
Electronic Communications of the EASST
Volume 24 (2009)

Guest Editors: J. Cabort, J. Chimiak-Opoka, F. Jouault, M. Gogolla, A. Knapp
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the Workshop

The Pragmatics of OCL and Other Textual

Specification Languages

at MoDELS 2009

Declarative Models for Business Processes and UI Generation

using OCL

Jens Brüning, Andreas Wolff

16 Pages

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/270295396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ECEASST

2 / 16 Volume 24 (2009)

 Declarative Models for Business Processes and UI Generation using

OCL

Jens Brüning, Andreas Wolff

University of Rostock, Department of Computer Science, Albert-Einstein-Str.21,

18059 Rostock, Germany
{Jens.Bruening, Andreas.Wolff}@uni-rostock.de

Abstract: This paper presents an approach to model business processes and associated

user interfaces in a declarative way, relying on constraints. An UML-based meta-model to
define processes, activities and user-interface objects is proposed. Connecting activities
and user interface objects in an integrated model allows expressing interdependencies and
mutual effects. Flexible execution logic for workflows and UI control flows are specified
by OCL invariants. The model is constructed for the UML tool USE. Using object
snapshots, USE can animate and validate business scenarios. Snapshots represent states of
a process and a UI at specific times. Such animation enables business process and UI

designers to discuss sensible scenarios on basis of the flexible declarative models. The
intention is to create validated concrete process models in connection with UI elements
that will provide a basis for the system implementation.

Keywords: Declarative Process Modeling, UI Modeling, UI Generation, UML, OCL,
Constraints

1 Introduction

This paper is divided into two parts. The first one is about the declarative business process

modeling approach and the connection to the User Interface Objects. These objects will
provide relevant data for activities in the business process. Constraints will use them to make
statements about the process logic in connection with provided data. The meta-model for the
declarative approach is presented and thereafter its usage is illustrated with a case study. The
process will be animated with the UML tool USE.

The second part of the paper goes into detail of the user interface aspect and discusses how
to use the models of part 1 for a more detailed UI modeling and then to generate a concrete UI

out of it. Problems of connecting the UI to the declarative process execution logic will be
discussed here.

1.1 Motivating the declarative approach

Declarative Process Models are more flexible, because all execution paths of the activities in
the process model are allowed if they are not forbidden explicitly by constraints [19, 14]. In
traditional graph based process modeling languages like BPMN [1] or UML Activity
Diagrams [2] sequence relationships between activities are frequently used. Those models
represent concrete processes in companies or organizations. Workflow Management Systems

Declarative Business Process Models using OCL

Proc. OCL 2009 3 / 16

(WfMS) can use such models to guide the employee through the process by instantiating and
interpreting them.

The sequence relationship between activities is not the standard relationship in declarative
process models. By default the activities are concurrent and constraints restrict the possible
activity executions. Thus, they are less adequate to guide the employees through the process
because they leave too many execution possibilities up to them.

Besides, the declarative modeling approach enables the process designer to model
additional temporal relations between activities that are not possible to express by the

traditional graph based modeling languages. Section 2.3 will give an example for that.
Furthermore, by using the declarative approach not only temporal relations between

activities can be described by constraints, also dependencies from activities to data in user
interface objects can be defined. The execution logic is not only dependent on execution states
of certain activities but also from data of UI-objects, which may have an impact on the process
execution.

1.2 Describing the case study

For the case study in this paper we use an examination process for an undergraduate

informatics course at our university. So it is about an administrational business process in an
organization and not in a company. The examination process in the Abstact Datatype lecture
[3] will be modeled and is as follows.

The student gets exercise sheets that he has to solve at home. This homework period
includes iterations for each sheet and is running until the last exercise is done. Further on, the
student has to do three written tests during the lecture. Because of that we consider a test as an
iterated activity. The period of homework begins earlier and runs longer than the test period.

These two partial examinations are preconditions to write the final written examination test.

2 Concept of Declarative Process Models using OCL

First of all we describe the meta-model for declarative business processes in general.
Thereafter, a concrete process is described by a case study about the lecture examination
process that was textually described in Section 1.2. The business process logic is described
declaratively by OCL-invariants in Section 2.3. Dependencies of activities in the business
process to the data from the user interface are also described by OCL-invariants in the section
thereafter. At last the case study is animated by a concrete scenario in the UML tool USE. That

way the declarative process model can be tested. Also suitable diagrams to analyze the
scenarios are shown in Section 2.5.

2.1 Meta-model for declarative processes

In Figure 1 the process meta-model is presented. The model introduced in [4] is extended with
iterations here.

 ECEASST

4 / 16 Volume 24 (2009)

Fig. 1. The meta-model for the declarative business process modeling approach

The class Process has an attribute name and contains a set of activities which is described
by the association includes between Process and Activity. Atomic actions and actions that
occur iteratively in the process are expressed by the class Activity. They have a name that

describe the actions and a state in which the activity is currently in. Possible states for the
activities are described in the enumeration State. The process state is derived from the states of
the included activities and is calculated by the operation getState in the class Process.

Further on, the operation getActivity returns the requested activity instance and is needed by
the subsequent invariants presented in Section 2.3 which describe the business logic. It is
coded in OCL [8] as follows and will be interpreted by the UML tool USE [5]:
getActivity(n:String):Activity = activity->any(a|a.name=n)

An Activity can have a set of IterationActivity that describes the action in every iteration
cycle. The following invariant expresses the relationship between the parent activities to its
iteration instances. If the parent activity is in the state done the iteration instances have to be
done as well.

context Activity inv IterationActivities:
 self.state=#done implies self.iterationActivity->forAll(a|a.state=#done)

At last, there are two associations to the class UIO that provide the connection to the UI-
Objects. Thereby, constraints can describe dependencies between business process and data in

the UI-Object. Dependencies from the direction of the process to the UI-Objects will be
described in Section 2.4. Constraints that describe effects from the UI to the business process
will be part of Section 3. Also, details of the UI models and special interface types will be
introduced there.

The lifecycle of the activities is important for the business process logic described by OCL
invariants in Section 2.3. It is shown in Figure 2. The activities are initialized to the state
waiting. After invoking the operation start on an activity instance, the state will be changed to

running. The activity instance can terminate in the states done, skipped or failed.

Declarative Business Process Models using OCL

Proc. OCL 2009 5 / 16

Fig. 2. The state chart models the life cycle of instances of the class Activity in the meta-model

The behavior specified in the state chart will be modeled by OCL pre- and post-conditions

for all of the operations listed in the class Activity in the UML tool USE. For example the pre-
condition of the operation start specifies that the corresponding activity is in the state waiting
and the post-condition states that it has changed to running. In OCL this is expressed as
follows and the conditions of the further operations are specified analogously.

context Activity::start()
pre isWaiting: state=#waiting

 post isRunning: state=#running

2.2 Concrete process level

The concrete process level is achieved by inheritance relationships between the meta-class and

the modeled subclasses which can be seen in Figure 3. The process LectureADT represents the
concrete process in there. It is connected with 3 activities that are described by the concrete
activity classes HomeworkPeriod, TestPeriod and Exam. The HomeworkPeriod and
TestPeriod are iteration activities that include the activities Homework and Test.

Process definition invariants are specified for the subclass LectureADT. First of all the
names of the included activities are expressed in the first invariant. Then the second invariant
ensures that selected activities are of the corresponding types. Further on, the iteration
activities can be connected to the period activities in an analogous way so that these invariants

are omitted here.

context LectureADT inv LectureExamination:

 self.activity.name = Bag{'TestPeriod','HomeworkPeriod','writeExam'}

context LectureADT inv SpecialOperations:

 self.getActivity('TestPeriod').oclIsTypeOf(TestPeriod) and
 self.getActivity('HomeworkPeriod').oclIsTypeOf(HomeworkPeriod) and

 self.getActivity('writeExam').oclIsTypeOf(Exam)

 ECEASST

6 / 16 Volume 24 (2009)

Fig. 3. The relationship between the meta level and the concrete modeling level. Concrete Process, Activities

and UI-Objects are represented by different classes in the concrete level.

2.3 Business process logic described by invariants

The process logic is described by OCL invariants. There are several well known temporal
relationships between activities like the sequence relationship or the iteration that can be
described in that way. These relationships are often used in the typical process modeling
languages. In the examination process of our case study there is a sequence relationship
between HomeworkPeriod and Exam. It is described in the invariant

Homework_Exam_Sequence which can be seen beneath. The same relationship exists between
TestPeriod and Exam and can be specified in a similar way.

With our declarative process modeling approach we can describe additional temporal
relationships that cannot be expressed by the common process modeling languages [4] and are
not part of the workflow patterns [6]. The invariant TestPeriod_in_ HomeworkPeriod is an
example for that. It expresses that the Test-period has to be during the Homework-period with
no further temporal limitation.

context LectureADT inv Homework_Exam_Sequence:
 self.getActivity('writeExam').state=#running implies

 self.getActivity('HomeworkPeriod').iterationActivity->forAll(a|a.state=#done)

context LectureADT inv TestPeriod_in_HomeworkPeriod:
 self.getActivity('TestPeriod').state=#running implies

 self.getActivity('HomeworkPeriod').state=#running

The OCL constraints for expressing the temporal relationships are quite verbose. To make
this approach more practicable, the meta-model can be extended with more subclasses derived
from the class Activity that have particular properties expressed by predefined constraints
similar to the class IterationActivity introduced in Section 2.1. For example subclass

SequenceActivity can be derived from the class Activity and an association is connecting the

Declarative Business Process Models using OCL

Proc. OCL 2009 7 / 16

activities that are subsequent in the process logic. At design time the process modeler only has
to specify which activities have to be connected instead of writing the verbose constraints.

To support the process modeler while designing the process models, invariants for the
declarative process models could be generated out of a graphical oriented modeling tool
similar to the DECLARE Designer [18]. So, such a modeling tool would be wishful also for the
approach presented here. More complicated relationships can be added by specifying explicit
OCL constraints afterwards.

2.4 Dependencies of activities to User Interface Objects

An advantage of our declarative process modeling approach is the access to the UI elements

and the data in there. We can describe specific states of the business process by referencing the
states of including activities and then make constraints to the expected data from the user
interface. The invariant ExamOnlyIf_HomeworkPassed describes that if the exam is running
the tests written before have to be passed with a rate better than 50 percent. For the successful
passing of the homework also 50 percent of the maximal points have to be collected. This
issue is proven with the invariant ExamOnlyIf_HomeworkPassed.

context Exam inv ExamOnlyIf_TestsPassed:
 let percents:Bag(Integer) =

 self.process.

 getActivity('HomeworkPeriod').iterationActivity.uIO.oclAsType(HomeworkUIO).getValueAsInt() in

 self.state=#running implies
 percents->sum() / percents->size() > 50

context Exam inv ExamOnlyIf_HomeworkPassed:

 let homeworks:Set(Activity) = self.process.getActivity('TestPeriod').iterationActivity in

 self.state=#running implies
 (homeworks.uIO.oclAsType(HomeworkUIO).getValueAsReal()->sum() /

 homeworks->collect(a|a.oclAsType(Homework).maxpoints)->sum()) * 100 > 50

A further aspect for the whole process state can be expressed by referencing data from the
corresponding UI-object. By overwriting the operation getState() of the meta-class Process in
the concrete process LectureADT we have the possibility to express that the whole
examination process is only done if all included activities are done and the UI-object of the
exam has a grade better than 5 which means successfully passed in Germany. If it would have
been a 5 the examination process would have failed. The other two possible process states are

running and waiting. The operation getState(), to calculate the applicable state, can be seen in
its following OCL-specification.

getState():State=

 if activity->forAll(a|a.state=#done) then

 if getActivity('writeExam').uIO.oclAsType(ExamUIO).getValueAsInt() < 5 then #done
 else #failed endif

else if activity->exists(a|a.state=#running) then #running
 else #waiting

endif endif

 ECEASST

8 / 16 Volume 24 (2009)

2.5 Process animation in USE

The process can be instantiated and animated in USE in connection with ASSL (A Snapshot

Sequence Language) [5, 7]. USE interprets the ASSL procedures and commands take effect on
the object model like creating, deleting or changing objects or links. The model of Figure 3 is
specified for USE and an ASSL process instantiation procedure will create the process
instance.

Fig. 4. A snapshot of the process instance with activities and corresponding UI objects

The ASSL commands in that procedure will result out of the process definition invariants
of Section 2.2 that have already specified which activities are included in the process. For
example in invariant LectureExamination the activity “writeExam” is defined and its type

Exam is assigned by the invariant SpecialOperations. Further, the initial state waiting of the
activities are set in the ASSL instantiation procedure and the UI-Objects will be created and
linked to the corresponding activities as well. Figure 4 is showing such a process instance.

Having the process instance, activities can be started, finished, skipped or failed. These
commands can also be expressed in ASSL procedures. An ASSL procedure invocation is
executed only if no invariant is violated after the execution of the procedure run. Otherwise
USE informs the user that no valid state is found and the ASSL commands will not take effects

on the object model. The invariants are checked and monitored at runtime by USE. By that a
constraint controlled execution of the process model is guaranteed.

Figure 4 is showing a snapshot of a process after instantiating it and invoking some start()
and finish() operations on several activities that have not violated any constraints. The
invocation sequence of the operations will be logged in the sequence diagram in USE and can
be seen in Figure 5.

Declarative Business Process Models using OCL

Proc. OCL 2009 9 / 16

Fig. 5. A sequence diagram showing the scenario until the snapshot of Figure 4 is taken

The ASSL operations for starting and finishing the activities have to be invoked at the
console in USE. For validating the process definition by animating and simulating process
instances, it would be wishful to have a process view in USE where process executions can be
visually animated and the ASSL procedure-invocations for starting and finishing activities are
provided by a GUI.

3 Models for UI

3.1 User Interface Modeling

Modeling user interfaces (UI) is a well investigated research topic. For more than twenty years
user interfaces are specified in terms of instances of meta-models. Approaches differ in level-
of-detail and abstraction, domain, interface modalities and target devices. Yet, most common
and among the earliest, were model-based systems for text-based interfaces and typical

Window-Icon-Menu-Pointer (WIMP) style graphical user interfaces.

In model driven user interface development (MD-UID), as well as in model-driven
software development, a distinction is made between platform independent (PIM) and platform
specific models (PSM) [13]. A platform in MD-UID is considered to be a certain device or
rather the interface source code itself. Interface source code is not necessarily source code of

 ECEASST

10 / 16 Volume 24 (2009)

certain, more or less well known, programming languages. More and more interfaces are
described in a markup language. A very well known example is HTML.

Closely related to model-based user interface development are any types of XML-based
UI-languages. Their main advantage is an available well-defined grammar and their
hierarchical structure. Because of these characteristics the definition of an MOF like meta-
model is comparatively easy.

Two XML-based UI languages can be considered wide-spread: XAML, which is used
throughout Microsofts .NET framework, and XUL [9] of the Mozilla Corporation, used in the

FireFox web browser and other products. Other XML-UI languages were developed for
research purposes and are mostly used in academic context. These include for example
UsiXML, UIML and XIML.

MD-UID concepts are often based on at least three interrelated models. Those models are
found in early systems like e.g. MASTERMIND [15] as well as current systems as e.g. Zhao’s
[17]. One of these models is a task model which describes the activity a user wants to
accomplish in terms of goals, sub-goals and temporal relationships. A presentation model

defines layout, interaction objects and control flow. And the domain model which describes
the application domain, i.e. its objects or other environmental constraints. Using declarative
modeling to describe user interfaces is also a well-known concept in MD-UID, FUSE [16] of
1995 was an early system dedicated to formal definition of user interfaces.

Those models are found in our approach as well, though not as explicit models. The
invariants of Section 2.3 define temporal relations and goal decomposition very similar to a
task model. We consider the concrete process model as our domain model. Obviously, this is

not the best solution one can think of. We had some discussion whether to introduce a specific
data model, but eventually decided not to. The major reason was brevity and that domain
modeling is not the core of the approach presented here. The remainder of this paper describes
the presentation model of our approach.

In the meta-model for the business process modeling approach we use a very concise user
interface model. It basically consists of the abstract class UIO and the interfaces
ValueInterface, TextInterface and EventInterface. The name UIO is short for user interface
object which is a generic expression for any element on any kind of human-computer

interface.
Class UIO does not specify any attributes or operations. Its main purpose is to serve as

super type within an inheritance hierarchy. The interfaces mentioned before are intended to
define fixed and in particular typed methods of accessing internal state and value information
of concrete user interface objects.

Every concrete user interface object has to be an instance of a subclass of UIO and should
implement one or more of the interfaces, whichever is appropriate.

Figure 6 shows the user interface part of our workflow meta-model. We consider those four
types as sufficient to specify a platform independent model of an user interface.

As platform specific model for UIs we decided to use XUL. One reason for this decision
was the availability of an advanced rendering engine, which is open-source and independent of
the underlying operating system. Furthermore we already have a visual editor for XUL at our
disposal. And more over, XUL is also used as main UI-language in our other research.

Declarative Business Process Models using OCL

Proc. OCL 2009 11 / 16

Fig. 6. Types for linking to user interfaces in meta-model

To use XUL as PSM for UIs within our approach we first had to define a MOF-based meta-
model for it. So we developed an EMF Ecore [11] model for this purpose. We chose an Ecore
model over a USE model because we found the support for large models in USE insufficient.
This is mainly because USE does not offer packages or interfaces.

Using freely available sources it is possible to construct a XML schema definition (XSD)

for XUL. Having a schema definition, a first Ecore model for XUL was easily generated. The
generated model had a number of disadvantages, e.g. many numbered or anonymous types,
and we found it was unnecessarily complicated. So we manually refined and restructured the
model.

Figure 7 visualises the basic hierarchy within the XUL Ecore model. Many types, either
representing concrete user interface elements or used to structure the model, were omitted to
not waste space. To give an idea about the size: the model consists of 31 data types, 151
classes and interfaces with 443 attributes in total.

XULElement is the root element of the type hierarchy; it has a lot of attributes which are
valid for every XUL tag. Every attribute is initialized with a sensible default value or remains
unset if no value is required explicitly.

TemplateControl is the root type for any XUL tag that controls the template engine.
InfoElement is the super type of every tag that is not displayed but defines actions, key
bindings and such.

Any type that implements ContainerChild can be placed into a visual container. Most

implementors are concrete VisibleType objects, some are visual containers themselves.
ContainerElement is a marker class for all elements which are able or require containing sub-
elements.

A GenericContainer object is a visual container that includes children of type
ContainerChild. An example could be a group box, which is a bordered box that has a caption,
which has some labels and buttons in it.

RadioType is a radio-button, ButtonType a plain button, LabelType a label and TextboxType

a textbox. Those four types are the only concrete classes of Figure 7. Each such type represents
a concrete user interface object.

 ECEASST

12 / 16 Volume 24 (2009)

Fig. 7. Section from XUL Meta Model

The XUL meta-model we developed can be used as a descriptive model for XUL user
interfaces. Beside it’s usage in the context of this paper, it is the foundation for a number of
tools we are currently working on in MD-UID.

3.2 Coupling Workflow Modeling and User Interfaces

Section 3.1 presented two kinds of meta-models. Now we would like to show how the
combination of both can be used to connect user interface objects to a workflow.

It was mentioned that the workflow model of Section 2 includes references to platform
independent user interface objects. Those are specified in a platform independent manner
using the type UIO.

To obtain concrete user interface objects we merge the XUL meta-model and the UI model
of the workflow meta-model. To achieve this multiple inheritance is used.

Every user interface object of an activity or a process object must be a member of a
concrete class. Such class has to inherit from class UIO and from its representing XUL meta-

type class. If needed, it also would inherit or implement the appropriate value type interface.

To give an example: The workflow activity Homework might be presented using a textbox

to input the points a student achieved in this particular assignment. Therefore a user interface
object is needed that provides such an input and is able to disclose the point count to any
stakeholder or constraint. For this purpose the class HomeworkUIO is defined within our
concrete workflow model. It inherits from UIO, from TextboxType and implements
ValueInterface. The attribute uIO of type Homework in our concrete workflow is able to hold

references to HomeworkUIO objects.
When generating code one would implement the method getValueAsReal() with an

implementation like: return parseFloat(this.value). The value attribute is an XUL attribute of
textboxes and it is available in HomeworkUIO through inheritance from TextboxType.

Declarative Business Process Models using OCL

Proc. OCL 2009 13 / 16

Often one would like to group similar user interface objects within a visual container. As
we decided to keep our UI-PIM most concise, the UIO does not provide any mechanism to
specify parent/child relations or containment associations. This was a deliberate decision,
which was made to keep the focus on the declarative workflow aspects in our meta-model.

Nevertheless containment relations can still be modeled through the platform specific
model. We consider grouping as an important layout problem, but not as a crucial part of a
platform independent workflow UI model.

For specifying parent/child relations we can easily use GenericContainerElement’s

containment association children.
In continuation of the example for the Homework activity we may want to group all

HomeworkUIO into a certain screen area. The Activity type Homework was specified as an
IterativeActivity and its instances are repeated within a HomeworkPeriod object.

We would now define a class HomeworkPeriodUIO that inherits from UIO and
GroupboxType. GroupboxType is a subtype of GenericContainerElement and also of
ContainerChild. This means that a XUL groupbox contains child elements and also may be a

child in another container. We do not implement any of the value conversion interfaces,
because there is no sensible value or state to report to anybody.

In an instantiated workflow HomeworkUIO objects may now be placed as children of a
HomeworkPeriodUIO object. In fact any UIO object of the workflow instance that implements
ContainerChild may be placed in this group. If such freedom is unwanted, restrictions can be
introduced by appropriate constraints.

We do not intend to describe the whole user interface of a workflow declaratively. But
nevertheless it seems sensible to define some constraints on the PSM level of a UI. Other
sample constraints might be the requirement that the UIO of a process is a ContainerElement
or that every visual container needs to have children.

Of special interest in the context of this paper are constraints that take effect on the
workflow. By integrating the UIO into the workflow meta-model we provided a mean of
bidirectional control. That is we can control the UI via workflow and vice versa.

We assume that constraints from the user interface will mostly be based on the internal

state of a certain UIO. Once again the value and state interfaces with their typed methods are
used.

An example of a constraint that affects the workflow can be defined in the context of
HomeworkUIO. We may define that the Homework activity which is connected to a certain
HomeworkUIO can never be in the state of ‘done’ if there is no text entered into the UIO’s
textbox. This constraint might be defined as follows:

context HomeworkUIO inv AssignmentPoints:

self.value.oclIsUndefined() implies self.activity.state<>#done

More complex constraints are of course conceivable, e.g. for a HomeworkUIO a constraint
which is composed over all its child-uio’s. However, almost all constraints will probably
declare implications for the state of a certain activity object.

 ECEASST

14 / 16 Volume 24 (2009)

3.3 Runtime User Interface

The UI model which we specified using the methods presented in Section 3.2 is sufficient to

generate a functional user interface. Unfortunately the tool chain we use is not.
For the time being USE does not provide a feasible method of interaction with other tools.

A plug-in interface is under development, but not available right now. We do need such an
interface to create an adapter or proxy between our selected UI renderer and USE.

In our case the renderer of the PSM UI-model could be any instance of the gecko rendering
engine of the Mozilla Corporation, as for example the FireFox web browser.

Some of the features of USE are available within the eclipse platform and EMF as well. To

bridge the time gap until USE becomes fully usable to us, we attempt to validate our approach
within EMF. The rest of this section describes how concrete user interface can be generated
from our meta-model and what kinds of checks to the UI model are still possible.

As mentioned earlier, our target UI language is xml based. The task to convert the
instantiated concrete workflow UI model into a valid XUL file is assigned to a template
engine. We decided to use openArchitectureWare [10] (oAW) XPand. One reason was that
Xpand’s template is polymorphy-aware; also it provides functional extensions and a model
validation mechanism.

Before generating any user interface code we have to specify all UIO types, instantiate a

workflow, create the required number of Activity and UIO instances and associated them
among each other.

Figure 3 shows all UIO classes specified for the workflow of our lecture example. Table 1
gives the type definitions for all five concrete UIO types after inheriting from the XUL and
workflow meta-models.

Type Supertypes

LectureADTUIO UIO, WindowType

HomeworkPeriodUIO UIO, GroupboxType

TestPeriodUIO UIO, GroupboxType

HomeworkUIO UIO, TextboxType, ValueInterface

TestUIO UIO, TextboxType, ValueInterface

Table 1. Effective supertypes of concrete UIO types

An instance of our concrete workflow contains the appropriate amount of objects of each
type. The instantiated concrete workflow is available as Ecore model and should include the
concrete UIO objects. Figure 8 depicts such an example.

The next step towards the generation of a XUL file is model validation.

OpenArchitectureWare includes a dedicated language, named Check, to specify validation
constraints. We use it to do some consistency checks. For example we check that no UIO is
assigned to a Process and an Activity. This check is necessary since the meta-model specifies
those two associations as XOR, which is a constraint that cannot be directly mapped to an
Ecore model. All other reference constraints that stem from the workflow meta-model are
checked by the EMF validation framework itself, i.e. for example 1:1 relations.

Besides those constraints there are rules which originate from the platform specific UI
model and requirements towards the merging of business logic and user interface. For example

Declarative Business Process Models using OCL

Proc. OCL 2009 15 / 16

there is a requirement that all UIO need to have an ID and another is that a groupbox has to
have a caption defined.

After the model validation was successfully completed the source code generation is run. In

our case Xpand’s template engine is started with the root Process object and some appropriate
templates [12] and functional extensions. Those extensions are specified in Xtend, another
oAW language, and generate certain names and default XUL attributes for the source code.

In Figure 8 the resulting XUL UI is depicted on the right side. Left is the source Ecore

model. As a slight deviation from the USE meta-model a root container type, named
Workflow, was introduced within the EMF meta-model. The reason was purely technical. To
reduce effort we always planned to use the generic EMF editor for our Ecore models. With
that editor we needed a container object where to create the UIO instances. Instead of bending
the workflow meta-model we decided to introduce a container class on top.

An import aspect to note about the user interface we created is that its layout is static in the

first place. When the coupling to a runtime environment is eventually implemented we will be
able to have the user interface become more dynamic.

In a first step we will enable or disable certain components depending of the state of their
associated Activity. Also we might reveal certain UIO’s only if their activity was started. XUL
in combination with a script language has the ability to this.

Fig. 8. Ecore model and generate user interface

4 Conclusion

In this paper we have connected two fields that are relevant for the development of businesses
process oriented software: Business process modeling and UI modeling and generation.

In the first part a declarative approach was presented to model flexible business process
logic. The essential temporal relations of activities are expressed by that. A meta-model to

support this approach was developed and presented. Using this meta-model a concrete process

 ECEASST

16 / 16 Volume 24 (2009)

was specified, animated and visualized in the UML tool USE. Necessary constraints were
presented and explained.

In the second part of the paper the UI aspect of workflows was covered. To develop a
visible prototype of the UI it was useful to use existing technologies. The models of part 1
have been adapted to the EMF technology. Model to Model and Model to Text transformations
have been used to derive a UI mockup from an instantiated workflow process. This user
interface prototype was specified using XUL. Problems of connecting the USE implementation
of declarative process models to UI modeling and generation have been discussed.

Both parts of the paper have been connected by using the same UML models and a
throughout case study. Bidirectional dependencies of the business process and the user
interface have been defined by OCL constraints.

References

1. OMG BPMN Specification 1.1: http://www.omg.org/docs/formal/08-01-17.pdf (visited July 19, 2009)

2. OMG UML Superstructure Specification v.2.1.2: http://www.omg.org/docs/formal/07-11-02.pdf, pp.295-418

(visited July 19, 2009)

3. Lecture of Abstract Data types, University of Rostock: http://wwwswt.informatik.uni-
rostock.de/Lehre/Vorlesungen/VADT.html (visited May 9, 2009)

4. Brüning, J.: Declarative Workflow Modeling with UML Class Diagrams and OCL. In: BPSC2009, LNI-P 147,

pp. 227-228, 2009.

5. A UML-based Specification Environment, University of Bremen: http://www.db.informatik.uni-
bremen.de/projects/use/ (visited July 19, 2009)

6. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Patterns: Distributed and Parallel

Databases, 14(3): 5-51, July 2003. http://www.workflowpatterns.com/documentation/documents/wfs-pat-

2002.pdf (visited July 19, 2009)
7. Gogolla, M, Bohling, J., Richters, M.: Validating UML and OCL Models in USE by Automatic Snapshot

Generation, Journal on Software and System Modeling, 4(4):386-398, 2005. http://www.db.informatik.uni-

bremen.de/publications/Gogolla_2005_SOSYM.ps.gz (visited July 19, 2009)

8. OMG OCL Specification: http://www.omg.org/docs/ptc/03-10-14.pdf (visited May 9, 2009)
9. XUL, XML User Interface Language, http://developer.mozilla.org/en/XUL (visited July 19, 2009)

10. OpenArchitectureWare http://www.openarchitectureware.com/ (visited May 9, 2009)

11. Eclipse Modeling Framework Technology, http://www.eclipse.org/modeling/emft/ (visited July 19, 2009)

12. Wolff, A., Forbrig, P.: Deriving User Interfaces from Task Models. MDDAUI '09, Proc. of the IUI'09 Workshop
on Model Driven Development of Advanced User Interfaces, CEUR Workshop Proc. 439. CEUR-WS.org, 2009.

13. Stahl, T., Völter, M.: Modellgetriebene Softwareentwicklung - Techniken, Engineering, Management,

dpunkt.verlag, 2005

14. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W., et.al.: Constraint-Based Workflow Models:
Change Made Easy. In: OTM 2007, LNCS 4103, pp. 77–94, Berlin, Springer, 2007.

15. Lonczewski, Schreiber; The FUSE System: an Integrated User Interface Design Environment; 1996

16. Szekely, P., Sukaviriya, P., Castells,P., Muthukumarasamy, J., Salcher, E.; Declarative interface models for user

interface construction tools: the MASTERMIND approach; EHCI'95
17. Zhao, X., Zou, Y., Hawkins, J., Madapusi, B.; A Business-Process-Driven Approach for Generating E-

Commerce User Interfaces; MoDELS 2007, Nashville

18 Pesic, M., van der Aalst, W.; DECLARE: Full Support for Loosely-Structured Processes, Proceedings of EDOC

2007, IEEE Computer Society, Annapolis, 2007
19 Schonenberg, M.H., Mans, R.S., Russell, N.C., et.al.; Towards a Taxonomy of Process Flexibility (Extended

Version), BPM Center Report BPM-07-11, 2007 http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2007/

BPM-07-11.pdf (visited July 19, 2009)

