, G. Picco, G.-C. Roman. LIME: A Middleware for Physical and Logical
Mobility. In Proceedings of the The 21st International Conference on Distributed
Computing Systems. Pp. 524–536. IEEE Computer Society, 2001.

[MW00] I. Merrick, A. Wood. Coordination with scopes. In SAC ’00: Proceedings of the
2000 ACM symposium on Applied computing. Pp. 210–217. ACM, New York, NY,
USA, 2000.

Proc. CAMPUS 2009 14 / 15

ECEASST

[MZ04] M. Mamei, F. Zambonelli. Programming Pervasive and Mobile Computing Appli-
cations with the TOTA Middleware. In Proceedings of the IEEE International Con-
ference on Pervasive Computing and Communications (PERCOM). P. 263. 2004.

[SJ07] D. Stovall, C. Julien. Resource discovery with evolving tuples. In ESSPE ’07: Inter-
national workshop on Engineering of software services for pervasive environments.
Pp. 1–10. ACM, New York, NY, USA, 2007.

[VMG+07] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix, J. Dedecker, W. De Meuter. Ambi-
entTalk: object-oriented event-driven programming in Mobile Ad hoc Networks. In
Proceedings of the XXVI International Conference of the Chilean Computer Science
Society (SCCC 2007). Pp. 3–12. IEEE Computer Society, 2007.

15 / 15 Volume 19 (2009)

	Introduction
	Motivation
	Scenario: Ambient Game
	Tuple space-based middleware

	Scoped Tuples for the Ambient
	Programming in TOTAM
	TOTAM Primitives
	TOTAM tuples

	Implementation of the Ambient Game
	Discussion and Evaluation of network traffic
	Worst Case
	Best Case

	Related Work
	Conclusion and Future Work

