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Abstract

The concept of magnetic frustration is a fundamental topic in modern solid-state physics

having direct consequences in systems with rich magnetic phases hosting emergent ex-

citations, such as the magnetic monopoles in the spin-ice compounds. One important

ingredient of frustration is the lattice that constrains the magnetic spins on it to a site

anisotropy and inter-site coupling. Therefore, strong magnetoelastic interactions between

the magnetic system and the lattice are expected and investigated in this thesis in detail.

At first, I investigate the dependence of the relative length change of single crystals of

the classical spin ices Dy2Ti2O7 and Ho2Ti2O7 on the magnetic field and temperature by

capacitive dilatometry. In terms of the magnetostriction and thermal expansion Dy2Ti2O7

and Ho2Ti2O7 show qualitatively similar behavior, that seems to be independent of the

Kramer or non-Kramers character of the rare-earth ion. The magnitude of the magne-

tostrictive effect deep in the spin-ice phase at 0.3 K is ∆L/L = 2× 10−5 and 2× 10−4 for

Dy2Ti2O7 and Ho2Ti2O7, respectively. In numerical simulations using a manifold model,

the experimental results could be qualitatively reproduced by a combination of exchange

and crystal-field striction.

A second highlight of the dilatometric measurements of the spin-ice compounds is the

observation of the lattice dynamics. The relaxation processes are rather slow, the longest

relaxation times were observed at lowest temperatures and in the field range with mag-

netostrictive hysteresis, i.e., below 0.9 T for Dy2Ti2O7 and below 1.5 T for Ho2Ti2O7. I

find that the region of longest relaxation coincides well with the kagome-ice phase of the

magnetic phase diagrams; the relaxation time is of the order of 5000 s (> 80 min). With

increasing temperatures the time scale of the relaxation reduces to minutes at around 0.7 K

corresponding to the spin-freezing temperature obtained from ac-susceptibility measure-

ments.

In the second study I investigate the variation of the magnetic properties in dependence

of the lattice constant. A systematic reduction of the lattice constant of Dy2Ge2-xSixO7

can be achieved by substituting the non-magnetic germanium ion in the cubic pyrochlore

oxide with silicon. Characteristic properties of a spin-ice phase could be observed in

measurements of magnetization, ac susceptibility, and heat capacity. From the temperature

shift of the peaks, observed in the temperature-dependent heat capacity, an increase of the

strength of the magnetic exchange interaction by a changed ratio of the competing exchange

and dipolar interaction is deduced. The new spin-ice compounds are, thus, closer to the

phase boundary between spin-ice phase and antiferromagnetically ordered all-in-all-out

phase consistent with a reduction of the energy of monopole excitations.
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Part I.

Introduction – frustration and

magnetostriction
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1. Introduction

1.1. Motivation

Magnetic frustration is a much investigated concept that was discussed in depth by An-

derson [1] in the 1950’s. It can be characterized by the ratio between a strong magnetic

interaction given by a high Curie-Weiss temperature θcw and low ordering temperature Tc.

The degree of frustration is then given by the frustration parameter f :

f =
θcw
Tc

, (1.1)

which is high for strongly frustrated magnets, while for unfrustrated systems one usually

assumes f ≤ 5 [2]. In general it is understood that geometrical constraints or disorder

can lead to frustration [3]. A prototypical example is the antiferromagnetic Ising mag-

net with triangular lattice, where the magnetic system cannot minimize its energy with a

unique ground state due to the geometrical constraints of the lattice. While the required

ingredients for frustration are quite well understood their consequences and emergent phe-

nomena are still subject of current research. On the one hand, frustration is mostly a

low-temperature phenomenon and has motivated a broad interest and high effort in funda-

mental solid state physics at low temperatures. On the other hand, the physics of frustrated

magnets stretches over a wide range of magnetic fields from exotic ground states such as

spin ice, spin liquids and spin glasses [2] at low fields to strong structural transitions at

high fields [4].

Frustration is found in two-dimensional compounds, such as compounds with triangu-

lar lattice, as well as in three-dimensional lattices, such as the lattice of corner-sharing

tetrahedra [2]. This structure of corner-sharing tetrahedra is realized in spinel compounds

with formula AB2O4 that host high-field structural transitions [4] and the rare-earth py-

rochlores RE2B2O7 that realize the disordered ground states called spin ice or spin liquid

[5]. The latter are the subject of this work. The whole class of these compounds is large

and gives rise to exotic and varied new physics [6]. One of the most interesting phe-

nomenon among these is the emergence of fractional excitations that can be interpreted
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1. Introduction

as magnetic monopoles [7]. The magnetic monopoles are the excitations out of a ground

state that is analogous to the proton configuration in water ice and is, therefore, called

the spin-ice configuration [8, 9]. In this work, I investigated the magnetostriction of the

spin-ice compounds with their monopole excitations and the dynamics of these monopoles.

Recent developments in nanoscale magnetometry have motivated a possible way to inves-

tigate these excitations experimentally [10]. Another approach would be the investigation

of so called quantum spin ices with excitations that would realize an extended form of

electrodynamics [11].

1.2. Role of the lattice

All of these phenomena depend on the specific geometry of the lattice and are expected

to be very sensitive to distortions of the lattice. For example, a specific lattice symmetry

might lead to a degeneracy of eigenstates of the system; a distortion of the lattice could

destroy the symmetry, lifting the degeneracy. Measurements of the lattice properties such

as the elastic moduli via ultrasound measurements [12] or the lattice expansion in magnetic

fields via dilatometric measurements reveals whether the lattice is an additional degree of

freedom of the system that has to be taken into account in theoretical models. In this way,

these measurements complement the characterization of a compound by basic measure-

ments of the magnetic properties such as magnetization or ac-susceptibility. In addition

to that, measuring the lattice behavior of a compound may reveal phase transitions that

would be unobservable by other measurement techniques, either because the range of ex-

ternal conditions (temperature or magnetic field) is not accessible or because it simply is

not sensitive to the physics of the compound. There are several possible mechanisms of

interaction between the lattice and the magnetic spin configuration [13–15] and the knowl-

edge of which one being dominant for a specific compound can give valuable information

for understanding this compound.

1.3. Outline of this work

In the remainder of part I of this manuscript the focus will be put on the following: In

chapter 2, I give a short overview on the theory of magnetostriction which is complemented

by some derivations in appendix A. In chapter 3, the fundamentals of the magnetostriction

measurement and the spin-ice pyrochlores are explained. The equations for the analysis

of the magnetostriction and thermal-expansion data are given there and derived in ap-

pendix B.
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1.3. Outline of this work

After the introduction, we dive right into the results of my investigations in part II. In

chapter 4, the measurements of the quasi-static magnetostriction and thermal expansion

are shown and discussed. In chapter 5, the measurements of my experiments with quick

field sweeps to probe the monopole dynamics are shown and discussed. In chapter 6,

another complementary study is shown where I varied the lattice parameter in order to

induce a change of the magnetic properties of the parent compound.

This thesis ends in part III with a summary and an outlook and the appendices follow

for the interested reader.
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2. Theory of magnetostriction

In this chapter, I introduce a simple mean-field approach to model the magnetostriction

in rare-earth compounds solving the Hamiltonian of the electronic system around the

rare-earth atom in the crystal-electric field of the crystal and exchange interactions with

neighboring ions. First of all, the Hamiltonian in eq. (2.1) of the electronic system around

the atomic core of the rare earth ion is explained roughly in section 2.1. In the same section,

I describe how the single-ion electronic systems are coupled to each other by introducing

the exchange interaction of eq. (2.4) and then solving it in a mean-field approach, eqs. (2.6)

and (2.7). In section 2.2, I introduce the coupling of the lattice to the electronic system

by making the exchange interaction and the crystal-electric field depend on the strain,

eqs. (2.9) and (2.10). The resulting energy difference is balanced with the deformation

energy in eq. (2.8) of the crystal to obtain the equilibrium strain in the limit of small

deformations, eq. (2.12). This last equation is the main result of this section.

2.1. The Hamiltonian of the magnetic system

The single-ion Hamiltonian The Hamiltonian of a magnetic atom in a crystal is de-

scribed in detail in [16] and the following explanations are reproduced from there. The

single-ion Hamiltonian H i
SI at lattice site i is given by:

H i
SI = H0 +H1 +HSO +H i

CEF +HZe , (2.1)

with the contributions:

• H0 is the sum of the Hamilton operators of the N individual electrons (mass m,

position rn) moving in the radial potential V of the positively charged nucleus without

mutual interaction between the electrons:

H0 =
N∑
n=1

(
− h2

2m
∆n + V (rn)

)
,

7



2. Theory of magnetostriction

where ∆n = ∂2/∂x2
n+∂2/∂y2

n+∂2/∂z2
n in Cartesian coordinates (xn, yn, zn) of electron

n,

• H1 is the Hamilton operator of the first perturbation of H0 by the mutual interaction

of the electrons and the screening of the nucleus by the electron close to it:

H1 =
1

8πε0

∑
n 6=m

e2

rnm
+

1

4πε0

N∑
n=1

(
−Ze

2

rn
− V (ri)

)
,

where ε0 denotes the vacuum permittivity, e the elementary charge, rnm the distance

between electron n and m, and Z the proton number of the nucleus.

• HSO is the second perturbation Hamiltonian representing the spin-orbit coupling, i.e.,

the interaction between spin ~sn and orbital angular momentum ~ln of the electron n:

HSO =
N∑
n=1

ζ(rn)~ln · ~sn ,

where ζ denotes the spin-orbit-interaction strength.

• H i
CEF is the perturbation by the effective potential Vc of the electric environment of

the ion at lattice site i in the crystal, the so-called crystal electric field:

H i
CEF = −|e|

N∑
n=1

V i
c (~rn) ==

∞∑
l=0

l∑
m=−l

Bm
l (i)Om

l (i) , (2.2)

where V i
c is expanded in the Stevens parameters Bm

l and the Stevens operators Om
l

at lattice site i.

• H i
Ze is the Zeeman interaction of the electrons coupling to an effective magnetic

moment µ with the external magnetic field ~B:

H i
Ze = −~µi · ~B , (2.3)

where the magnetic moment operator reads ~µi = µB(~Li + 2~Si), with the Bohr mag-

neton µB, the total angular momentum ~Li =
∑

n
~lin and ~Si =

∑
n ~s

i
n.

The Hamiltonian H0 + H1 + HSO is the same for each lattice site and its ground state

is characterized by two quantum numbers j and mj denoting the magnitude of the total

angular momentum vector ~J and its projection on the z axis. These numbers can be

8



2.1. The Hamiltonian of the magnetic system

deduced by the application of the Hund’s rules. In general, the ground state is a multiplet

whose degeneracy is lifted due to the crystal electric field and the other contributions to

the Hamiltonian. The other parts of the total Hamiltonian depend on the lattice site; for

that reason they have the superscript i for the lattice site. More details on the various

parts of the Hamiltonian can be found in [16].

The magnetic Hamiltonian of the crystal The eigenstates of the single-ion Hamiltonian

in the spin-ice pyrochlores Dy2Ti2O7 and Ho2Ti2O7 are states with fixed total angular

momentum ~J = ~L + ~S because of the strong spin-orbit coupling, In the crystal, the

angular momentum of nearest-neighbor ions couple to each other via exchange interaction:

H i
EX = −1

2

∑
j∈NN(i)

Jij ~Ji ~Jj , (2.4)

where Jij is the exchange constant between site i and j and ~Ji is the total angular momen-

tum of the ion at the lattice site i. The sum of the Hamiltonians in eq. (2.1) of all single

ions and all exchange interactions (eq. (2.4)) between them is used to describe the whole

crystal:

HTOT =
∑
i

(
H i
SI +H i

EX

)
. (2.5)

This Hamiltonian is the basis of my model of the magnetostriction in the rare-earth com-

pounds Dy2Ti2O7 and Ho2Ti2O7. This Hamiltonian cannot be solved analytically; that is

why I use a mean-field approximation and solve it numerically.

Numerical diagonalization of the magnetic Hamiltonian via McPhase Our goal is

to diagonalize the total Hamiltonian (eq. (2.5)). An approximate solution can be found

by solving a simpler problem constrained to the unit cell. I use the McPhase software

bundle to solve this problem via a mean-field approach [17], which is explained in detail

in appendix A.1.

The mean-field Hamiltonian HMF and the mean field 〈Hs〉 are derived in the appendix

eqs. (A.1) and (A.2) and read:

HMF ≈
∑
s

(
Hs
SI −

1

2
〈 ~Hs〉 ~Js

)
(2.6)

〈 ~Hs〉 =
∑

i∈NN(s)

J〈 ~Ji〉 , (2.7)

9



2. Theory of magnetostriction

where J denotes the exchange constant to the nearest neighbors (NN) of the ion at lattice

site s of the unit cell, the notation 〈·〉 denotes the thermal average of the operator between

the brackets and 〈Hs〉 denotes the mean field resulting from the exchange Hamiltonian

(eq. (2.4)). In my case, the single-ion Hamiltonian Hs
SI is given by eq. (2.1). The index s

marks the 16 positions of the ion in the unit cell. The crystal field may vary between for

the various s. The ions at different positions s are coupled to each other via the the mean

field 〈Hs〉.
The mean-field ground state is obtained from the diagonalization of eq. (2.6) using

eq. (2.1) and a self-consistent mean field eq. (2.7) in the following iterative way. Given

an arbitrary initial state sufficiently close to the solution I calculate the mean field for

this state using eq. (2.7). The Hamiltonian (eq. (2.6)) is diagonalized giving an updated

set of eigenstates and energy levels of each lattice site. At temperature T the thermal

expectation value 〈 ~J〉 is calculated using the Boltzmann distribution. The new state is

then used as the initial state of the next iteration. This is repeated until the mean field

converges to a stable solution. In order to obtain the solution with the global minimal free

energy, I compare the free energies of solutions obtained from various initial values using

the above iteration method. The result is a self-consistent approximation to the solution of

the Hamiltonian (eq. (2.5)) with the minimal free energy, that is some discrete eigenvalues

(energy levels) Ei and corresponding eigenvectors (wave functions) ψi.

In the next section I discuss how to couple these solutions of the eigenvalue problem of

the Hamiltonian to the lattice.

2.2. The complete Hamiltonian of the magnetoelastic

system

Having introduced and solved the Hamiltonian of the electronic system of the crystal we

now turn to using this solution to estimate the magnetoelastic properties of the lattice.

In this section, I review two possible mechanisms of magnetostriction, the crystal-field

striction mechanism and the exchange-striction mechanism. I use a perturbation approach

to solve the ensuing equations for small deformations of the lattice. In particular, I focus

on tetragonal strain modes.

2.2.1. Magnetostriction mechanisms in rare-earth antiferromagnets

Magnetostriction denotes the effect of the magnetic field on the lattice of a crystal, refer

to [15] for a review. In order to investigate the magnetoelastic coupling I introduce the

10



2.2. The complete Hamiltonian of the magnetoelastic system

strain tensor ε and investigate the properties of the system in the linear limit of small

deformations. Using the new degree of freedom the magnetic system can decrease its

energy at the expense of the deformation energy of the lattice, given in scientific and Voigt

notation:

Eel(ε) =
V

2

∑
ijkl

cijklε
ijεkl =

V

2

∑
mn

cmnε
mεna , (2.8)

where V is the volume of the specific area of interest (the crystal or the unit cell), cijkl is

the elasticity tensor and εij the strain tensor. For the correspondence between scientific

and Voigt notation I refer the reader to section A.2 in the appendix. The magnetic system

can decrease its energy due to the strain dependence of the exchange interaction and the

crystal electric field Hamiltonian.

Exchange mechanism The exchange interaction given in eq. (2.4) depends strongly on

the distance between two ions in the lattice. Mostly only nearest-neighbor interactions

are taken into account. When the lattice is deformed by a strain ε the distance between

nearest-neighbor ions changes and, thus, the strength of the interaction. I model this with

a strain-dependent exchange constant J(ε) and the exchange interaction is modified in the

following way:

H i
EX(ε) = −1

2

∑
j∈NN(i)

J(ε) ~Ji ~Jj . (2.9)

Due to Zeeman interaction HZe (eq. (2.3)) of the ion with the magnetic field, the ~Ji are

aligned parallel pointing into the same direction at high fields HZe � Hex and HZe � HCEF.

In that case, the magnetic system may decrease its energy at the expense of the lattice by

deforming and decreasing the unfavorable exchange interaction. Of course, this happens

to some degree even at lower magnetic fields. This mechanism is called exchange-striction.

Crystal-field mechanism Since the crystal electric field depends on the local environment

of the ion which is deformed by the strain, the crystal-field parameters Bm
l depend on the

strain ε. Hence, also the crystal-field Hamiltonian HCEF (eq. (2.2)) depends on ε:

H i
CEF(ε) =

∞∑
l=0

l∑
m=−l

Bm
l (ε, i)Om

l (i) . (2.10)

A change of the crystal-field Hamiltonian obviously also changes the ground state and

the magnetic state. Conversely, a change of the magnetic state by an increased external

magnetic field can make it favorable to distort the lattice at the expense of strain energy

to save magnetic energy in the crystal field. The crystal-field striction is important when

11



2. Theory of magnetostriction

the temperature is low enough so that only few crystal field levels are populated and the

symmetry of the electronic system of the ion takes on a symmetry compatible with the

symmetry of the crystal.

2.2.2. Equilibrium strain of the magnetoelastic system

In the following paragraphs, I put all the ingredients from the last sections together to

complete my model of the strain in equilibrium. For this, I use the Hamiltonian above

with the strain-dependent exchange and crystal-field striction which add up to the magne-

toelastic Hamiltonian. That Hamiltonian is balanced with the elastic energy of the crystal

to deduce a formula of the equilibrium strain. This is a hard problem to solve in complete

generality; therefore, I constrain myself to a solution of the problem for perturbatively

small tetragonal strains with ε = −ε1 = −ε2 = 2ε3.

The magnetoelastic Hamiltonian The magnetic system can decrease its energy at the

expense of the energy of the lattice. I introduce another degree of freedom in terms of the

lattice strain ε by adding the elastic energy (eq. (2.8)) to the Hamiltonian and the lattice

strain ε enters into the magnetic system via the exchange (eq. (2.9)) and the crystal-field

striction mechanism (eq. (2.10)) described above. So, in total I modify the Hamiltonian in

eq. (2.5) and obtain:

HTOT (ε) =
∑
i

(
H i
SI(ε) +H i

EX(ε)
)

+ Eel(ε) , (2.11)

H i
SI(ε) = H0 +H1 +HSO +H i

CEF (ε) +H i
Ze .

However, there is no way of knowing the exact form of the strain dependence of the

exchange interaction and the crystal field. Therefore, I limit myself to perturbatively

small strains ε; in this case, a linear strain dependence is sufficient.

Perturbative solution of the magnetoelastic Hamiltonian In the case of perturbatively

small ε in the tetragonal strain mode I can approximate HTOT (ε) = H(0) + δH with:

δH = ε
∑
i

 ∞∑
l=0

l∑
m=−l

[
∂Bm

l (ε)

∂ε

]
ε=0

Om
l +

∑
j∈NN(i)

[
∂J(ε)

∂ε

]
ε=0

~Ji ~Jj +
3

4
V (c11 − c12)ε

 ,

(2.12)
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2.2. The complete Hamiltonian of the magnetoelastic system

which is derived in the appendix and the result of section A.3. In order to solve this

Hamiltonian for perturbatively small ε I use first-order perturbation theory. Using the

eigenstates of the unperturbed system, I can calculate the equilibrium strain ε′ in depen-

dence of the magnetic field H and the temperature T . In this first-order approximation the

perturbation of the eigenstate does not contribute to the energy. Confining the calculation

to the strain of one unit cell with S rare-earth ions, I obtain the equilibrium strain ε′ via:

ε′ = − 4

3V (c11 − c12)

S∑
s=1

(
∞∑
l=0

l∑
m=−l

[
∂Bm

l (ε)

∂ε

]
ε=0

〈Om
l 〉

− 1

2

∑
j∈NN(s)

[
∂J(ε)

∂ε

]
ε=0

〈 ~Js ~Jj〉
)
. (2.13)

The complete derivation of the formula for the equilibrium strain ε′ is given in the appendix

section A.4.

This equation contains several unknown parameters that have to be filled in either from

literature or from own estimations:

• [∂Bm
l (ε)/∂ε]ε=0 are the magnetoelastic constants of the crystal field and are estimated

via the point-charge model.

• 〈Om
l 〉 is the thermal average of the Stevens operators which I evaluate with McPhase

from the solution of the Hamiltonian at zero strain.

• 〈 ~Js ~Jj〉 is the correlation of the nearest-neighbor spins, which is calculated in a mean-

field approach via McPhase.

• cij are the elastic constants that can be taken from other measurements from the

literature.

• [∂J(ε)/∂ε]ε=0 is the strain derivative of the exchange constant Jij = J and called the

magnetoelastic constant of the exchange interaction.

In the next section, I will explain in greater detail how these quantities are determined

and how I use McPhase in this problem.

2.2.3. Numerical simulation of the magnetostrictive effect in the

spin-ice pyrochlores using McPhase

In the following paragraphs, I explain how I use McPhase to calculate the equilibrium strain

given in eq. (2.13). In a first step, I use McPhase to solve the Hamiltonian in eq. (2.11)
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2. Theory of magnetostriction

at zero strain; that is, I obtain the eigenvalues and wavefunctions of the eigenstates to

calculate the thermal averages of the quantities 〈 ~Ji ~Jj〉 and 〈Om
l 〉 in eq. (2.13). In a second

step, I estimate the additional parameters above to evaluate eq. (2.13) using the point-

charge module of McPhase for an estimate of [∂Bm
l (ε)/∂ε]ε=0, while the three other values

are free parameters or may be taken from literature. More details on the procedure is

given below and an explanation of how McPhase works and can be used can be found in

the manual [18].

Thermal averages of the Stevens operators and JJ correlations From the set of

crystal-field parameters of the unstrained crystal I calculate the energy scheme and the

eigenstates of the Dy ions at specific fields and temperatures using McPhase. These eigen-

states and their energies are used to calculate the thermal average values of the observables

Om
l and Ji. For the pyrochlore lattice, Om

l is non-zero only for l = 0, 2, 4 and 6 and m = 0,

±3 and ±6. For the interested reader, the Om
l can be expressed in terms of the angular

momentum operators J and Jz, section A.8. Finally, I can insert these values into the

formula of the magnetostriction (eq. (2.13)).

Crystal-field parameters I approximate the magnetoelastic parameter [∂εB
m
l (ε)]|ε=0 as

difference quotient:

[∂εB
m
l (ε)]|ε=0 ≈

Bm
l (ε)− Bm

l (0)

ε
. (2.14)

The crystal-field parameters Bm
l (ε) for the pyrochlore lattice (space group Fd3̄m) are

calculated with the given parameter ε assuming point charges at the locations of the ions.

At first, for the unstrained lattice and then for the strained lattice with specific tensor ε.

With the above equation I get another value needed in eq. (2.13).

Elastic constants I use the elastic constants of Dy2Ti2O7 and Ho2Ti2O7 measured by

Erfanifam et al. [19]. For the tetragonal strain mode, I need an elastic constant of the form

c11 − c12, which can be expressed in terms of the constants C11, CL and CT measured by

Erfanifam et al. [19]:

c11 − c12 =
1

2
(c11 − cL + 4cT ) , (2.15)

which is derived in section A.5.
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2.2. The complete Hamiltonian of the magnetoelastic system

Exchange parameters Finally, there are two free parameters, Jij = J and ∂J
∂ε

, left that

are fixed by comparison with my measurements. The latter can be simplified in this way:

∂J

∂ε
=

∂J

∂rij

∂rij
∂ε

, (2.16)

with rij denoting the distance between nearest neighbor ions i and j. As derived in

section A.6, I have ∂rij/∂ε = −1
2
l for site i and j both in the kagome plane and ∂rij/∂ε =

+1
2
l for site i or j in the triangular plane of the apical vertices. The distance between

neighboring Dy atoms is given by
√

2/4 · a, which equals 3.58 Å for a = 10.1240 Å. I have

to choose the free parameter l ∂J
∂rij

= l ∂J
∂r

.

Explicit formula The final formula used for the numerical simulation is then:

ε′ = − 4

3V (c11 − c12)

(
4∑
s=1

6∑
l=0

l∑
m=−l

[
Bm
l (ε)− Bm

l (0)

ε

]
ε=0.01

〈Om
l 〉

− l

8

∂J

∂r

[
〈 ~J1

~J2〉+ 〈 ~J1
~J3〉+ 〈 ~J1

~J4〉+ 〈 ~J2
~J1〉+ 〈 ~J3

~J1〉+ 〈 ~J4
~J1〉
]

+
l

8

∂J

∂r

[
〈 ~J2

~J3〉+ 〈 ~J2
~J4〉+ 〈 ~J3

~J4〉+ 〈 ~J3
~J2〉+ 〈 ~J4

~J2〉+ 〈 ~J4
~J3〉
])

. (2.17)

In conclusion of this chapter, I have derived a formula for the equilibrium strain of the

electronic system in a magnetic field ~H; the formula is eq. (2.17). In section 4.4 I use this

formula to calculate the magnetostriction of Dy2Ti2O7 and Ho2Ti2O7.
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3. Details of the measurements and

samples

This chapter is split in three parts: At first, in section 3.1, I introduce the details of the

capacitance dilatometers I used in this study. Then, in section 3.2, I give the necessary

general background about the spin-ice materials Dy2Ti2O7, Ho2Ti2O7 and Dy2Ge2-xSixO7.

For Dy2Ge2-xSixO7 some more specific background is given in chapter 6 in Part II. Last

but not least, in section 3.3 I give the specific details on the experiments I conducted, but

the experimental details of the Dy2Ge2-xSixO7 study are given in chapter 6.

3.1. Magnetostriction and thermal-expansion

measurements with capacitance dilatometers

In dilatometric techniques the relative change of length ∆L/L of a sample is measured [15];

if only the temperature is varied, the thermal expansion is measured, while at constant

temperature and varying magnetic field the magnetostrictive effect is mesaured. In varying

temperature the magnetic sample might of course order magnetically and experiences a

so called spontaneous magnetostriction, whereas in a varying external magnetic field the

magnetostriction is called forced. In general, magnetostriction and thermal expansion are

rather small effects and need sophisticated measurement devices to be measurable. Both

effects are measured as relative length change ∆L/L (without unit). Alternatively, magne-

tostriction may also be characterized as derivative αB = d(∆L/L)/dB (with magnetic flux

density B; unit T−1) and thermal expansion analogously as derivative αT = d(∆L/L)/dT

(with temperature T , K−1). Typical magnetostrictive effects are in the order of 10−6 T−1,

but may be as big as 10−3 T−1 in special compounds [15]; and thermal expansion is an

effect in the order of 10−8 K−1 to 10−5 K−1 [14]. In order to measure the small changes

of the lattice due to temperature changes or varying the magnetic field various designs of

dilatometers were invented, for a review refer to [15] and references therein. Capacitance

dilatometers [20–23] measure the relative expansion of a sample as change of the capac-
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3. Details of the measurements and samples

(a) (b)

Figure 3.1.: (a) Photograph of the tilted-disk cell (TDC) at the 3He insert and (b) technical
scheme of the TDC with the sample in orange and the capacitor plates in green;
based on [23].

ity. They are the most sensitive measurement devices for magnetostriction and thermal

expansion with sensitivities up to 10−9 in ∆L/L. Therefore, even small thermal-expansion

effects at lowest temperatures can be observed. However, they are also sensitive to vibra-

tions and do not lend themselves to pulsed-field measurements for which optical or X-ray

methods are better suited [15].

In this work, two capacitance dilatometers, the tilted-disk cell (TDC) and the tilted-

annulus cell (TAC), were used to measure the magnetostriction and thermal expansion of

Dy2Ti2O7 and Ho2Ti2O7. In this section, I introduce the two capacitance dilatometers and

derive the equations used for the analysis of the raw data.

3.1.1. Design and analysis of the tilted-disk cell (TDC)

The TDC is a commercially available tilted-plate dilatometer with circular capacitor plates

described in [23] and displayed in figs. 3.1a and 3.1b. The bottom plate (in fig. 3.1b) is

fixed to the frame while the top plate is held by a spring fixed to the frame. The spring

is designed to work as a suspension parallelogram that conserves the orientation of the

plate even under stress so that the tilting angle is constant and the plate can only move

vertically. The sample is located on top of the upper plate and is pressed on it via a

screw that is fixed to the frame. The force put on the sample is of the order of 3 N. An

expansion of the sample pushes the upper capacitor plate down closer to the bottom one
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3.1. Magnetostriction and thermal-expansion measurements with capacitance

dilatometers

(a) (b)

Figure 3.2.: (a) Photograph of the tilted-annulus cell (TAC) and (b) scheme of the TAC
(modified on the basis of Ref. [22]

which results in an increase of the capacitance. The TDC is insensitive to magnetoelectric

effects, since the sample is located outside of the capacitance plates.

The dependence of the width of the gap between the capacitor plates d on the capacity

C for the TDC is derived in the appendix, eq. (B.5). The change of the gap ∆d that

leads to a change of the capacity from C1 to C is given in the original publication [23] and

derived in detail in appendix B.1; it obeys the following equation:

∆d =
ε0πr

2

C1C
(C1 − C)

[
1− C1C

C2
max

]
, (3.1)

where ε0 is the dielectric constant of vacuum (εr being the relative permittivity of the gas

atmosphere set to 1 [23]), r the radius of the capacitor plates and Cmax the short-circuit

capacity. While most of these values are specified in the manual, the short-circuit capacity

Cmax has to be measured. The capacitor plates have the radius 7.0(1) mm and the short-

circuit capacity Cmax = 120(10) pF. Mathematically, a resolution of ∆l = 3× 10−12 m for

∆C = 10−6 pF at C = 20 pF is possible; hence, for samples with a length LS in the order

of millimeter a ∆l/l ≈ ∆d/LS = 10−9 can be resolved.

3.1.2. Design and analysis of the tilted-annulus cell (TAC)

The TAC is also a commercially available tilted-plate capacitance dilatometer that is de-

scribed in [22] and displayed in figs. 3.2a and 3.2b. In the TAC both capacitor plates are

annulus-shaped; the bottom plate is fixed to the frame and the top plate is fixed to a

second frame part which additionally functions as an electrical shielding. The top plate

is pressed to the bottom frame via a soft CuBe spring. The sample is put on a sapphire
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3. Details of the measurements and samples

platelet embedded in the hole of the bottom plate and is pressed on it by the top frame

part; there it is situated in the hole of the top plate. The force exerted on the sample is

of the order of 50 mN (depending on the thickness, i.e., strength of the spring) and is two

orders of magnitude smaller than for the TDC. When the sample expands it pushes the

top frame away from the bottom part and increases the distance between the plates; at the

same time the tilting of the upper plate changes. In order for the two capacitor plates not

to touch, the sample has to have a specific length; if the sample is to small the necessary

length may be achieved by sandwiching it between two brass cylinders and if it is too long,

it has to be cut.

I simply model the TAC with its annulus-shaped capacitor plates with inner radius ri

and outer radius ro as the difference of two disk-shaped tilted-plate capacitors with radii

ri and ro. The dependence of the capacitance C on the gap width d in the center is thus

given by the following formula which is also explained in [22]:

C =
2ε0
d

[
Ao(T )

1−
√

1− γ2
o

γ2
o

− Ai(T )
1−

√
1− γ2

i

γ2
i

]
, (3.2)

with Ao and Ai denoting the area of the outer and the inner disk of the annulus and the

variables γi and γo are geometrical parameters of the cell given by:

γo/i =
ro/i
b

(
k(T )

d(T )
− 1

)
,

where b is the distance of the middle center of the annulus to the pivot point and k is the

height of the pivot point over the bottom capacitor plate; these lengths are displayed in

fig. 3.2b. These lengths, as well as the radii ri and ro, are temperature dependent due to

the thermal expansion of the brass the cell is made of and the sapphire bearings in the

cell:

k(T ) = k(T0)

(
1 +

(
∆L

L

)
SL

(T )

)
,

k(T0) = ε0
Ao − Ai
C0

,

Ao/i(T ) = πr2
i/o

(
1 +

(
∆L

L

)
BL

(T )

)2

,

where C0 is the capacitance for parallel plates and (∆L/L)SL and (∆L/L)SL denote the

thermal expansion data of sapphire and brass from the literature [24]. Unlike the case of
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3.1. Magnetostriction and thermal-expansion measurements with capacitance

dilatometers

the TDC the formula for the TAC (eq. (3.2)) cannot be inverted analytically; therefore, I

invert it numerically for each measured capacitance C.

The required cell parameters are: ro = 6.2 mm, ri = 2.6 mm, b = 9.45 mm and C0 =

2.9 pF. A gap d = 0.25 mm corresponds to a capacity of 3.68 F, a value I tried to achieve

approximately at room temperature. Mathematically a change of the gap by 5 × 10−8 mm

at this capacity would result in a change of the capacity of 10−7 pF. For a sample of

dimension LS in the millimeter range a relative expansion of 10−8 is detectable.

3.1.3. Magnetostriction and thermal expansion

In the experiments I conduct two different measurements: in the magnetostriction mea-

surements I vary the field while keeping the temperature constant and in the thermal

expansion measurements I vary the temperature at constant field.

Magnetostriction For the case of the magnetostriction measurement the relative expan-

sion ∆l
l

of the sample can be related to the change of the gap width ∆d since both, TDC and

TAC, were designed to have minimal magnetostrictive effects of the cell material [22, 23].

Therefore, I use the following formula for the analysis of the magnetostriction data:

∆L

L
=

∆d

LS
, (3.3)

where LS is the sample length. Depending on which dilatometer cell is used for the

measurement, I have to calculate ∆d with eq. (3.1) or eq. (3.2) for the TDC or the TAC,

respectively.

Thermal Expansion The thermal expansion has to be more thoroughly analyzed because

the expansion of the cell material is of the same order of magnitude as the investigated

materials and will lead to incorrect results if not corrected for. Therefore, in preparation of

the actual measurements, the gap change that is caused by the thermal expansion ∆dCell

of the dilatometer cell has to be determined. This is done by measuring a brass sample

of length LBr with known thermal expansion (∆L/L)Br (shown in fig. 3.3). The difference

between the expected gap change due to the thermal expansion of the brass sample and
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3. Details of the measurements and samples

Figure 3.3.: Temperature dependence of the relative length change ∆L/L of copper used
for the background determination of the thermal-expansion measurements,
data taken from [24].

Figure 3.4.: Background of the TAC in thermal-expansion measurements.
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3.1. Magnetostriction and thermal-expansion measurements with capacitance

dilatometers

the measured gap change ∆d is the cell signal. With these considerations the identities

can be deduced:

∆d = ∆dBr + ∆dCell ,

∆dCell = ∆d−∆dBr = ∆d− LBr

(
∆L

L

)
Br

. (3.4)

The cell effect of the TAC is shown in fig. 3.4. The TDC was used only for measurements

for temperatures below 2 K where cell effects are negligible; the cell effects are described

in Ref. [23].

In the actual measurements, I tried to reproduce the same initial gap as in the prepara-

tory measurement above to ensure that the measurements are made under comparable

conditions. The sample with length LS is sandwiched between brass pieces of total length

LBrS such that their combined length is approximately the length LBr of the brass piece in

the preparatory measurement, i.e., LS + LBrS ≈ LBr. The gap change ∆d is comprised of

three contributions: the expansion of the sample ∆dS, the expansion of the brass pieces

∆dBrS and the cell signal ∆dCell:

∆dprep = ∆dS + ∆dBrS + ∆dCell . (3.5)

In eq. (3.5), I substitute ∆dCell for the expression given in eq. (3.4) and deduce the formula

for the gap change caused by the expansion of the sample:

∆dS = ∆d−∆dprep + (LBr − LBrS)

(
∆L

L

)
Br

. (3.6)

The relative thermal length change of the sample (∆L/L)S is then given by dividing

eq. (3.6) by the sample length LS:(
∆L

L

)
S

=
∆dS

LS

=
∆d

LS

− ∆dprep

LS

+
LBr − LBrS

LS

(
∆L

L

)
Br

. (3.7)

This is the equation that is used throughout Part II to analyze the thermal-expansion

measurements.

It should be mentioned that eq. (3.7) is slightly different from the equations given in

[22] and [25] for the thermal expansion in the TAC. The dilatometer cells used in the two
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3. Details of the measurements and samples

publications have a slightly different design and the formulas differ accordingly; I use the

design from [25]. The thermal expansion of the sample is calculated in [22] via:(
∆L

L

)
S

=
∆d

LS

− ∆dprep

LS

+

(
∆L

L

)
Br

. (3.8)

It can be seen that eq. (3.7) equals eq. (3.8) if LBr − LBrS = LS, i.e., when the length of

the brass sample in the “empty” cell has the same length as the actual sample plus the

brass spacers. In general, this cannot be achieved exactly; moreover, the contribution of

this term becomes more important when the sample is very thin.

The detailed specifics of the measurements are given in section 3.3 after an overview of

the compound class my samples belong to in the following section.

3.2. Background: Spin ice pyrochlores

In this section, I give a brief overview on the spin-ice compounds and put them into context

with related materials.

3.2.1. Rare-earth pyrochlores

The spin-ice pyrochlores belong to the class of rare-earth compounds with the pyrochlore

lattice structure and the general chemical formula A2B2O7. This class consists of combi-

nations of trivalent ions at the A site and tetravalent ions at the B site [6], see fig. 3.5.

However, not all combinations of A and B ions can be prepared in the pyrochlore structure

under low-pressure conditions; a ratio of the ionic radii RA/RB between 1.36 and 1.71 has

been found to be stable [6, 27, 28]. This region of stability can be extended if high hydro-

static pressures are applied during the crystal synthesis [26] and even pyrochlores with a

ratio RA/RB = 1.94, e.g., Dy2Ge2O7, can be grown [29, 30].

Lattice structure The pyrochlore structure consists of two interpenetrating sublattices

of corner-sharing tetrahedra of the A and the B site, respectively; see fig. 3.6. Sometimes

the term pyrochlore is also used to only mean a single one of these sublattices instead of

both of them. The symmetry of A2B2O7 is cubic and the point group of the lattice is

Fd3̄m. The coordination of the ions on the two sublattices is different as is expected from

their oxidation states. The A site is eight-fold coordinated with oxygen, while the B site

is six-fold coordinated with oxygen [32]. The oxygen cage around the A site is made up

of a ring of six oxygen ions (O) around A and two oxygen ions (O’) above and below the
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3.2. Background: Spin ice pyrochlores

Figure 3.5.: Possible combinations of trivalent A site ions and tetravalent B site ions that
form A2B2O7 with corresponding ionic radii rA and rB, respectively. The
combinations that are stable only after high-pressure synthesis are enclosed in
dashed lines. Reproduced from [26].

rare earth on the A site. This results in a large axial symmetry of the crystal-electric field

influencing the ground state of the rare-earth ion. Depending on the specific ground state

of the rare-earth ion on the A site this axial symmetry leads to an easy-axis anisotropy

along or an easy-plane anisotropy perpendicular to the local [1 1 1] axis. This local [1 1 1]

axis differs between the four rare-earth positions of a tetrahedron leading to non-collinear

magnetic moments. Specifically, the axes are [1 1 1], [1 1 1], [1 1 1] and [1 1 1]. Depending on

the combination of A and B site atoms the lattice parameter and the positional parameter

x change. For example, for the same B-site ion, the lattice parameter is expected to

become larger for rare-earth ions with smaller atomic number Z corresponding to larger

ionic radii which is also seen in experiment [32].

The [1 1 1] axis goes through the center of the tetrahedron to one of its vertices and is

aligned with the Ising axis of the spin at this vertex. Besides the [1 1 1] axis there are two
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3. Details of the measurements and samples

Figure 3.6.: Structure of the pyrochlore lattice: the A site is occupied by the trivalent rare-
earth ion (shown as blue spheres) and the B site is occupied by a tetravalent
ion such as Ti3+ or Ge4+ possibly partially substituted by a second kind of
tetravalent ion such as Si4+ (shown as red spheres with a yellow segment); the
oxygen ions are omitted. Reproduced from [31].

Table 3.1.: Positions of the atoms in a unit cell of A2B2O7, [32].

Atom Wyckoff notation x y z
A 16d 1/2 1/2 1/2
B 16c 0 0 0
O 48f x 1/8 1/8
O’ 8b 3/8 3/8 3/8

other high symmetry axes: [1 0 0] and [1 1 0]. The [1 1 0] axis points along the straight line

connecting two vertices of a tetrahedron and is perpendicular to the line connecting the

other two vertices, while the [1 0 0] axis directs through the center of the tetrahedron and

is perpendicular to two opposite sides of it. The plane perpendicular to [1 1 1] contains

[1 1 2] and is also interesting as it splits the direction space into positive and negative [1 1 1]

direction.

Magnetic state of the rare-earth ions The magnetic properties of the pyrochlores with

non-magnetic Ti on the B site depend only on the magnetic state of the rare-earth ions

on the A site. As discussed in chapter 2, the Hamiltonian of the single ion is governed by

the Coulomb interactions between electrons HC , the spin-orbit coupling HSO and crystal-

electric field HCF . For the 4f electrons of the rare-earth atoms, the Coulomb repul-
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3.2. Background: Spin ice pyrochlores

sion term dominates the spin-orbit coupling which is bigger than the crystal-electric field:

HC � HSO � HCF . Therefore, the LS-coupling scheme in the Russel-Saunders (RS)

approximation is appropriate to describe the ground state on which the crystal field acts

as a perturbation. I refer the reader to Ref. [16] or the review [33] which gives an in-depth

overview of the physics of f -electron systems. The ground states of the rare-earth ions in

vacuum are text-book knowledge [34] and the whole spectrum of states for LS-coupling

is also known [35]. Notable special cases are Gd3+ with only spin-momentum that may

realize a Heisenberg system and Eu3+ having a total angular momentum of 0. The Stevens

factors α, β and γ give information about how the magnetic moment of the ion is oriented

with respect to the electronic charge cloud. Especially, an α < 0 is characteristic of an

axial anisotropy, an α > 0 of an planar anisotropy and α = 0 denotes the isotropic case.

The values of α were calculated by Stevens for the trivalent rare-earth ions [36]. I would

expect Gd to follow an isotropic Heisenberg Hamiltonian; Pm, Sm, Er, Tu and Yb should

have planar anisotropy; Ce, Pr, Nd, Tb, Dy and Ho should be axial anisotropic. Indeed,

in the pyrochlore lattice with Ti on the B site, Gd realizes an isotropic Heisenberg system;

planar systems are realized with Er and Yb and easy-axis systems with Tb, Ho and Dy on

the A site [5, 6].

Ground state of the rare-earth ion in the pyrochlore lattice The rare-earth ions in

the pyrochlore lattice sit in a position with a trigonal lattice symmetry of D3d [37]. In this

symmetry, the crystal field has only six independent components: B0
2 , B0

4 , B3
4 , B0

6 , B3
6 and

B6
6 [16]. The expectation values of the operators are tabulated [36, 38, 39]. The relative

strength of the contributions of the Stevens operators is determined by the actual crystal

field parameters Bm
l given in [40] or can be calculated with a point-charge model. The

crystal field parameters of the rare-earth titanium pyrochlores are given in [40–42] and

explicitly given in chapter 4 in Part II.

The oxygen around the rare-earth ions create a strong crystal field inducing a strong

axial anisotropy. The pyrochlores with Yb and Er have planar character, while those with

Ho, Dy and Tb have axial character. The magnetic moment may only point in or out of

its tetrahedron for the three latter cases.

In the following, I am interested in the easy-axis systems with Dy and Ho in the titanate

and germanate pyrochlores which exhibit the spin-ice ground state.
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3. Details of the measurements and samples

Interactions between rare-earth ions The reference [43] gives an overview of all possible

exchange interactions between f -electron systems such as the rare-earth ions. The most

general linear exchange Hamiltonian between nearest neighbors is the bilinear functional:

HEX =
1

2

∑
i

∑
j∈NN(i)

~JiJij ~Jj , (3.9)

with ~J and Jij denoting the three dimensional total-angular momentum operator and the

exchange matrix, respectively. This Hamiltonian may be transformed such that each ~J is

in its own local coordinate frame corresponding to its site symmetry and its crystal field.

In the pyrochlores, this frame is chosen such that the local z axis points along the local

[1 1 1] direction and the Hamiltonian takes a much simpler form given in [44–46]. In this

formulation the angular-momentum operator ~Ji is expressed by its local z component Jzi

(in its local [1 1 1] direction) and the ladder operators J+
i and J−i that increase or decrease

Jzi by 1, respectively. The exchange coupling between the z components of the angular

momentum of the two ions leads to classical effects such as ferromagnetic or antiferromag-

netic ordering. The other exchange constants induce quantum effects, see [11] for a review.

There are several symmetry constraints for the components of Jij that reduce the number

of independent components from 9 to 4. Further constraints arise from whether the ion is

Kramers or non-Kramers: In the latter case, the coupling between Jzi and J+
j or J−j and

vice versa are zero, and in the former they may be non-zero [46]. The spin-ice model is the

one with only non-zero exchange between local z components of ~J and will be explained

later on. Apart from this (classical) spin-ice model, other cases of the above Hamiltonians

were studied finding quantum-spin-ice ground states [44, 46–49].

Possible interactions that could result in the effective Hamiltonian above are the dipolar

interactions, superexchange between rare-earth ions via oxygen, direct exchange [33]. In

the case of Dy2Ti2O7 and Ho2Ti2O7, these produce mostly interactions between local z

components of ~J in the order of 1 K and suppress all other couplings to orders of a few

mK [50]. This is not the case for the Tb2Ti2O7 pyrochlore which might be the reason why

it is not a classical spin ice.

3.2.2. Spin-ice pyrochlores

In the following paragraphs I give a basic overview on the spin-ice physics, in particular,

the various spin-ice models, the physics of this theoretical model and the realization of it

in Dy2Ti2O7 and Ho2Ti2O7. The interested reader may check [51] for a very nice and basic
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3.2. Background: Spin ice pyrochlores

explanation of the spin-ice model. For reviews on the experimental and the theoretical

perspective, see [5, 6, 52] and [8, 9], respectively.

Spin ice model The spin-ice model [53] is effectively given by an antiferromagnetic Ising

Hamiltonian:

H = −Jnn

∑
~Si~Sj , (3.10)

with the sum going over all pairs of nearest neighbors, Jnn denoting the exchange cou-

pling and ~Si the spin at site i pointing along its local [1 1 1] axis into or out of a specific

tetrahedron. However, this model neglects the strong dipolar interaction present between

rare-earth ions with large magnetic moments. Therefore, an important modification of

this model is the inclusion of long-range dipolar interactions [54] leading to the famous

dipolar-spin-ice model:

H = −Jnn

∑
~Si~Sj +Dr3

nn

∑
j>i

~Si~Sj
|rij|3

− 3(~Si · ~rij)(~Sj · ~rij)
|rij|5

, (3.11)

where ~rnn is the distance between nearest neighbors and ~rij is the distance vector between

the spin at site i and its nearest neighbor at site j. The strength of the dipolar interaction

D is given by,

D = (µ0/4π)
g2µ2

r3
nn

, (3.12)

where µ0 is the vacuum permeability and gµ = 10µB for Dy3+ and Ho3+ ions. Truncating

the dipolar interaction to nearest neighbors only gives an exchange-like term with a pseudo

exchange constant Dnn [54]:

Dnn =
5D

3
. (3.13)

More recent models use exchange interactions beyond nearest neighbors (such as next-

nearest and next-to-next-nearest neighbors) [55]. However most of the experimental ob-

servations can be explained with the spin-ice or dipolar-spin-ice model given above.

The dumbbell model The biggest theoretical achievement was to reformulate the spin-

ice Hamiltonian above in terms of magnetic monopole excitations via a so called dumbbell

model [56]. The spins at the vertices are effectively dipoles that can be interpreted as

compounds of two magnetic charges q, one positive and one negative. Depending on

whether the spins point into or out of a specific tetrahedron a positive or the negative

charge is in that tetrahedron. Therefore, with four spins at the vertices of each tetrahedron,

four charges are in each tetrahedron adding up to a total charge Q of a tetrahedron. The
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3. Details of the measurements and samples

Table 3.2.: Overview of the excitations in the spin-ice model and their interpretation in
the dumbbell model

Spin-ice model Dumbbell model
2-in-2-out vacuum
3-in-1-out monopole with charge +1
3-out-1-in monopole with charge -1

all-in monopole with charge +2
all-out monopole with charge +2

total charge Q may take integer values between −2 and +2 (table 3.2). The reformulation

of the spin-ice model into this dumbbell picture is given by:

H =
µ0

4π

∑
α<β

QαQβ

rαβ
+
v0

2

∑
α

Q2
α , (3.14)

where α and β denote the number of the tetrahedron, µ0 is the vacuum permeability,

Qα =
∑

i∈V (α) qi with V (α) being the vertices of the α’th tetrahedron and qi the charge

of the dumbbell at vertex i at the center of the tetrahedron, rαβ denotes the distance

between the centers of tetrahedron α and β and v0 is the on-site Coulomb interaction.

The configuration of two spins pointing in and two spins pointing out leads to Q = 0 for

the tetrahedron while all other configurations lead to non-zero Q either ±1 or ±2. These

non-zero charged tetrahedra can be interpreted as magnetic monopoles with positive or

negative charge 1 or 2. The dipolar interaction between the spins translates to the Coulomb

interaction between these magnetic monopoles. More details of the dumbbell model can

be found in the review [9] and table 3.2 contrasts the excitations in the two models against

each other.

The spin-ice ground state For each tetrahedron there are 16 possible spin configurations,

shown in fig. 3.7. The six so-called spin-ice configurations at the bottom of the figure are

those with two magnetic moments pointing into and two magnetic moments pointing out

of each tetrahedron, the 2-in-2-out configuration. These configurations are called spin-

ice configurations because they resemble the configuration of hydrogen around oxygen in

water ice [5]: The oxygen atoms are at the center of tetrahedrons of hydrogen. Two of the

hydrogen atoms are closer to the center of one tetrahedron while the other two are a bit

further away, the 2-in-2-out rule. In the spin-ice model, each of these six configurations has

the same energy for ferromagnetic interaction between nearest-neighbor magnetic moments

and are thus degenerate at zero temperature. This leads to a residual zero-point entropy

[57]. The other ten configurations of magnetic moments on the pyrochlore lattice are eight
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3.2. Background: Spin ice pyrochlores

Figure 3.7.: The configurations of the magnetic moments with local Ising axes on the ver-
tices of a tetrahedron. Top row: 4-in and 4-out, second row: four 3-out-1-in,
third row: four 3-in-1-out, fourth and fifth row: six 2-in-2-out configurations.
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configurations with only one magnetic moment pointing in or out and three pointing out or

in, respectively, called the 3-in-1-out or 1-in-3-out configurations; and two configurations

with all magnetic moments pointing into or out of the tetrahedron, called the all-in and all-

out configurations. The energy gap between the 2-in-2-out to the 3-in-1-out or 3-out-1-in

state is 2J and needs one spin flip and to the all-in or all-out is 6J and needs two spin flips.

At high enough temperatures these higher-energy configurations are excited. Compared

to the zero influx-outflux balance of the spin-ice state, the 3-in-1-out configuration has

positive influx balance and can be interpreted as a sink of the magnetic field, i.e., a negative

magnetic monopole, and the 3-out-1-in configuration has a negative influx balance being

interpreted as a source of the magnetic field, i.e., a positive magnetic monopole. These

excitations can be interpreted as magnetic monopoles in the dumbbell model.

Field along [1 1 1] direction The magnetization for a field along the [1 1 1] direction was

investigated for the spin-ice model [58, 59]. The [1 1 1] direction is parallel to one of

the four spins in each tetrahedron, the apical spin. At zero field, all of the six spin-ice

configurations have the same energy. For a small field along [1 1 1], the apical spin of each

tetrahedron flips in direction of the field to minimize Zeeman energy. However, one of the

spins at the base of the tetrahedron has to flip to compensate the top spin and achieve

the spin-ice configuration that minimizes the exchange energy. For higher fields, when the

Zeeman energy exceeds the exchange energy, also the spins at the base are flipped so that

all of them have a positive projection on the magnetic field vector. At this high field,

each tetrahedron is in either the 3-in-1-out or the 3-out-1-in configuration. Tetrahedra in

one layer perpendicular to [1 1 1] are in one of these two configurations alternating from

layer to layer. In the monopole picture of the dumbbell model, the magnetic field in [1 1 1]

direction translates into a staggered chemical potential for monopoles and antimonopoles

on planes with up-pointing and down-pointing tetrahedra, respectively.

Theory asserts that for a nearest-neighbor spin-ice model the first-order transition be-

tween low- and high-field phase would be absent at low temperatures and only a second-

order transition would be found [56]. In the dipolar-spin-ice model, such a transition is

possible and was found numerically [56].

This concludes the explanation of the static properties of the spin-ice model and in the

last paragraph of this overview I discuss the dynamical aspects of the spin-ice models.

Dynamics The dynamics of the spin-ice models have been studied in several publica-

tions: the equilibrium dynamics in the kagome-ice phase was investigated in terms of the

nearest-neighbor spin-ice model [58], the equilibrium dynamics at zero field in terms of
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3.2. Background: Spin ice pyrochlores

the monopole picture of the dumbbell model [60] and out-of-equilibrium after thermal

quenches [61] or after field quenches [62] in the dipolar-spin-ice model. In the following, I

will explain the microscopic picture of what happens after thermal and field quenches in

the spin ice based on the last two publications.

Temperature quenches have theoretically been proposed and investigated for their un-

usual dynamics and to probe the dynamics of the monopoles. Firstly note, that at zero

field the spin-ice configurations are the lowest-energy state. This state is only stabilized by

the exchange interaction between nearest-neighbors. Excitations of this ground state are

tetrahedra with 3-in-1-out, 3-out-1-in, 4-in and 4-out configurations that are possible at

higher temperatures. When the temperature is reduced quickly the monopoles of the high-

temperature many-excitation state have to annihilate before reaching the low-temperature

few-excitation state. The dynamics of this process were studied in [61] and the results

are stated in the following. The monopole annihilation is efficient and fast only when

the monopole density is high. As soon as the monopoles become sparse it is likely that

a monopole-antimonopole pair binds together to form a so-called non-contractible pair.

Non-contractible pairs are a monopole and an antimonopole sitting on adjacent tetrahe-

dra that create two doubly charged monopoles when the spin between them is flipped.

Therefore, this spin flip is energetically forbidden and several other spin flips are needed to

annihilate them. However, due to the Coulomb interaction of their magnetic charges they

cannot move away from each other without increasing their potential energy. The fastest

way of annihilation is that they go along a loop around the plaquette that they are part

of. However, then their distance to each other and their mutual Coulomb potential grow,

which is energetically not favorable. The energy needed for this is in the order of 1.5 K and

is, therefore, highly unfavorable at low temperatures. However, in order to see this slow

annihilation dynamics the monopole density must not be to small. Such a high monopole

density can only be obtained at low temperatures if the cool down from the monopole-

rich high-temperature phase is done quickly. The time scale needed for the cooling is in

the order of 100 ms, which is difficult to achieve experimentally. Therefore, temperature

quenches are not the first option to probe the monopole dynamics in experiment. It is

possible, to achieve a very similar situation when quenching a high magnetic field in [1 1 1]

direction down to zero field.

As explained before, in the case of magnetic field in [1 1 1] direction the high-field phase

of the spin-ice model is a long-range ordered phase: a lattice of alternating monopoles and

antimonopoles. It is saturated at each lattice site (the centers of the tetrahedra) occupied

by either a magnetic monopole or antimonopole. In contrast to the situation at high tem-

peratures and zero field where the monopoles and antimonopoles are randomly distributed,
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3. Details of the measurements and samples

in the high-field phase monopoles and antimonopoles are sitting in adjacent tetrahedra and

the annihilation should be very efficient. In the low-field phase (spin-ice and kagome-ice

phase) there are only few thermally excited magnetic monopoles. This is analogous to

the situation of the thermal quenches discussed above, but field quenching is much easier

to perform than thermal quenching. Quenching from the high-field monopole-rich into

the low-field monopole-poor phase monopoles and antimonopoles have to annihilate. The

dynamics of this process were investigated numerically by Mostame et al. [62] and their

results are briefly explained in the following. They identified three regimes of monopole

dynamics, two of which are relatively quick depending on the temperature. The third one

is dominant and reaches long time scales of 1000 s and above at low temperatures. At

short time scales monopole annihilation between nearest neighbors is dominant followed

by a diffusion-annihilation process. In the third regime monopole and antimonopole pairs

form non-contractible pairs as after a thermal quench.

The monopole-annihilation process following a field quench is an interesting axis for the

discussion of the results of my lattice-relaxation experiments. With this, I conclude the

review of the theoretical basics of the spin-ice model and I briefly make a connection of

this model to the real materials Dy2Ti2O7 and Ho2Ti2O7 in the next section.

3.2.3. Dy2Ti2O7 and Ho2Ti2O7

The review article [8] gives a very good overview on the measurements done on Dy2Ti2O7

and Ho2Ti2O7 and describes how these compounds were characterized as spin ice. The main

features are stated in the following: strong frustration as large ratio of Curie-Weiss tem-

perature ( 1.2 K for Dy2Ti2O7 [63] and 1.8 K for Ho2Ti2O7 [64]) and ordering temperature

(below 0.06 K for Dy2Ti2O7 [63] and below 0.35 K for Ho2Ti2O7 [65]); magnetic anisotropy

[63, 66] and magnetization plateau [67, 68] characteristic for spin-ice compounds; residual

spin-ice entropy [69, 70]; strong axial anisotropy of the crystal field and the large gap

to the first excited crystal-field level of 230 K [42]; pinch points in neutron diffraction

[71, 72] that are characteristic of the spin-ice phase [9]. It is the strong crystal field that

makes Dy2Ti2O7 and Ho2Ti2O7 to be well described by the spin-ice model (eq. (3.10)),

as was shown in [50]. In fact, most experimental observations are captured by this sim-

ple model [52, 73]. The dipolar-spin-ice model describes the equilibrium dynamics of the

spin-ice ground state [60] and long-range correlations [9] visible as pinch points in neutron-

diffraction experiments. In the dipolar-spin-ice model, a long-range ordered ground state

at around 0.18 K is predicted [74] that has not yet been found experimentally, possibly due

to the spin freezing below 0.5 K. In summary, the (dipolar) spin-ice model describes well
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(a) (b) (c)

Figure 3.8.: Photographs of the Dy2Ti2O7 samples (a) DTO5 and (b) DTO3 supplied by
G. Balakrishnan. (c) Laue diffractogramm of DTO3 sample oriented in [1 1 1]
direction.

the observations of the spin-ice materials Dy2Ti2O7 and Ho2Ti2O7 and I may discuss my

results in view of this model.

Via dilatometric measurements I have evidenced further details on the interaction be-

tween lattice and magnetic effects in the spin-ice compounds. Magnetoelastic coupling

should couple changes of the magnetic configuration in a varying magnetic field to changes

of the lattice parameter. Dilatometric measurements are very sensitive, so that new phe-

nomena of the magnetic system might be found as features of the lattice expansion.

3.3. Experimental

3.3.1. Samples

Dy2Ti2O7 The oriented single-crystalline samples of Dy2Ti2O7 were grown by G. Balakr-

ishnan by the floating-zone technique at the University of Warwick [75]. The crystal was

oriented with a Laue X-ray machine and it was checked to be of good quality, fig. 3.8c.

The relaxation, the thermal expansion below 2 K and the magnetostriction measurements

were performed on sample DTO3, see fig. 3.8b; these measurements were done in longi-

tudinal geometry, i.e.. ∆L‖H‖[1 1 1] with the TDC dilatometer in a 18 T magnet. The

relaxation was also measured in transverse geometry (∆L ⊥ H‖[1 1 1]). The thermal-

expansion measurements between 2 K and room temperature were done on sample DTO5,

fig. 3.8a, with the TAC dilatometer in a 15 T magnet. The dimensions and an estimate of

the demagnetization factor are given in table 3.3.

Ho2Ti2O7 The oriented single-crystalline samples of Ho2Ti2O7 were grown by C. Wiebe

and H. Zhou at the University of Tennessee. The measurements above 2 K were done on
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(a) (b) (c)

Figure 3.9.: Photographs of Ho2Ti2O7 sampeles (a) HTO1 and (b) HTO2 supplied by C.
Wiebe. (c) Laue diffractogramm of sample HTO2 oriented in [1 1 1] direction.

Table 3.3.: Dy2Ti2O7 and Ho2Ti2O7 samples with their dimensions and corresponding es-
timations of the demagnetization factors using an ellipsoid approximation [76]

Sample Dimension in mm×mm×mm Demagnetizing factor N
DTO3 3.0× 1.9× 0.39 0.75
DTO5 4.0× 4.0× 1.31 0.65
HTO1 2.5× 2.2× 0.59 0.70
HTO2 2.71× 2.47× 2.36 0.35

HTO1, shown in fig. 3.9a, with the TAC dilatometer in a 15 T magnet and the measure-

ments below 2 K including the relaxation measurements were done on HTO2, shown in

fig. 3.9b, with the TDC dilatometer in a 18 T magnet. The orientation of sample HTO2

was checked via a Laue diffractometer fig. 3.9c and the quality was found to be good. The

dimensions and an estimate of the demagnetization factor are given in table 3.3.

3.3.2. Magnetostriction, thermal-expansion and lattice-relaxation

measurements at Dy2Ti2O7 and Ho2Ti2O7

For the magnetostriction and thermal-expansion measurements two capacitance dilatome-

ters, the TDC and the TAC, were used. Two setups at two different magnets from Ox-

ford Instruments were used, a 15 T magnet at the Technical University Dresden and a

18 T magnet at the Dresden High-Magnetic-Field Laboratory of the Helmholtz-Zentrum

Dresden-Rossendorf. The 18 T magnet is a LN2-shielded 4He-bath cryostat with a com-

mercial sorb-pumped 3He-insert. The 15 T magnet is a 4He-bath cryostat with a variable-

temperature insert (VTI); the temperature of the sample is controlled by a He-gas flow

through a needle valve from the bath. At both setups the capacity was determined us-

ing an Andeen-Hagerling capacitance bridge, model 2500A or 2700A. The temperature of
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the TAC was measured with a Cernox thermometer; and the temperature of the TDC

was measured with a Cernox thermometer at temperatures above 4 K and with a RuO2

resistance thermometer below 4 K with a standard calibration curve. The resistance was

measured with a Lakeshore 370 in the 18 T magnet setup and a Conductus LTC-20 at the

15 T magnet setup.

Quasi-static magnetostriction measurements The magnetostriction of Ho2Ti2O7 in the

temperature range from 1.5 K to 300 K I used the TAC (fig. 3.2a) in a variable-temperature

insert (VTI) in a 15 T magnet. For the magnetostriction of Dy2Ti2O7 in the temperature

range from 0.3 to 40 K I used the TDC a sorb-pumped closed-cycle 3He system that was

inserted into the 18 T magnet. The magnetostriction was measured while sweeping the

field at a rate of 0.2 T min−1 for temperatures above 1 K and 0.015 T min−1 below. Above

1 K, there was no sweep-rate dependence or hysteresis observed. The thermal expansion

between 1.5 and 300 K of both compounds was measured in the TAC in the VTI in the

15 T magnet. The temperature was swept at 1 K min−1 from base temperature to room

temperature and then down to base temperature.

The low-temperature magnetostriction from 0.27 K to 1.5 K and was measured using a

sorb-pumped closed-cycle 3He system that was inserted into the 18 T magnet. I used the

TDC (fig. 3.1) in this cryostat. The field was swept slowly at a rate of 0.015 T min−1 at

various temperatures in order to avoid non-equilibrium effects and for high field resolution.

Between each sweep the temperature was raised above 1 K and the magnet demagnetized

by oscillating the field around 0 T with decreasing amplitude. The 3He was recondensed

and the new sweep started after stabilizing the dilatometer cell at the new temperature.

The thermal expansion below 2 K was measured by stepping the temperature by 5 % of

the initial temperature starting at 0.3 K (i.e., the temperature at step n is 1.05n0.3 K);

at each step the temperature was stabilized for 3 min which is a compromise between the

hold time of the cryostat and the required long stabilization times.

Lattice-relaxation measurements The lattice-relaxation measurements were performed

in the sorb-pumped closed-cycle 3He system that was inserted into the 18 T magnet. The

lattice dynamics at low temperatures were probed with several different protocols. Com-

mon to all protocols is the demagnetization sequence before each sequence of quenches; it

is the same as used for the field-sweep measurements above. After the demagnetization

process, the sample was cooled down to the measurement temperature and stabilized for

30 min.
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Figure 3.10.: The graphs show various quench sequences employed to probe the relaxation
dynamics of Dy2Ti2O7 and Ho2Ti2O7. These specific examples were used for
Dy2Ti2O7 as for Ho2Ti2O7 slightly different sequences were used. From top
to bottom: (a) One sequence of type A, (b) two sequences of type B, (c)
three sequences of type C and (d) three sequences of type D.

The first sequence was used to give an overview about where relaxation behavior could

be observed and whether it could be found in upsweep and downsweep alike:

A: The field is swept to the initial field of 0 T at a rate of 0.2 T min−1 and stabilized for

30 min. Then the magnetic field is stepped up at a fast sweep rate of 1 T min−1 in

5 steps of 0.5 T to a final field of 2.5 T stabilizing the system for 1 h after each step

monitoring the relaxation in the upsweep steps. After that the field is stepped down

in the same steps at the same rate until it reached 0 T monitoring the relaxation in

the downsweep steps.
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The sequence can be seen in fig. 3.10(a). After having found the region of relaxation, I

probed it separately with a similar sequence that has less steps, so that the relaxation after

each step could be monitored for a longer time:

B: The field is swept up to 2.5 T and the sample stabilized for 30 min. The field is

stepwise reduced to zero field by 0.5 T per step with a sweep rate of 1 T min−1. After

each step the sample is stabilized for 1 h and the relaxation monitored.

This sequence is shown in fig. 3.10(b). With the next sequence I intended to probe the

dependence of the relaxation on a longer time scale and more controlled by making only

one step from the high field phase into the low-field phases:

C: At the measurement temperature the field is swept from 0 to 1.5 T at a rate of

0.2 T min−1 and the sample stabilized for 30 min. Then the field is swept down

quickly to the final field with a rate of 1 T min−1. The relaxation of the sample is

monitored for 2 h and then the field is swept down to zero, ending the sequence.

This sequence is displayed in fig. 3.10(c). In the next sequence the question should be

answered, whether the relaxation was also visible when the initial field was not as high as

needed to set the system to the high-field phase:

D: At the measurement temperature the field is swept up to the initial field equal or

below 1.5 T. Then the field is quenched down by 0.5 T and the relaxation is monitored

for 2 h. The field is swept down to zero and the sequence ended.

The sequence D is shown in fig. 3.10(d). In a final sequence, I wanted to see whether the

relaxation could also be seen at smaller step sizes. For this I used a sequence like sequence

A with reduced step size and many steps; however, since the hold time of the cryostat is

limited and the monitoring time for each relaxation should be at least 1 h the complete

sequence could not be fitted in to the hold time. The sequence was, therefore, split into

several parts and resumed after each recondensation and demagnetization at a field smaller

than the end field of the previous part:

E: The field is swept from zero field to the initial field, where the sample is stabilized

for 30 min. Then the field is increased or decreased stepwise, stabilizing the sample

for 1 h and monitoring the relaxation. The sequence ends, when the hold time of the

cryostat was reached.

This sequence is similar to sequence A (fig. 3.10(a)).
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Figure 3.11.: Dependence of the demagnetization correction Bdem = Bint − Bext on the
external field Bext for various temperatures for Dy2Ti2O7 with demagnetizing
factor N = 0.75. I used eqs. (C.5) and (C.11) to calculate Bdem.

Demagnetization correction Our samples of Dy2Ti2O7 and Ho2Ti2O7 were plate-like

with the [1 1 1] perpendicular to the large faces. Since I applied the magnetic field in that

direction large demagnetization effects have to be taken into account. The internal field

(important for the intrinsic properties I want to probe) is different from the external field

which I measure. The field values given for the thermal expansion and the relaxation

measurements are internal field values. The volume-specific magnetization in Dy2Ti2O7

and Ho2Ti2O7 with a magnetic moment m = x · µB/(Dy/Ho) and lattice constant a =

10.10 Å [30] is given by:

µ0M = µ0m/V = xµ0
16µB
a3

= x · 0.181 T . (3.15)

The factor 16 is due to the 16 (Dy/Ho) atoms per unit cell. The field-dependence of the

demagnetizing effect with a demagnetizing factor of N = 0.75 for Dy2Ti2O7 is displayed

in fig. 3.11.

Magnetic torque I refer the reader to the calculation in subsection C.1.2 which indicates

that large magnetic torque could lead to a rotation of the sample. In order to exclude possi-

ble large parasitic magnetic-torque effects, I verified my results with another measurement.

I glued the Dy2Ti2O7 sample using a two-component epoxy resin to the sample holder fixed

to the frame of the TDC dilatometer minimizing the possibility of the tilting or rotation
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of the sample due to the magnetic torque. I reproduced the previous measurements and,

therefore, exclude that my previous results were influenced by torque effects.
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4. Quasi-static magnetoelastic

properties of Dy2Ti2O7 and

Ho2Ti2O7

The ground state of the spin-ice compounds Dy2Ti2O7 and Ho2Ti2O7 is highly degenerate.

This is a result of the fact, that, for instance, six spins around a hexagonal plaquette

of the pyrochlore lattice may be reversed still preserving the spin-ice rule. Due to the

cubic lattice symmetry, the ground state is isotropic. By applying a magnetic field, the

symmetry is broken by favoring one specific direction lifting the degeneracy of the spin

system. Depending on the strength of the spin-lattice coupling the symmetry of the lattice

should also change in a way measurable by dilatometry. This means, that dilatometry is a

very good means to quantify the spin-lattice coupling, i.e., the distance dependence of the

exchange interactions and the strain dependence of the ground-state energy. As a result,

I obtain the relative strengths of the two spin-lattice couplings.

This chapter is concerned with the static magnetoelastic properties of Dy2Ti2O7 and

Ho2Ti2O7 probed by capacitance dilatometry in fields up to 10 T and temperatures from

0.3 to 300 K. The static magnetoelastic properties of a sample are those properties that are

probed in the equilibrium. The thermal expansion of both compounds does not show any

sign of a structural transition. As for the magnetostriction, both compounds show similar

behavior and a transition in a field range consistent with published phase diagrams. At

first, the data for Dy2Ti2O7 and then the data for Ho2Ti2O7 are shown in the following

two sections, respectively. Both sets of data are then discussed in their own section. In

order to get a better insight into the microscopics of the magnetostrictive behavior of

the compounds at low temperatures I devised a simulation using the McPhase software

package. The results are wrapped up in the last section of this chapter.
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Figure 4.1.: Phase diagram of Dy2Ti2O7 on the basis of specific-heat measurements. Re-
porduced from [69].

4.1. Introduction: Phase diagrams of Dy2Ti2O7 and

Ho2Ti2O7

The phase diagram (figs. 4.1 and 4.2) of the classical spin ices Dy2Ti2O7 and Ho2Ti2O7

is characterized by changes of the magnetic structure. The magnetic specific heat at zero

field features a Schottky-like anomaly at the temperature Tp1 around 1.2 K for Dy2Ti2O7

[69] and 1.9 K for Ho2Ti2O7 [52]. Below this temperature, the spin-ice state is realized and

above this temperature the spins are free to point in or out of the tetrahedron in any of

the 16 configurations consistent with the local Ising axes. Depending on the magnitude of

the magnetic field aligned along the [1 1 1] direction there are two more phase boundaries.

On the one hand, the boundary at the higher temperature (Tp2 in fig. 4.1) signals the

freezing of the spins at the top of each tetrahedron and on the other hand, the boundary

at the lower temperature (Tp3) is linked to the freezing of the three spins at the basis of the

tetrahedron. The former is at higher temperatures due to stronger Zeeman splitting of the

spin at the top than for those at the basis for all fields. The low-temperature regime below

Tp1 may be further characterized by the magnetic properties of the compounds (fig. 4.2):

spin-ice phase at zero field, the kagome-ice phase at intermediate fields below the transition

field Hc, and the saturated-ice phase (3-in/1-out) at fields higher than Hc. The critical

field Hc is 0.9 T for Dy2Ti2O7 [77] and 1.5 T for Ho2Ti2O7 [68, 78]. At temperatures below

approximately Tc = 0.5 K the magnetic transition at Hc is first order and seen as a jump
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4.2. Results for Dy2Ti2O7

Figure 4.2.: Phase diagram of Ho2Ti2O7 on the basis of magnetization measurements. Re-
produced from [68].

in the magnetization. Above Tc, the magnetic transition is smoothed out to a crossover.

Below Hc, there is a magnetization plateau, called the kagome-ice phase, that is well defined

at low temperatures below Tc in the spin-ice phase. The transition from the spin-ice to

the kagome-ice phase is also seen as a jump at very low fields from zero magnetization

to the magnetization of the plateau. In the following, new magnetostriction and thermal-

expansion data are presented and discussed on the basis of these phase diagrams.

4.2. Results for Dy2Ti2O7

In this section, I present the thermal-expansion and magnetostriction results of Dy2Ti2O7

I obtained in a wide temperature range from 0.3 K to 300 K and in fields up to 3 T. The

thermal-expansion data are shown in figs. 4.3 and 4.4. The magnetostriction data are

shown in fig. 4.5.

Thermal expansion At first, I measured the zero-field thermal-expansion shown in

fig. 4.3, i.e., the relative expansion of the sample in dependence of the temperature. The

crystal expands monotonously from 2 to 273 K by ∆L/L = 2.3 × 10−3. The thermal-

expansion coefficient is not constant and increases over the complete measurement range.

The slope is steepest at low temperatures and becomes smaller towards room temperature

possibly becoming zero over room temperature. There is no sign of a phase transition of

the lattice in this temperature range. The crystal symmetry is likely to remain the same

pyrochlore structure over the entire temperature range measured.
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Figure 4.3.: Temperature dependence of the relative length change of Dy2Ti2O7 (sample
DTO5) in the VTI using the TAC.

Figure 4.4.: Temperature dependence of the relative length change of Dy2Ti2O7 (sample
DTO2) between 0.3 and 1.5 K at various fields in longitudinal geometry. The
given fields are not corrected for demagnetization.
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4.2. Results for Dy2Ti2O7

Figure 4.5.: Field dependence of the relative length change ∆L/L of Dy2Ti2O7 (sample
DTO2). The sample was glued to the sample holder of the TDC to exclude
sample rotation by magnetic torque.

The zero-field thermal expansion at temperatures below 1.5 K is equally unremarkable as

can be seen from the flat black curve in fig. 4.4, while the temperature dependence of ∆L/L

in applied fields shows various features. The plot shows the relative expansion of the sample

in dependence of the temperature in up- and downsweeps for various fields not corrected

for demagnetization. The temperature was changed stepwise by 5 % per step and stabilized

for 3 min. The relative thermal expansion of Dy2Ti2O7 in this temperature range is of the

order of ∆L/L = 10−7 to 10−6. For fields below 1 T the thermal relative length change

between 0.3 and 1.5 K is smaller than ∆L/L = 2× 10−6, while above this field it more than

doubles to ∆L/L = 4× 10−6. In general, the field dependence is complex: for low fields,

below 0.5 T, and for the highest field of 2 T the lattice is monotonously expanding with

temperature. For the intermediate fields of 1 T and 1.25 T the length change is negative

over some range. The upsweep (zero-field-cooled (ZFC)) and the downsweep curve (field-

cooled (FC)) differ at temperatures below 0.5 K for 0.5, 1 and 1.25 T.

Magnetostriction The graphs displayed in fig. 4.5 show the relative length change of

the sample in dependence of the external magnetic field at various temperatures between

0.3 and 40 K. In this temperature range, the magnetostrictive effects are of the order of

∆L/L = 10−5. For high temperatures above 5 K, the lattice does not strongly react to small

fields below 3 T and expands linearly above. The low-temperature magnetostriction at 0.3,

1 K and 2 K resemble each other. The lattice expands in fields up to about 1 T and then
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4. Quasi-static magnetoelastic properties of Dy2Ti2O7 and Ho2Ti2O7

Figure 4.6.: Temperature dependence of the thermal expansion of Ho2Ti2O7 (sample
HTO1) measured by use of the VTI.

contracts reaching a minimum at 1.5 T. This maximum-minimum feature is characteristic

for the spin-ices and will be considered especially in my simulation. At fields above 2 T

the lattice expands linearly with an expansion coefficient of approximately 2.5× 10−6 T−1.

At the lowest temperature (0.3 K) a hysteresis is opening below the maximum.

The results of this section are going to be discussed in section 4.5. In the next section,

the results of the thermal-expansion and the magnetostriction measurements on Ho2Ti2O7

are presented.

4.3. Results for Ho2Ti2O7

In this section, the thermal-expansion and magnetostriction results of Ho2Ti2O7 are pre-

sented. I obtained them in the same temperature and a similar field range as for Dy2Ti2O7

in the previous section. This section organised into paragraphs presenting the thermal-

expansion measurements with figs. 4.6 and 4.7, as well as the magnetostriction measure-

ments with figs. 4.8 and 4.9.

Thermal Expansion The zero-field thermal expansion of Ho2Ti2O7, shown in fig. 4.6, is

very similar to the one of Dy2Ti2O7 in fig. 4.3. The relative expansion between 2 K to 268 K

is monotonous and positive with ∆L/L = 3× 10−3. The thermal-expansion coefficient α

is larger by about 30 % for Ho2Ti2O7 than for Dy2Ti2O7. The general behavior of the the

thermal-expansion coefficient is the same as for Dy2Ti2O7: the rate-of-change largest at
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4.3. Results for Ho2Ti2O7

Figure 4.7.: The thermal expansion of Ho2Ti2O7 measured by use of the 3 He cryostat at
various fields. The field values are not corrected for demagnetization.

low temperatures and becomes smaller towards room temperature and may vanish over

room temperature. I conclude from this high temperature thermal expansion measurement

that Ho2Ti2O7 does not undergo a structural phase transition in this temperature range.

The low-temperature thermal expansion, displayed in fig. 4.7, was measured in the same

way as it was done for Dy2Ti2O7 (fig. 4.4). In comparison with Dy2Ti2O7 the thermal-

expansion effects are stronger by about one order of magnitude: ∆L/L = 10−6 to 10−5

depending on the magnetic field. For fields up to 1.75 T, the thermal expansion is positive

and is negative for 2.25 T. The upsweep curve is flat for all fields and becomes steep at

temperatures around 0.75 K; the downsweep curve is rather linear. It was observed, that

the time dependence of the relative expansion in the three minutes after each step shows

an exponential behavior at high temperatures crossing over to a continuous curve without

steps for temperatures below 0.9 K. Probably, slow dynamics keep the system at these low

temperatures from reaching the equilibrium during the stabilization time of three minutes.

This means that the relaxation time is around 3 min = 180 s at 0.9 K and increases strongly

for temperatures below 0.9 K. In comparison to this, the Dy2Ti2O7 sample did not show

such strong thermal hysteresis.

Magnetostriction We shift our focus to the high-temperature magnetostriction data of

Ho2Ti2O7 displayed in fig. 4.8. The relative expansion of Ho2Ti2O7 is shown in dependence

of the external magnetic field at various temperatures (2.4, 5.9 and 22.8 K). The magne-

tostriction of Ho2Ti2O7 is of the order of 1× 10−5 at temperatures above 2 K, fig. 4.8. The
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relative length change is larger for Ho2Ti2O7 than for Dy2Ti2O7 (fig. 4.5). The curve is

flat around zero field and shows contraction with increasing field up to a temperature-

dependent field Hmin, where the ∆L/L has a minimum. For fields higher than Hmin the

crystal expands again. Hmin in Ho2Ti2O7 is larger than the equivalent field in Dy2Ti2O7,

reflecting the stronger interactions among nearest-neighbor moments. Upsweep and down-

sweep curves are identical and no hysteresis was observed.

Last, but not least, the longitudinal magnetostriction of Ho2Ti2O7 at temperatures

between 0.3 and 1.5 K is shown in fig. 4.9. The field was swept with a rate of 0.015 T min−1.

The relative length change is of the order of about ∆L/L = 10−4. This is a factor 20

larger than the magnetostriction of Dy2Ti2O7; however, it is consistent with the high-

temperature measurements above. The general behavior of the relative expansion is as

follows: Sweeping up the field, the crystal expands up to a temperature-independent field of

about 0.4 T. Then there is a contraction up to a field Hmin, followed by a strong expansion

with a shoulder-like anomaly. The expansion does not cease with increasing field. In the

downsweep measurement, I find generally the similar curve shape with certain differences.

The shoulder-like anomaly does not precede the minimum at Hmin but follows it at a lower

field. The field Hmin,down in downsweep is lower than the field Hmin,up at upsweep, leading to

a hysteresis around Hmin. At low temperatures, there is another hysteresis opening below

the shoulder-like anomaly at downsweep. The shoulder-like anomalies become smaller in

magnitude with increasing field. Furthermore, the anomaly during downsweep is shifted

to higher fields with increasing temperature, being possibly related to the slow relaxation

dynamics at low temperatures. The second hysteresis that is only seen at low temperatures

probably has its origin in the same slow dynamics. The hysteresis, displaying different

Hmin,up and Hmin,down and different positions of the shoulder-like anomaly are separated by

approximately 0.6 T, not entirely explainable by demagnetizing effects.

After pointing out the details of the measurements, I will discuss the results in the next

section.

4.4. Simulation of the magnetostriction

In order to link my measurements to theory, I performed a mean-field calculation using

the software bundle McPhase [79]. The steps of the calculation are stated here briefly

to remind the reader of the detailed explanation in subsection 2.2.3. At first, I used

McPhase to calculate the crystal-field parameters via a point-charge model, in order to

construct the single ion Hamiltonian. Then, I diagonalized this Hamiltonian (eq. (2.1))

with McPhase and obtained the energy scheme of the rare-earth single ion in the crystal-
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Figure 4.8.: Field dependence of the magnetostriction of Ho2Ti2O7 (sample HTO2 glued
to the sample holder in the TAC).

Figure 4.9.: The magnetostriction of Ho2Ti2O7 (sample HTO2) measured by use of the
3He cryostat at various temperatures at a slow sweep rate of 0.015 T min−1.
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Table 4.1.: The crystal-field parameters of Dy2Ti2O7 from the point-charge model of the
unstrained and the strained lattice, and from literature [40]. Values are given
in meV.

Set B2
0 103B4

0 103B4
3 105B6

0 105B6
3 105B6

3

unstrained −0.994 0.243 −8.26 0.0414 1.32 0.379
strained −1.007 0.249 −8.13 0.0358 1.37 0.364

[40] −0.20 −2.2 −19 0.66 −10.9 9.0

Table 4.2.: The crystal-field parameters of Ho2Ti2O7 from the point charge model of the
unstrained and the strained lattice, and from literature [40]. Values are given
in meV.

Set B2
0 103B4

0 103B4
3 105B6

0 105B6
3 105B6

3

unstrained −0.335 0.126 −4.26 −0.0445 −1.50 0.418
strained −0.340 0.129 −4.20 −0.0383 −1.55 0.402

[40] −0.068 −1.13 −10.1 −0.74 12.3 10.1

electric field in Dy2Ti2O7 and Ho2Ti2O7. Finally, I calculated the magnetization and the

equilibrium strain (eq. (2.13)) with the estimated and approximated values explained in

subsection 2.2.3. The two free parameters of the model are the nearest-neighbor exchange

constant J and its distance dependence ∂rJ . I tried to answer two questions:

• What is the origin of the peak at the transition at 1.3 T?

• What is the origin of the high-field expansion?

I need the crystal-field paramters of the unstrained and the strained system; therefore

I cannot use the parameters from literature [40, 42] which give only the parameters for

the former. The point-charge model used for the calculation needs the crystal structure

and a charge-screening factor as input. The crystal structure is given in the literature

[32]. The screening factor is chosen such that the energy gap between the ground state

and the first excited level of 21 meV for Dy2Ti2O7 and 21.9 meV for Ho2Ti2O7 as given in

the literature [42]. I simultaneously fit the crystal field of Ho2Ti2O7 and Dy2Ti2O7 with

the same screening factor of 0.117 for all charges. The gap to the first excited crystal field

level corresponding to the crystal field parameters in table 4.1 for Dy2Ti2O7 and table 4.2

are E = 35 meV for Dy2Ti2O7 and E = 13 meV for Ho2Ti2O7. Although the crystal field

parameters are not the same as in the literature (tables 4.1 and 4.2) the wave functions

of the ground states agree reasonably with the literature [40, 42]. The wave functions are

given in the section A.9.
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Simulation of Dy2Ti2O7 I can reproduce the magnetization plateau of Dy2Ti2O7 with my

simulation. Figure 4.10 shows the magnetization calculated for the complete Hamiltonian

(eq. (2.5)) with an exchange constant J chosen such that the transition would be around

0.9 T, i.e., J = 0.005 meV. Indeed, the magnetization plateau could be reproduced for the

temperature of 0.3 K. At 0.3 K, the magnetization increases with a slope of approximately

1× 10−2 µB/T after reaching the plateau at approximately 5 µB/Dy. The inset shows

the magnetization curve for a temperature of 0.3 K up to complete polarization of the

moments at 10µB for high fields of around 1000 T. At high temperatures of 10 K and

20 K no plateau is seen and the magnetization increases slowly to 5 µB/Dy. The high-

temperature magnetization then continues to increase further in the same fashion as the

magnetization at 0.3 K. High-field measurements on Ho2Ti2O7 [66] although measured in a

different direction show a similar increase of the magnetization. In my model, the increase

of the averaged magnetic moment per ion comes from a mixing of crystal-field levels with

higher magnetic moment in [1 1 1] into the ground level. The ions that are affected by this

are located at the base of each tetrahedron.

In order to calculate the magnetostrictive effects I need the following parameters: The

elastic constants are taken from ultrasound measurements [19]; in particular, they report

c11 = 355 GPa, cL = 335 GPa and cT = 92 GPa (which are defined there). The relevant

elastic parameters I need are c11 and c12 which can be derived from the above constants

using eq. (2.15), I obtain c11 − c12 = 194 GPa needed for eq. (2.17). I use a unit cell with

four tetrahedra per unit cell, i.e., V = Vc/4 with Vc = a3; a = 10.105 Å denoting the

lattice parameter. The prefactor of eq. (2.17), therefore, evaluates to 16/(3Vc(c11− c12)) =

4.268× 10−6 meV−1. The total magnetostriction can be separated into two effects: the

crystal-field striction (CFS) calculated via:

ε′CFS = − 16

3Vc(c11 − c12)

(
4∑
s=1

6∑
l=0

l∑
m=−l

[
Bm
l (ε)− Bm

l (0)

ε

]
ε=0.01

〈Om
l 〉
)
. (4.1)

and the exchange striction (ES) calculated via:

ε′ES =
16

3Vc(c11 − c12)

l

8

∂J

∂r

([
〈 ~J1

~J2〉+ 〈 ~J1
~J3〉+ 〈 ~J1

~J4〉+ 〈 ~J2
~J1〉+ 〈 ~J3

~J1〉+ 〈 ~J4
~J1〉
]

−
[
〈 ~J2

~J3〉+ 〈 ~J2
~J4〉+ 〈 ~J3

~J4〉+ 〈 ~J3
~J2〉+ 〈 ~J4

~J2〉+ 〈 ~J4
~J3〉
])

. (4.2)

with the symbols used in chapter 2.
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Figure 4.10.: McPhase simulation of the magnetization for Dy2Ti2O7 at various tempera-
tures. Inset: Magnetization curve at 0.3 K up to saturation at high fields.

Figure 4.11.: McPhase simulation of the field dependence of the crystal-field striction
(CFS) of Dy2Ti2O7 at 0.3 K. The equilibrium strain ε due to CFS is shown
in black. The contributions of each ion of a tetrahedron to the equilibrium
strain ε1, ε2, ε3 and ε4 are shown in colors.
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Let us now focus on the CFS of Dy2Ti2O7, shown in fig. 4.11. In the graph, the con-

tribution of each ion of a tetrahedron to the equilibrium strain and the total equilibrium

strain are shown. εs denotes the contribution of the ion at vertex s of the tetrahedron:

vertices 2, 3 and 4 are at the basis of the tetrahedron while vertex 1 is at the top, the

apical vertex. In eq. (4.1), εs are given by the expression in the parentheses. The apical ion

hardly contributes to the CFS, i.e., ε1 is field independent, so we focus on the contribution

of the ions at the basis. In general, there is an obvious transition at Hc = 1 T where the

magnetic moment of ion 3 is flipped. Below the transition, the ion 3 gives a negative con-

tribution to the equilibrium strain, while the other two give positive contributions. Still,

at the transition, even the two ions that are not flipped show a jump of εi. Above the tran-

sition, all three ions at the basis give an equivalent contribution to the equilibrium strain.

The resulting expansion coefficient of the total equilibrium strain ε above the transition is

αB = 1.36× 10−5 T−1. In comparison, the experimental expansion coefficient of Dy2Ti2O7

is approximately 2.5× 10−6 T−1, i.e., a factor of 0.18 smaller than the simulation.

The other striction mechanism, the exchange striction (ES) in Dy2Ti2O7 is discussed in

the following paragraph. The ES contribution results from the mutual interaction of the

magnetic moments ~J on neighboring lattice sites and the dependence of the interaction

strength on the distance. Equation (4.2) was used to calculate this contribution with the

free parameter l∂rJ = 0.2 meV to match orders of magnitude of the ES and the CFS. This

parameter is linked to the change of the exchange constant J with distance. Remember,

that the exchange constant J = 0.005 meV was chosen to match the transition from the

kagome-ice to saturated-ice state. Figure 4.12 shows the ES at 0.3 K up to 20.3 K in the

main graph in the low-field regime and in the inset up to 1000 T. At 0.3 K, the ES shows

a jump at the transition field Hc from one plateau to another plateau. The jump is the

result of the flip of the magnetic moment of ion 3 in the basis of each tetrahedron at the

transition from the kagome-ice to the saturated-ice state. The higher temperature curves

at 10.3 K and 20.3 K smoothly transit from their zero-field value to the intermediate field

plateau observed at 0.3 K. At high fields of the order of 100 T, the three curves merge and

increase smoothly, reaching saturation at fields of the order of 1000 T.

In the last step, the CFS and ES data are combined to obtain the total magnetostriction

of Dy2Ti2O7, shown in fig. 4.13. The competition of CFS and ES in the relative strength

shown here leads to a peak-valley anomaly at the transition field. The magnetostriction for

fields above the transition is dominated by the CFS and increases linearly with a slope αB =

1.36× 10−5 T−1. In comparison with the experimental data from fig. 4.5 (also shown in

fig. 4.13) the simulation captures several features I also observed in experiment. Firstly, the

high-field magnetostriction is linearly increasing in experiment as well as in the simulation;
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Figure 4.12.: McPhase simulation of the field-dependent ES for Dy2Ti2O7 at various tem-
peratures. Inset: ES at high fields up to 1000 T.

Figure 4.13.: McPhase simulation of the field-dependent total magnetostriction ∆L/L of
Dy2Ti2O7 at 0.3 K. ∆L/L is the sum of the CFS and ES shown in figs. 4.11
and 4.12. For comparison the magnetostriction data from the experiments
shown in fig. 4.5 multiplied by 5 is shown, as well.
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Figure 4.14.: McPhase simulation of the crystal-field and the exchange contribution to the
total magnetostriction of Ho2Ti2O7 at low temperature 0.3 K.

secondly, I find a contraction of the lattice after a maximum at the transition, the valley-

peak anomaly in both, the experiment and the simulation. However, the experimental

data is not corrected for demagnetization and, therefore, the transition is seen at a higher

field than in the simulation. The absolute values of the modeled magnetostriction differ

by a factor 5 compared to the experimental data. That means, that the difference between

maximum and minimum in the peak-valley anomaly and the slope of the magnteostriction

at high-fields are 5 times too large in simulation. The former could be solved by using

l∂rJ = 0.04 meV to match the peak-valley anomaly quantitatively; the latter would need

a smaller magnetoelastic coupling ∂rB
m
l around one fifth of the current values. Possibly,

a more elaborate modelling of the crystal field would help to close this quantitative gap

between simulation and experiment at high-fields.

Simulation of Ho2Ti2O7 For the calculation of Ho2Ti2O7 I took the same steps explained

for Dy2Ti2O7. Since the results are quite similar, only the necessary calculation parameters

are given and the total magnetostriction, i.e., the sum of the ES and CFS are shown. For

Ho2Ti2O7, the following values are used for this simple model calculation: The exchange

constant J = 0.007 meV was chosen such that the magnetization shows a transition at

1.5 T; the value of l∂rJ = 0.28 meV Å
−1

. I take the elastic constants c11 = 354 GPa,

cL = 312 GPa and cT = 113 GPa from Erfanifam et al. [19] that result in c11−c12 = 197 GPa

using eq. (2.15). In general, the behavior of the calculated magnetostriction of Ho2Ti2O7

is the same as the one of Dy2Ti2O7. However, the agreement of the experimental and the
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simulated magnetostriction is only qualitative, but similar to Dy2Ti2O7. At the relevant

field of around 1.7 T the experimental data and the simulation data of the magnetostriction

show a minimum and an increasing lattice expansion at higher fields. The absolute values

of the magnetostriction in the model and in the experiment do not match well and are a

factor of five apart. Similar but opposite modifications as for the simulation of Dy2Ti2O7

would be needed to reconcile the magnitude of the effects in simulation and experiment.

4.5. Discussion

Based on my measurements described in the previous sections I discuss several points to

place this work in the current research. In particular, a) I compare my data to previous

measurements of various physical properties to complement existing phase diagrams with

the data of this work, and I discuss b) the hysteresis, c) the dynamical effects of the spin

ices observed with other measurement techniques and d) the difference of the field-cooled

and zero-field-cooled thermal expansion.

Comparison of Dy2Ti2O7 and Ho2Ti2O7 The high-temperature thermal expansion

(figs. 4.3 and 4.6) is very similar for both compounds having approximately the same am-

plitude. Thermal-expansion coefficients of 10−5 K−1 at room temperature have been found

for all rare-earth titanate pyrochlores [32]. This is consistent with the termal-expansion

coefficients found for the samples in this work. No sign of a structural transition could

be found and it can be assumed that the lattice structure at low temperatures is the

same as the one at room temperature. Likewise, the high-temperature magnetostriction

data (figs. 4.5 and 4.8) for both samples show similar field-dependences; however, the

magnetostriction is larger for Ho2Ti2O7 than for Dy2Ti2O7. The low-temperature mag-

netostriction is also similar in behavior (figs. 4.5 and 4.9) for both compounds showing

a peak-valley anomaly in the field region where a change from the kagome-ice to the

saturated-ice phase is expected. The magnetostrictive effect is larger for Ho2Ti2O7 than

for Dy2Ti2O7, about one order of magnitude. The low-temperature thermal expansion in

zero field is much smaller than 1× 10−6 K−1 and almost constant in both cases, figs. 4.4

and 4.7. In field, however, both compounds show significant temperature dependences

reflecting the strong field dependence of the relative length change of the lattice observed

in magnetostriction measurements. The effects are about one order of magnitude larger

for Ho2Ti2O7 than for Dy2Ti2O7 consistent with the magnetostriciton measurements. The

major difference between these two compounds is that Dy3+ is a Kramers ion, while Ho3+

is a non-Kramers ion. This may be the reason for the strong differences at low tempera-
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tures. In summary, both compounds show very similar behavior in magnetostriction, as

well as thermal expansion.

Comparison of the simulation with the experiment The simulation using McPhase

has shown that the magnetostriction data of Dy2Ti2O7 may be very well modeled taking

into account crystal-field as well as exchange striction. Neither crystal-field nor exchange

striction alone, model the magnetostriction measurements and only the competition of

both mechanisms can describe the data. This is evidence that even though the crystal-

field ground doublet is separated from the first excited level by a large gap of 200 K, the

crystal field effects may not be neglected. However, the magnetostriction data of Dy2Ti2O7

and the simulation differ by a factor of 5. A possible reason for the difference could be the

simple modeling of the crystal-field effects with a point-charge model and a more elaborate

model might help to close the gap.

Comparison with known phase diagrams Comparing my measurements to these obser-

vations from literature I can make several points. First of all, in zero field there is no sign of

any transition at any temperature in the range from 0.3 K to 270 K. The mere change from

a disordered spin structure to the spin ice structure, which would be expected at around

1.2 K, cannot be detected in dilatometry. In the magnetostriction and in thermal-expansion

measurements in applied field anomalies linked to the changes of the spin structure can be

found. The minima seen in magnetostriction for Dy2Ti2O7 and Ho2Ti2O7 at around 1.5 T

(fig. 4.5) and 1.8 T (fig. 4.9), respectively, coincide with the phase transition in magne-

tization measurements when corrected for demagnetization. The gradual breaking of the

spin-ice order may be seen as a decrease of the relative length with increasing temperature.

While the magnetostriction measurements show similar qualitative behavior of Dy2Ti2O7

and Ho2Ti2O7 the large difference of the magnitudes of the effects in both compounds

could not be explained. In my simulation, which I outlined ealier in this section, I could

reproduce the peak-valley anomaly observed in Dy2Ti2O7, fig. 4.13. The minimum at Hc

is caused by the competition of crystal-field striction and exchange striction in compa-

rable amplitude. The gradual relative expansion with magnetic field in the spin-ice and

kagome-ice phase and in the saturated-ice phase is caused crystal-field striction alone.

Hysteresis Several groups have measured the thermal conductivity of the spin ices

Dy2Ti2O7 and Ho2Ti2O7 [80–83]. The measurements are consistent with each other; there-

fore, I constrain myself to the discussion of the measurements of Scharffe et al. [80]. The

field dependence of the thermal conductivity κ of Dy2Ti2O7 at 0.4 K is shown in fig. 4.15.
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Figure 4.15.: Field dependence of the thermal conductivity of Dy2Ti2O7 and Ho2Ti2O7

showing a hysteresis in the kagoe-ice region below 1 T in Dy2Ti2O7 and 1.5 T
in Ho2Ti2O7. Reproduced from [80].
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Figure 4.16.: Explanation of the hysteresis seen in the kagome-ice phase. The six spin-ice
configurations go over into the kagome-ice configurations when increasing the
field. Upon further increasing the field the long-range ordered saturated-ice
phase is stabilized. Decreasing the field from there into the kagome ice phase
is completely symmetric to the upsweep. Decreasing the field back to zero
the system only realizes a subset of the six possible spin-ice configurations.
The remaining three configurations are reached through equilibration with
temperature-dependent time-scale.
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Sweeping up from zero-field there is a strong decrease of κ which plateaus from 0.3 to

0.7 T. Then rising again to peak at around 1 T and decrease with increasing field. In the

downsweep, κ follows mostly the upsweep until the peak at 1 T and staying almost con-

stant down to 0.2 T joining the upsweep curve down to zero field. The field dependence of

κ of Ho2Ti2O7 is very similar except for the critical fields and the behavior at fields higher

than 1.5 T where κ peaks and, after going through a minimum, saturates at around the

same value as the peak. In downsweep, κ does not stay constant below the critical field of

1.5 T but decreases steadily and joins the upsweep curve at around 0.2 T.

Using fig. 4.16, the phenomenological explanation for the hysteresis of the authors of

Ref. [81] is the following: In the spin-ice state there are six possible states that satisfy the

spin-ice rule that are all equally probable in equilibrium at zero field; left side of the figure.

Increasing the magnetic field along [1 1 1] direction favors order on the triangular sublattice

of the apical spins while still satisfying the spin-ice rule with the spins on the kagome

sublattice. Only three of the spin-ice states are favorable at these intermediate fields;

middle part of fig. 4.16. A tetrahedron may thus be in two configurations: (a) the apical

spin points along field direction; or (b) the apical spin points against field direction. In the

configuration (a), no spin has to flip (top configurations of left part); while in configuration

(b) the apical spin has to flip and another spin in the basis of the tetrahedron has to flip

in order to satisfy the ice rule (bottom configurations of left part). The possible cause

for the hysteresis is the existence of tetrahedra with both configurations during upsweep,

whereas during downsweep only tetrahedra of configuration (a) exist. During upsweep

tetrahedra in configuration (b) behave in a dynamic manner. At first, the apical spin flips

in order to reduce its Zeeman energy at the expense of the exchange energy by creating

an intermediate state of a tetrahdron with a 3-in-1-out or 1-in-3-out configuration. The

tetrahedron can decrease its exchange energy by flipping one of the spins at its basis at the

same time reducing Zeeman energy of this spin. The intermediate first step of this process

maybe metastable and may be the reason for the hysteresis and the dynamic behavior

during upsweep.

Increasing the field further also aligns the spins on the kagome plane to point along their

local [1 1 1] direction with positive projection on the magnetic field vector; right part of

fig. 4.16. This breaks the spin-ice configuration and creates a long-range-ordered state of

alternating 3-in-1-out and 3-out-1-in tetrahedra.

Decreasing the field from there flips again the one spin on the kagome sublattice, being

the reverse of the process when sweeping up the field. Upon further decreasing the field

to zero from the kagome-ice phase with three possible configurations down to the spin-ice

phase does not recover immediately the equilibrium of equal population of all six possible

63



4. Quasi-static magnetoelastic properties of Dy2Ti2O7 and Ho2Ti2O7

spin-ice configurations. Depending on the fluctuation time scale of the system, which is

very slow at temperatures below 1 K, the system may remain out of equilibrium for a long

time. It should also be noted that in order to recover those spin-ice states, which have the

apical spin point against the field direction, two spin flips are needed to satisfy the spin-ice

rule: one flip of the apical spin and one flip of a spin in the basis. In conclusion, there

are two hysteretic regions that may be explained with this microscopic picture: Firstly, a

hysteretic region around the transition from the spin-ice to the kagome-ice state found in

magnetization at low fields between 0 T and 0.25 T [77]. During upsweep the system leaves

the equilibrium and during the downsweep it has to relax back to equilibrium, which might

open the hysteresis. Secondly, the hysteretic region in the kagome-ice phase observed in the

thermal conductivity measurement and in my magnetostriction measurements at 0.3 K for

both Dy2Ti2O7 and Ho2Ti2O7 (figs. 4.5 and 4.9). At the transition from spin-ice to kagome-

ice state the system becomes out of equilibrium whereas at the transition from saturated-ice

phase to kagome-ice it remains close to equilibrium. Even though, magnetostriction as a

bulk characterization and the thermal conductivity as a transport characterization are not

easily compared, there seems to be a common cause for the hysteresis, which might be the

explanation above.

Dynamic effects In order to link the known phase diagrams (figs. 4.1 and 4.2) to the

magnetoelastic properties, I finish the with ultrasound measurements by Erfanifam et al.

[19]. They have found interesting dynamical magnetoelastic behavior in Dy2Ti2O7, I com-

ment on later in a separate paragraph, and a first order transition at Hc. The low-field

transition is not observable. In Ho2Ti2O7 no first order transitions are observed in the

ultrasound measurements, instead a broad maximum at 1 T and a broad minimum at 2 T

followed by a steady increase of the ultrasound velocity with higher fields was measured.

Effectively, no difference between the ultrasound velocity at 0.29 K and 1.5 K could be

found.

Dynamic effects in Dy2Ti2O7 were already observed with other measurement techniques:

for instance, as rapid changes of the magnetization called avalanches [84, 85] and transient

changes of the ultrasound velocity [86]. Especially, since the ultrasound measurements

probe the magnetoelastic properties of the system it might be expected to find similar

effects also in magnetostriction measurements. At low temperatures and slow sweep rates,

the dynamic effects in the ultrasound were visible as shark-fin-shaped peaks for Dy2Ti2O7.

These were attributed to avalanches of magnetic monopoles running through the lattice and

releasing heat and raising the temperature. Due to the sensitivity of the ultrasound velocity

on the temperature the heating and cooling were visible in the experiments. However, in
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my dilatometric measurements no such dynamic effects were seen for Dy2Ti2O7 at any

sweep rate. On the one hand, this is probably due to the weak thermal expansion at these

low temperatures, as can be seen in fig. 4.4. On the other hand, the temperature of the

sample was also well fixed because of thermalization with the big mass of the dilatometer

cell. From measurements of the magnetocaloric effect of Dy2Ti2O7 [87] an estimate of

the temperature change of around 0.5 K can be obtained. In any case this does not seem

enough to cause significant thermal expansion.

Difference between upsweep and downsweep thermal expansion Both, Ho2Ti2O7 and

Dy2Ti2O7, show a difference in thermal expansion measurement during increasing and

decreasing temperature. For Dy2Ti2O7, the upsweep and downsweep curves meet at around

0.6 K and are identical above that temperature; for Ho2Ti2O7, the upsweep and downsweep

curves are very different from each other, suggesting dynamics far from equilibrium. In

particular the strong change of the relative expansion at 0.6 K in Ho2Ti2O7 at all fields

hints to the strong spin freezing below that temperature. In the next chapter, I will discuss

this in detail.
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5. Dynamic magnetoelastic properties

of Dy2Ti2O7 and Ho2Ti2O7

In this chapter, I highlight a dynamic effect of the spin ices Dy2Ti2O7 and Ho2Ti2O7 which

I have measured as slow lattice relaxation. Both spin ices, Dy2Ti2O7 and Ho2Ti2O7, were

probed with the field-quench sequences shown in section 3.3. After a quick change of

the magnetic field, the field quench, the lattice changed quickly and then a slow relax-

ation to some equilibrium lattice expansion followed. In section 5.1, these new results for

Dy2Ti2O7 and Ho2Ti2O7 are presented. In view of existing theoretical predictions and

other measurements these results are discussed in section 5.2.

5.1. Results

This section begins with a paragraph showing that lattice relaxations indeed occur in

the spin-ice compounds Dy2Ti2O7 and Ho2Ti2O7. I used sequence A for Dy2Ti2O7 and

sequence B for Ho2Ti2O7 to probe for relaxation effects with similar results. In the following

subsections, I show more details of the relaxation times separately for Dy2Ti2O7 and

Ho2Ti2O7 in sections 5.1.1 and 5.1.2, respectively.

Occurrence of lattice relaxation – Sequence A and B For Dy2Ti2O7, I used sequence

A, stepping the field up and down in steps of 0.5 T and waiting time of 30 or 60 min, to

obtain an overview of the occurrence of lattice-relaxation effects. Typical relaxation data

for Dy2Ti2O7 in longitudinal and transverse geometry are shown in fig. 5.1 for various

temperatures. These plots display the lattice expansion in dependence of time; panel (a)

shows the measurements in longitudinal geometry, panel (b) the ones for the transverse

geometry. The magnetic field was changed from 1.25 T down by 0.5 T and then stabilized

for 30 min at 0.6 K and for 1 h at lower temperatures. The general behavior can be very

well illustrated for the data taken at 0.3 K in fig. 5.1 (a). During the quick field sweep,

the lattice contracts quickly, but after the field reaches its final value and does not change

anymore, the lattice still continues to contract very slowly even after 1 h. In compari-
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son with that, shown in the same panel, the lattice change stops after about 10 min at

0.6 K. The relaxation is slower at lower temperatures. The same trend is also seen in the

transverse-geometry experiment shown in fig. 5.1 (b). The noise level in the transverse

measurement smaller than in the longitudinal geometry because of the sample geometry

with larger width and small thickness (table 3.3) Most of the measurements were performed

in longitudinal geometry which are presented further below.

In the case of Ho2Ti2O7, I used sequence B, sweeping the field up to 2.5 T and stepping

down in steps of 0.5 T and waiting time of 30 or 60 min, to probe the relaxation effects in a

first investigation. An example of the result of such an experiment is displayed in fig. 5.2 for

various temperatures. The figure shows the time dependence of the lattice expansion, after

changing the magnetic field quickly from 1.0 T to 0.5 T similar as in fig. 5.1 for Dy2Ti2O7.

Clearly, a slow relaxation is visible over a period of 60 min at 0.3 K. Compared to the

relaxation at 0.5 K and 0.7 K it is much slower.

In the following subsections, I will explain more details of the results of the relaxation

measurements on Dy2Ti2O7 and Ho2Ti2O7 in subsection 5.1.1 and subsection 5.1.2, re-

spectively.

5.1.1. Results for Dy2Ti2O7

The analysis of the results was done in the following steps. In order to get more insight

into the relaxation effects, I needed some model to fit for the relaxation time. From

the overview measurements it was apparent that some exponential decay law might be

adequate to fit the data, but the exact form is not a priori known. Therefore, I used a

very-long-time relaxation measurement to determine the relaxation law. In subsequent

studies using sequences A-E, described in the experimental section 3.3, I investigated the

relaxation under various conditions.

Very-long-time relaxation In order to get an idea what kind of decay law was adequate

to fit the data best, I performed an experiment with a very long time of over 9 h after

a quick field sweep to monitor the time dependence of the relative length change of the

sample. The field was swept from 1.25 T to 0.75 T at a temperature of 0.3 K; this is shown

in fig. 5.3. Possible models would be a simple exponential decay with one relaxation time,

and a stretched exponential decay:

(∆L/L)(t) = (∆L/L)(t0) + Ae−(t−t0)/τ , (5.1)

(∆L/L)(t) = (∆L/L)(t0) + Ae−((t−t0)/τ)β , (5.2)
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Figure 5.1.: Time dependence of the relative sample length of Dy2Ti2O7 after sweeping the
field quickly from 1.25 to 0.75 T at various temperatures (a) in longitudinal
geometry H‖∆L/L (excerpt of a measurement using sequence B) and (b) in
transverse geometry H ⊥ ∆L/L (excerpt of a measurement using protocol A)

Figure 5.2.: Time dependence of the relative sample length of Ho2Ti2O7 after sweeping the
field quickly from 1 to 0.5 T (excerpt of protocol B).
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Figure 5.3.: Experiment with a long time of monitoring the relaxation after a quick field
sweep from 1.25 to 0.75 T in a measurement using a sequence of type B.

where τ is the relaxation time and β an exponent. For both decay equations, t0 was fixed to

the end of the field change and the curve described with the free parameters (∆L/L)(t0),

A and τ for both equations and additionally β for the stretched exponential fit. The

parameters were found by a least-squares algorithm. In fig. 5.3 the long-time relaxation

data are shown together with a stretched-exponential, a simple exponential describing

the data in the first hour after the field sweep and a simple exponential describing all

the data after the field sweep. It can be seen that the both simple exponentials deviate

significantly from the data either in the beginning or in the end (red and blue curve in

fig. 5.3). A simple exponential decay does not well describe the lattice relaxation and

the relaxation time I extract using this assumption may not be accurate. The next more

complex decay equation is the stretched exponential, where the exponent β is introduced.

This model is motivated by two points: Firstly, the observation that the exponential-decay

fit for 1 h saturates too early and should be stretched over longer times. Secondly, the idea

that the decay of possible excitations in the sample might be obstructed by their mutual

interactions as is put forward by theoretical investigations of the spin-ice model [62, 88].

The parameters of the stretched exponential describing the data best are the exponent

β = 0.4 and a relaxation time τ = 5500 s. Due to the high time consumption only one

very-long-time measurement was done and the other measurements had to be performed

on shorter timescales. I could still get good estimates of the relaxation time τ by fixing β

to the well-determined value of 0.4.
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5.1. Results

Figure 5.4.: Field dependence of the relaxation times of Dy2Ti2O7 in experiments using
sequences A and B at various temperatures.

Figure 5.5.: Temperature dependence of the relaxation times of Dy2Ti2O7 in experiments
using sequences A and B at various fields of 0.5 to 1.25 T.
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Quenches to and within the kagome-ice phase – Sequence A and B Sequence A in

the down-stepping phase and sequence B set the system to the saturated-ice phase in the

beginning and followed by a sweeping the field down in several steps from there. That

means that the relaxation times at 0.5 T and 0.75 T are not reached in one step from the

saturated-ice phase. For the measurements at 0.3 K the waiting time was chosen to 7200 s

(2 h), for 0.38 K and 0.45 K it was waited for 3600 s (1 h) and for 0.6 K only 1800 s (30 min).

I obtained the relaxation times from these sequences by fitting the stretched exponential

function using eq. (5.2) with β = 0.4 (obtained from the very-long-time relaxation experi-

ment) and t0 fixed to the end of the field sweep. The error bars were determined by fixing

τ0 to other values around checking whether the data could be described with another set

of A and ∆L/L(t0) with this new τ0. The difference to the largest tau0 for which this was

possible is the error of τ0. Figure 5.4 shows the field dependence of the relaxation time

of Dy2Ti2O7. A lattice relaxation could not be observed at fields below 0.25 T and above

1.25 T. The longest relaxation times were measured in the field region between 0.5 and

1.0 T and a fast relaxation at 1.25 T. The time scale of the relaxation are hours for 0.3 K

and few minutes at 0.6 K. Relaxation is, therefore, only observed in the kagome-ice region

below the ordered high-field phase, the saturated-ice phase [69, 89].

Figure 5.5 shows the temperature dependence of the relaxation times at those field where

long relaxation times were measured, compare with fig. 5.4. The relaxation times increase

strongly with decreasing temperature for the fields between 0.5 to 1.0 T. Above 0.75 K, no

relaxation could be found. This matches approximately the spin-freezing temperature of

Dy2Ti2O7 0.5 K [63].

Quenches from the saturated-ice phase to kagome-ice phase – Sequence C In an-

other experiment, with quench sequence C, the field was quickly swept down from the

high-field phase at 1.5 T into the spin-ice or kagome-ice phase below 1.2 T. The time-

dependence of the relaxation after the field quench is shown in fig. 5.6. Lattice relaxation

can be clearly seen for fields above and equal to 0.4 T. For the final fields below 0.4 T, the

crystal reaches its equilibrium length at the end of the quench, while for the fields above

0.4 T the crystal contracts after the quench slowly to its new equilibrium length.

The relaxation times τ measured in this experimemnt at 0.3 K and at 0.55 K are shown

in fig. 5.7. In general, τ is much larger at 0.3 K than at 0.55 K in accordance with the

previous measurements. For 0.55 K τ is of the order of 100 s, and For 0.3 K it is 0 below

0.4 T and reaches values of the order of 5000 s above, i.e., much more than one hour. At

1.2 T an accurate estimate of the relaxation is difficult to obtain since the amplitude of
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Figure 5.6.: Time dependence of the relative length change of Dy2Ti2O7 after stabilizing
the field at 1.5 T and then sweeping to a field from 0 to 1.2 T. The curves are
shifted relative to each other.

Figure 5.7.: The field dependence of the relaxation times of the lattice relaxations of
Dy2Ti2O7 shown in fig. 5.6.
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the length change is much smaller compared to, for instance, at 0.8 T. In general, this

experiment gives similar results as were already shown in fig. 5.4.

Quenches within the kagome-ice phase – Sequence D In this experiment, used Se-

quence D, one single field sweep from a chosen initial field by 0.5 T was performed. Fig-

ure 5.8 shows the field dependence of several of these sequences at 0.3 K with initial field of

1.1, 1.3, and 1.5 T. That means, in this experiment I also stabilize the system in the hys-

teretic region of the kagome-ice phase. In the graph, the colored curves are the relaxation

measurements. They are overlaid on a point cloud of the magnetostriction of Dy2Ti2O7

between 0 and 2.5 T during up- and downsweep. The upsweep curves of the slowly swept

magnetostriction measurements and the quickly swept sequences are identical, showing

that the upsweep magnetostriction is independent of the sweep rate. That means that

the time scale of the dynamical processes during upsweep is much faster than the time

scale of the sweep rate of 0.2 T/min. But at the final upsweep field, where the system

is stabilized, the lattice expands slowly after reaching an initial field in the hysteresis, so

there is dynamics with time scales slower than the 0.015 T/min of the magnetostriction

measurement. Sweeping the field down quickly, the relative length changes less than dur-

ing upsweep; in effect, it follows the magnetostriction data during downsweep obtained in

the experiment with slow sweep rate. Finally, the lattice relaxes towards the middle of the

hysteresis. The relaxation time is of the same order as in the previous measurements with

sequence A, B and C.

Small Quench steps – Sequence E In a final experiment using sequence E (sweeping

up and down the field in steps of 0.1 T within 6 s) length changes with similar relaxation

times as with big step sizes were observed. Figure 5.9 displays the slow magnetostriction

measurements at 0.3 K overlaid with a selection of measurements using sequences of type

E with different starting fields. The relaxation was visible in the region from 0.5 T up to

1.4 T in both, upsweep quenches and downsweep quenches. However, the relaxation does

not significantly leave the point cloud of the magnetostriction measurement and enters the

hysteresis only slightly (red curve). In summary, the relaxation effects are observable for

also for small step sizes and the relaxation time does not depend on the step size.

Phase diagram Finally, I assemble the relaxation times of the quench experiments of

sequences A and B (quench steps of 0.5 T) from fig. 5.4 in a phase diagram of temperature

and internal field (corrected for demagnetization effects), fig. 5.10. The internal field

is calculated from the external field and the modeled magnetization via eq. (C.10). In
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Figure 5.8.: Field dependence of the relative length change of Dy2Ti2O7. The points show
the magnetostriction data measured with a slow sweep rate of 0.015 T min−1

at 0.3 K. The lines show the magnetostriction measured at a fast upsweep
rate of 0.2 T min−1 to a field of 1.1, 1.2, and 1.3 T at 0.3 K. Then the field was
swept down by 0.5 T at a rate of 1 T min−1.

Figure 5.9.: Field dependence of the relative lenght change of Dy2Ti2O7 in quench exper-
iments with small quench steps (lines) compared to the slowly swept magne-
tostriction curve (dots). All data were taken at 0.3 K. The line curves show
the magnetostriction curve at a fast upsweep rate of 0.2 T min−1 to the initial
field, then the field is quenched down in steps of 0.1 T at a rate of 1 T min−1:
from 0.2 T to 1 T (black) 0.9 T to 1.3 T down to 0.9 T (red).
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Figure 5.10.: Contour plot of the relaxation time in the phase space of temperature and in-
ternal field µ0H−NM (N is demagnetizing factor and M the magnetization)
with long relaxation times in blue and short relaxation fading to lighter col-
ors. The relaxation times are taken from the quench experiments of sequences
A and B summarized in fig. 5.4. Note the exponential scale of the color scale
from no relaxation in the white regions and increasing relaxation times to
darker blue tones. For comparison, transitions extracted from specific-heat
and magnetization data [69] are included as dashed line.

comparison with the phase diagram, fig. 4.1, extracted from specific heat and magnetization

data [69], it can be seen that the lattice relaxation are observed below the transition from

kagome-ice to saturated-ice phase (dashed line). The region of measureable relaxation

times extends to a maximal temperature of around 0.65 K, the spin freezing themperature

[90]; at higher temperatures no relaxation was observed. The longest relaxation times are

found in the kagome-ice phase at low temperatures.

Summary of the results of the relaxation times I summarize the data with the following

bullet points:

• The lattice relaxation follows a stretched-exponential law.

• The relaxation is seen in longitudinal and transverse magnetostriction.

• The relaxation is only seen in the region of the spin-ice and kagome-ice phase.

• The relaxation time is strongly temperature dependent and is not observed above

the spin-freezing temperature of 0.65 K.
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In the next section the results obtained for relaxation measurements at Ho2Ti2O7 are

described.

5.1.2. Results for Ho2Ti2O7

In order to prove that Ho2Ti2O7 shows relaxation effects similar to Dy2Ti2O7 I conducted

experiments with quench sequences of type A and B. The sequence A was employed as

explained in section 3.3 and for sequence B the step size was chosen as 0.25 T instead of

0.1 T. In the beginning of this chapter, in fig. 5.2, I show that the lattice of Ho2Ti2O7 indeed

relaxes with long relaxation times after fast field sweeps. The curves at low temperatures

and low fields can be fit with the stretched-exponential function, used also for the relaxation

of Dy2Ti2O7, eq. (5.2).

Kinks in the measurement At the lowest temperatures of 0.3 K in various fields the

relaxation starts out quickly until there is a change of the relaxation time to higher values,

i.e., slower relaxation, seen as a kink in the curve, fig. 5.11; a similar behavior is also seen

at 0.4 and 0.5 K. The occurrence of this feature at several temperatures and various fields

suggests that it is connected to some intrinsic effect and dynamics. However, the kink does

not always happen at the same time after a quench for one specific temperature, as seen for

example in fig. 5.11 for 0.3 K at 0.75 T. There is a trend that the change of the relaxation

time happens earlier for higher temperatures, but this is not a strict rule as can be seen at

0.75 T for the two curves measured at 0.3 K having a kink earlier or later than the curve at

0.4 K. These features probably appear at all temperatures; but for higher temperatures it

can happen already during the field quench so that it is not observable. The slowing down

of the dynamics at the kink may be attributed to pinning of monopoles to defects in the

lattice that act as pinning centers as discussed in [91]. A direct consequence of these kink

features is that they make it difficult to obtain accurate estimates of the relaxation time

and especially the values extracted from the measurements at 0.3 K are probably too low.

Relaxation times For the analysis of the lattice relaxation, I fixed t0 and extracted τ

and β just as for Dy2Ti2O7. In general, the best fit value of β is about 0.5; for a better

comparison of the relaxation times, I fixed β to exactly 0.5 and fit the other parameters.

However, for the short relaxation times at high temperatures or at high fields a simple

exponential-decay equation can also describe the data. A simple exponential-decay equa-

tion is the limit of the stretched-exponential decay with β = 1. In an investigation of

the magnetization dynamics, an increase of β with temperature from 0.65 at 0.6 K to 1 at
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Figure 5.11.: Time-dependence of the relative length change after a quick field sweep down
to fields of 0.5, 0.75, 1 and 2 T, either in an experiment using sequence A or
B specified in the parentheses. Change of the relaxation times are seen as
kinks in the curves and marked by arrows. The curves are offset with respect
to each other.

Figure 5.12.: Lattice relaxation times of Ho2Ti2O7 in quench protocol A in dependence of
the temperature after quenching down to fields of 0.5 to 1.25 T in a step of
0.5 T.
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0.9 K was found [92]. In my dilatometric measurements, the data do not admit to confirm

the values of β given in the magnetization measurements.

The temperature-dependence of the relaxation time is shown in fig. 5.12. The typical

time scale of the relaxation changes from hours (more than 3600 s) at temperatures below

0.5 K to 600 s (10 min) at 0.7 K and to around 60 s (1 min) and shorter at 1.1 and 1.5 K.

Highest relaxation times were found for fields between 0.5 T and 1.25 T As explained above

the estimation of the relaxation times at 0.3 K and 0.4 K is especially difficult, because

of the kink feature where the relaxation time changes. The relaxation time is strongly

temperature dependent and decreases with increasing temperature.

Figure 5.13 shows the field-dependence of the relaxation time of Ho2Ti2O7 measured

after fast field reductions in steps of 0.5 T per step using the quench protocol A. The

relaxation time increases from 0 to 0.75 T and decreases again with higher fields until

no relaxation with exponent β = 0.5 is seen at fields above 1.75 T. In summary, long

relaxation times are found in the kagome-ice and spin-ice phase similar as for Dy2Ti2O7.

Measurements of the relaxation timeof Ho2Ti2O7 with a smaller step size of of the fast

field sweeps of 0.25 T show similar results as for steps of 0.5 T showing the robustness of

the result.

Phase diagram Figure 5.14 summarizes the relaxation times from figs. 5.12 and 5.13

and additional data sets not shown there in a phase diagram of temperature and internal

field (demagnetization effects taken into account). The region where long relaxation times

are observed was below 0.8 K and below an internal field of 1.5 T. This is the region of

the kagome-ice and spin-ice phase with 2-in-2-out configurations. The region of where a

relaxation is observed reaches to higher magnetic fields than for Dy2Ti2O7, compare with

fig. 5.10. This is consistent with the higher critical field for the transition from the kagome-

ice to the saturated-ice phase [68] and signifies the larger magnetic interactions between

the rare-earth ions.

Summary I would like to summarize the data for Ho2Ti2O7 as I did for Dy2Ti2O7. Lattice

relaxation after fast field sweeps could be found in the low temperature regime below 0.8 K.

The relaxation is strongly temperature-dependent with longer relaxation times at lower

temperatures and highest at around 0.75 T; this corresponds with the kagome-ice phase.

Additional features in the relaxation were found as kinks where the relaxation drastically

changed its relaxation time. However, this effect is not exactly reproducible and happens

after an unpredictable time interval after the field sweep. These time intervals are usually

longer for lower temperatures.
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Figure 5.13.: Lattice relaxation times of Ho2Ti2O7 in quench protocol A in the quenching
down by 0.5 T.

Figure 5.14.: Contour plot of the relaxation time of Ho2Ti2O7 in the phase space of temper-
ature T and internal field µ0H −NM (with N the demagnetizing factor and
M the magnetization). The relaxation times are taken from the relaxation
experiments using the sequence A shown in fig. 5.13 and additional data sets.
Note the exponential scale of the color scale from no relaxation in the white
regions and increasing relaxation times to darker blue tones. The transition
to the saturated-ice state observed in the magnetization data published in
[68] is included in the graph, as well.
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Possible parasitic thermal effects In view of the absence of publications on lattice

relaxation effects I discuss possible parasitic effects that could look like intrinsic effects

but are actually wrong measurements. At first, I consider thermal effects that either

heat or cool the sample and the relaxation would just be the thermal expansion during

an exponential creep to the equilibrium temperature. The temperature change might be

due to some effect of the TDC. Therefore, I checked in additional measurements whether

the empty cell would show relaxation effects. This was not the case. Consequently, the

relaxation is an effect of the combination of the sample and the cell. Another spurrious

effect would be that the cell and the sample might change temperature during the quench

experiment and expand or contract thermally. This might be due to eddy currents in the

dilatometer cell caused by the fast change of the magnetic flux increasing its temperature in

fast down and upsweep alike. I would expect ∆L/L to be positive and always a relaxation

to shorter lengths. This is not what I observed. A last mechanism might be heating or

cooling of the sample due to adiabatic demagnetization. The temperature would increase

at upsweep and decrease at downsweep [87, 93]. However, such an effect is not likely since

the sample is in good thermal contact with the dilatometer cell and should hardly change

temperature. Therefore, I exclude that the observed relaxation is caused by thermal effects

of the sample.

Possible parasitic torque effects In the appendix I discuss the possibility of torque act-

ing on the sample if the field is not properly aligned along the [1 1 1] axis. In this case,

the relaxation effects would rather be a measurement of the magnetic torque rotating the

sample, which would appear as relative length change. The measurement results would be

related to the anisotropic magnetization of the sample, instead of an intrinsic magnetoelas-

tic property. I exclude, this for two reasons. First, I made a control measurement with the

sample tightly glued to the screw fixing the sample in the TDC. Since the screw does not

move with respect to the frame of the TDC which itself does not move with respect to the

magnetic field, the the sample also is fixed relative to the magnetic field. This suppresses

the rotation of the sample due to torque. I measured the same lattice relaxation effets

as without gluing the sample, which is evidence for the relaxation being a real magnetoe-

lastic effect. Secondly, the rotation of the sample would appear as an unphysical large

magnetostrictive effect in the order of several percent, instead of 10−5 as was measured.

Therefore, the relaxation effects I observed are indeed intrinsic magnetoelastic effects.
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Dynamics of the spin ices The dynamic behavior in spin ice has been modeled in theory

with the dynamics of the monopole excitations of 3-in-1-out tetrahedra in the ground state

configuration of 2-in-2-out tetrahedra [61, 62]. An increase of the time scales of these

dynamics has been found in these simulations. Likewise, the increase of the time scale of

the internal dynamics has been observed in several different measurements on spin ice such

as ac susceptibility [64, 90, 94–102], magnetization [85, 96, 103], magnetocaloric effect [87],

ultrasound velocity [86], thermal conductivity [82] and heat capacity [104]. All of these

methods show slow dynamics at temperatures below 1 K in the same order of magnitude

as the lattice relaxation and have probably the same origin. It should be noted, that my

method can probe especially well the kagome-ice phase where magnetization measurements

would not see any change and, hence, no relaxation. Thermal quench experiments, where

the temperature should be reduced quickly at zero field from above 1 K to below 0.5 K are

experimentally challenging and are not likely to show dynamic effects because the thermal

expansion is too weak at zero field. Theoretical studies on the monopole dynamics have

been conducted for such thermal quenches [61]. In conclusion, the field quench experiments

are the most elegant way to observe lattice dynamics in the spin-ice compounds and connect

them to the monopole dynamics.

Origin of the slow dynamics The slow dynamics seen in various methods that use chang-

ing fields, such as ac susceptibility, magnetization or my dilatometric experiments are

connected to the slow monopole annihilation dynamics after fast field sweeps [62]. The

microscopic picture is that monopole-antimonopole pairs (3-in-1-out and 1-in-3-out config-

urations) on neighboring tetrahedra form stable bound pairs, that can neither annihilate

nor move away from each other due to mutual interaction. Therefore, the monopole mo-

bility or spin-flip rate is reduced. Consequently, the probability of the annihilation of

monopoles is suppressed and it takes a long time for this process to happen. Additionally,

monopole movement (spin flips) might be suppressed at defect sites of the lattice slowing

down the intrinsic dynamics [91]; this was used to explain the difference between the long-

time thermal relaxation in specific-heat measurements of the authors of [104] and their

absence in measurements of other groups [105, 106].
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properties of spin-ice studied via

silicon substitution in Dy2Ge2-xSixO7

In this chapter, I present a study of the influence of partially substituting the ion on the B

site by a second ion. The parent compound investigated is Dy2Ge2O7 and the substitution

study is made with Si on the B site. The general idea behind this investigation is that by

changing the lattice parameter a variation of the magnetic interactions in the pyrochlore

might lead to another ground state than the spin-ice state or to a spin-ice ground state

with different interactions between monopole excitations. The synthesis of pyrochlores

with only Si on the B site is beyond the technical feasibility with state-of-the-art methods

and may not be possible at all. Therefore, only partial substitution of SI on the B site is

possible with the downside of introducing lattice disorder into the system.

This chapter reproduces the current status of a manuscript accessible on a preprint

server [31] and submitted for publication; it is organized as follows. In section 6.1 I give

more details on the background and motivation of this study building on the foundations

given in section 3.2 in Part I. Then, I give the details of the experimental setup and the

samples in section 6.2. Finally the results are presented in section 6.3 and discussed in

section 6.4.

6.1. Background: Substitution dependence of the

magnetic interactions

Lattice dependence of the effective nearest-neighbor interaction In the spin-ice com-

pounds the main interactions between nearest-neighbor ions is the exchange interaction

and the dipolar interaction. The exchange interaction between nearest-neighbor Dy3+ ions

is conveyed via superexchange over oxygen. This superexchange depends strongly on the

overlap of orbitals and, therefore, on the distance between ions. Hence, there is a strong
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dependence of the nearest-neighbor exchange constant Jnn on the lattice parameter. Like-

wise, the dipolar interaction between nearest neighbor Dy3+ is also strongly dependent

on the lattice parameter, although differently than Jnn, as shown in eq. (3.13). Thus,

reducing the distance between the Dy ions changes the relative strengths of the dipolar

versus the exchange interactions, Dnn and Jnn, respectively. The total effective interaction

Jeff = Dnn +Jnn is reduced shifting the compound closer to the phase boundary separating

the spin-ice and AFM phase in the dipolar spin-ice model [54], see fig. 6.1. This principal

phase diagram was proven experimentally by substituting the Ti on the B site of Dy2Ti2O7

with a different ion with smaller or larger ionic radius, namely Ge or Sn, respectively [30].

Stability of the pyrochlore lattice As was pointed out in section 3.2, there is a limited

region of stability for combinations of B site ions with Dy on the A site [28]. At ambient

pressure, stable pyrochlores can be realized for ratios 1.36 < ra/rb < 1.71 [6]. For com-

parison, the ratio of the ionic radii for Dy3+ on the A site and Ti4+, Ge4+, and Si4+ on

the B site are 1.70, 1.94, and 2.57, respectively. Under high hydrostatic pressure during

synthesis, the stability range can be extended towards smaller rb and also Dy2Ge2O7 can

be synthesized. The resulting pyrochlores persist metastable also under ambient pressure

conditions. The next challenge is to synthesize a material with an even smaller B-site ion

than Ge, such as Si. However, to grow such a pyrochlore would need pressures beyond

what is currently possible technologically. Therefore, only partial substitution of Si for Ge

has been achieved; at the same time as reducing the lattice constant of the compound,

also disorder is introduced.

Lattice disorder While disorder is well discussed in terms of order-by-disorder effects

in connection to quantum-spin-ice candidates [107], disorder in the spin-ice pyrochlores

is discussed in view of slow monopole dynamics [88, 108] or the absence of the residual

Pauling entropy [106]. Importantly, various kinds of lattice defects [109] should be taken

into account when dealing with these compounds, such as vacancies (particularly of oxygen

[108]) and stuffing, i.e., inserting A site ions on the B site [110–112]. Specifically, stuffing

would induce magnetic ions on the nonmagnetic B-site sublattice; likewise, oxygen vacan-

cies would change the oxidation states of neighboring ions changing their magnetic state.

Disorder reduces the symmetry and, therefore, influences the crystal electric field pertur-

batively, possibly introducing transverse exchange couplings and increasing the quantum

character of the spin-ice ground state.
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Sample preparation and quality Polycrystalline Dy germanate, Dy2Ge2O7, and poly-

crystalline silicone-substituted Dy2Ge2-xSixO7 samples with x = 0.02, 0.08, and 0.125 were

synthesized by Mathis Antlauf, TU Bergakademie Freiberg, similar as described previously

[29, 113]. He confirmed the phase purity via SEM/EDX analysis (Carl Zeiss LEO 1530)

for all samples and via x-ray powder diffraction at the ALBA synchrotron light source in

Barcelona, Spain, for Dy2Ge2O7 and by using a Seifert diffractometer (FPM URD6) in sym-

metric Bragg-Brentano-Geometry with Cu anode for Dy2Ge2-xSixO7 with x = 0.02, 0.08

and 0.125. The sintered polycrystals are of dark to light-gray color, as fig. 6.2 shows for

the crystal with x = 0.02.

The determination of the crystal quality was also done by Mathis Antlauf. The diffrac-

tion data of unsubstituted Dy germanate confirmed the cubic pyrochlore structure (Fd3̄m,

227) with a lattice constant of a = 9.930 Å, which is in excellent agreement with the

literature data (a = 9.929 Å [29]). Rietveld refinements show that the pyrochlore struc-

ture can well describe the diffraction patterns of Dy2Ge1.98Si0.02O7, Dy2Ge1.92Si0.08O7 and

Dy2Ge1.875Si0.125O7 (the latter is shown in fig. 6.3) with lattice constants a = 9.924 Å,

9.912 Å and 9.906 Å, respectively. For these samples, the best fit was achieved by assum-

ing a statistical substitution of Ge with Si on the B site of the pyrochlore structure with

exactly the Si concentration of the starting-material mixtures. In particular, Si is not in-

terstitially incorporated into the crystal. There were no signs for chemical inhomogeneities

or additional phases in XRD or SEM investigations (fig. 6.3).

Magnetic and thermodynamic measurements of Dy2Ge2-xSixO7 I performed magne-

tization measurements of all Dy2Ge2-xSixO7 using a commercial SQUID magnetometer

(MPMS) and a vibrating-sample magnetometer in magnetic fields up to 7 T. Magnetic

ac-susceptibility measurements were performed by Tino Gottschall and Jacob Hornung

(Dresden High-Magnetic-Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf) in

a compensated coil-pair susceptometer at frequencies ranging from 4 to 1293 Hz down

to a temperature of 0.3 K using a commercial 3He system. The temperature was mea-

sured with a RuO2 resistance thermometer for the ac-susceptibility measurements. The

heat capacity of Dy2Ge2O7 and Dy2Ge1.875Si0.125O7 was measured by Tino Gottschall

and Jonas Gronemann (Dresden High-Magnetic-Field Laboratory, Helmholtz-Zentrum

Dresden-Rossendorf) in a 3He sorb-pumped cryostat using the relaxation-time method

and a carefully calibrated RuO2 thermometer.
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Figure 6.1.: Phase diagram of the dipolar spin-ice model including the positions of several
spin-ice compounds and the phase boundaries of the antiferromagnetic (AFM)
and the spin-ice phase. Literature values are shown as open circles, filled sym-
bols stand for the samples from this work. Jnn and Dnn denote the exchange
and dipolar interaction between nearest neighbors, respectively. Tpeak denotes
the temperature of the peak in the heat capacity associated with the spin-ice
phase (adapted from Zhou et al. [30]).

Figure 6.2.: Dy2Ge2-xSixO7 sample with x = 0.02 synthesized by Mathis Antlauf.
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Magnetization In fig. 6.4, the magnetization per Dy ion of the sample series is shown as

a function of magnetic field measured at 5 K and consistent with the literature data of the

analogue compound Dy2Ti2O7 [114]. The field dependence of the magnetization is well

described by a powder-averaged Boltzmann distribution of non-interacting paramagnetic

Ising spins (dash-dotted curve) resulting in a magnetic moment of 5 µB at saturation while

the Heisenberg model (no anisotropy) or the case of XY anisotropy would result in a mag-

netization much larger than measured. It should be noted that the magnetization values at

the maximum field do not systematically depend on the Si concentration. The deviations

can be attributed to the use of polycrystalline samples which, due to the growing process,

may contain a degree of texture which is not visible in the diffractograms. However, the

low scattering of the measuring points shows the accuracy of the magnetization measure-

ments. For the calculation of the Dnn the value of 10µB for the free moment was used.

The Curie-Weiss temperature θCW of our Dy2Ge2O7 sample is close to zero and consistent

with the literature value[30]; the difference of θCW of the Si containing samples compared

to Dy2Ge2O7 is within the accuracy of the measurement of approximately ±0.5 K.

ac susceptibility To detect distinct differences, we will focus our investigation for the

remainder of this article on pure Dy germanate and the sample with the highest Si sub-

stitution, Dy2Ge1.875Si0.125O7. Figure 6.5(a) shows the real (χ′) and imaginary part (χ′′)

of the ac susceptibility of the substituted and unsubstituted sample for three exemplary

frequencies. The distinct frequency dependence is visible especially in χ′′. Both samples

show sharp maxima which shift towards higher temperatures and smear out continuously

at higher frequencies. At 16 Hz, Dy2Ge1.875Si0.125O7 has a peak temperature of 580 mK be-

ing about 50 mK lower than for Dy2Ge2O7. Furthermore, it is observed that the increase

of the peak temperature at higher frequencies is much less pronounced in the substituted

compound. Demagnetization effects should not influence our following qualitative discus-

sion, even though they can cause deviations of the measured susceptibility, for the absolute

values as well as for the peak positions[97, 102]. They should cause similar changes for

the equally shaped Dy2Ge2O7 and Dy2Ge1.875Si0.125O7 samples; however, an analytical

determination of the demagnetization factor for our disc-shaped samples is not possible.

Based on the ac-susceptibility results, the spin dynamics can be investigated further.

At the peak temperature TP of the imaginary part χ′′ at a given attempt frequency f , the

spin-relaxation time τ is related to f via τ = 1/2πf . In fig. 6.5(b), the spin-relaxation

time is plotted vs. the inverse of the temperature TP. Dy2Ge2O7 has two linear regions;

87



6. Effects of the lattice on the magnetic properties of spin-ice studied via silicon

substitution in Dy2Ge2-xSixO7

Figure 6.3.: Powder-diffraction pattern and Rietveld-difference plot for Dy2Ge2-xSixO7 with
x = 0.125, fitted for this stoichiometry. Inset: SEM micrograph of the polished
sample surface, revealing crystallite sizes of up to approximately 15 µm.

Figure 6.4.: Field dependence of the magnetization per dysprosium ion of Dy2Ge2-xSixO7

with x = 0, 0.02, 0.08 and 0.125 at a temperature of 5 K. The symbols are
measured values and the dash-dotted lines correspond to the powder-averaged
Boltzmann distribution of spin-half spins with Ising anisotropy, XY anisotropy,
and with no anisotropy, respectively.
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Figure 6.5.: (a) Real and imaginary part of the ac susceptibility χ′ and χ′′ of Dy2Ge2O7

(black) and Dy2Ge1.875Si0.125O7 (red) at frequencies of 16 (solid), 270 (dashed),
and 770 Hz (dash-dotted). (b) Spin-relaxation time τ = (2πf)−1 as a function
of the inverse peak temperature TP . Fits using the Arrhenius law with their
respective energy barriers ∆ are shown as dashed lines.

a high-temperature region above about 0.8 K that is less steep than the low-temperature

region. In Dy2Ge1.875Si0.125O7 only one slope is found below 1 K. We focus our discussion

on the low temperature region. At low measurement frequencies, the relaxation times seem

to follow an Arrhenius law (dashed lines in fig. 6.5(b)):

τ(TP) = τ0 exp(
∆

kBTP

) . (6.1)

The energy barriers ∆ used to fit the data change only little, from 6.8(2) K to 6.70(5) K,

due to the partial substitution of Ge by Si. Instead, the shift of the peak positions of χ′′

from Dy2Ge2O7 to Dy2Ge1.875Si0.125O7 mainly result in a change of the pre-exponential

factor τ0 from 250(50) ns to 90(10) ns due to the Si substitution. This pre-exponential

factor is attributed to the spin-tunneling rate between the two Ising states and should

be determined by the systems CEF level scheme and the transverse fields acting on the

flipping spin[60, 115]. The reduction of τ0 with substitution of Ge by Si is not surprising,

as it decreases also with decreasing lattice constant from Dy2Sn2O7 to Dy2Ti2O7[116].
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Due to the similar shape of the samples, demagnetization effects are unlikely to alter the

qualitative observation of a reduction of the pre-exponential factor from Dy2Ge2O7 to

Dy2Ge1.875Si0.125O7.

Apart from the influence of the mere lattice contraction, however, the random distribu-

tion of SI and Ge on the B site may contribute to this reduction. Possibly, the lowering of

the local site symmetry influences the Ising character of the single ion inducing transverse

exchange coupling[50] as perturbation of the dominant Ising interaction. Such transverse

exchange coupling might reduce τ0 as proposed in other rare-earth compounds with spin-ice

character[117].

Specific heat measurements The magnetic specific heat cmag of Dy2Ge2O7 and the Si-

subsituted sample, Dy2Ge1.875Si0.125O7, in external fields up to 4 T is shown in fig. 6.6.

The unsubstituted sample has a peak in the heat capacity at a temperature of 0.84(1) K,

determined by a phenomenological fit, whereas the substituted compound has a slightly

reduced peak position of 0.80(1) K and an increased peak height. Since this work deals

with polycrystalline samples, as does Ref. [30], the peak height can be influenced by factors

both in production and measurement. However, a rise of the peak height in the substituted

sample fits into the picture of a smaller Jnn/Dnn [54].

This Schottky-like peak is associated to spin-freezing and establishment of the spin-ice

state[57]. Even though the peak temperature is shifted only by a small amount, it is

a strong hint that the substitution of Si leads to a shift towards the boundary between

spin-ice and AFM phase in the phase diagram (fig. 6.1). At temperatures above the peak

position, both compounds show almost the same specific heat; above 10 K the phononic

contribution becomes dominant. Measurements up to 30 K are used to determine this

contribution in order to extrapolate it to the low-temperature specific heat. The magnetic

specific heat is the total specific heat minus the phononic contribution. The feature in the

specific heat of Dy2Ge1.875Si0.125O7 at about 3 K could indicate the possible presence of a

minority phase that was not visible in the XRD studies. Furthermore, a broadening of

the specific-heat peak of the substituted material towards lower temperatures compared to

Dy2Ge2O7 can be seen. However, in an ideal spin-ice with smaller Jnn/Dnn than Dy2Ge2O7

we would rather expect a narrowing of the specific-heat peak[54]. The origin for this

broadening could be related to the random occupation of the Si and Ge atoms on the B

site altering the bond environments. A distribution of bond environments might result in

a distribution of exchange constants broadening the Schottky-like specific-heat peak.

In magnetic fields, the peak in the specific heat is broadened and shifted to higher

temperatures compared to zero field which is an expected behavior for this anomaly [57,
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Table 6.1.: Lattice parameters and selected magnetic parameters to insert Dy2Ge2O7 and
Dy2Ge1.875Si0.125O7 in the phase diagram (fig. 6.1).

x a Dnn cmag(Tpeak) Tpeak Jnn/Dnn Jeff

(Å) (K) (J mol−1
Dy K−1) (K) (K)

0 9.930 2.40 3.02 0.84 -0.71 0.69
0.125 9.906 2.42 3.07 0.80 -0.74 0.63

118, 119]. The additional features that arise in field are also observed in Ref. [57] and may

be attributed to the polycrystalline nature of the samples[119]. Additional explanations

are given in Ref. [120] by simulation methods. A definite conclusion could only be drawn

with data obtained from single crystals.

The magnetic entropy was calculated from cmag/T by integrating downwards from the

temperature at which the curves with and without field overlap and fixing the plateaus at

this value. The entropy data of Dy2Ge2O7 and Dy2Ge1.875Si0.125O7 at zero field, 1, 2 and

4 T are compared in fig. 6.7. The magnetic entropy of Dy2Ge2O7 and Dy2Ge1.875Si0.125O7

shows a similar functional behavior. In external magnetic fields of 1 T and higher, the

entropy of the ground state is recovered (fig. 6.7). This behavior in an external field is

typical for a spin-ice [52, 57, 119] since the external magnetic field lifts the degeneracy of the

ground state. The value of the ground-state entropy with 1.62 J mol−1
Dy K−1 (unsubstituted)

and 1.31 J mol−1
Dy K−1 falls somewhat short of the Pauling entropy of 1.69 J mol−1

Dy K−1 of

the ideal spin ice on a perfect crystal. The same arguments as for the peak height and

width apply for this reduction, as well.

To place the new material in the phase diagram, we determined cmag and Tpeak from

fig. 6.6 and calculated the other values in table 6.1 as explained in the following. We

determined the dipolar interaction constant by the common estimation:

Dnn =
5

3

µ0

4π

g2µ2

r3
nn

, (6.2)

with the moment assumed from the theoretical value of gµ = 10µB and rnn =
√

2a/4

(a lattice constant) being the distance between two Dy3+ ions. Here, we used the lattice

constants determined at 300 K from the x-ray diffractograms to be consistent with other

publications[30, 121]. Measurements of the thermal expansion of singlecrystalline samples

of the isostructural compounds Dy2Ti2O7 and Ho2Ti2O7 down to low temperatures of

about 1 K confirm that the assumed relations are largely retained, . The reduction of

the lattice constant of the Si-substituted sample, thus, leads to a slight increase of Dnn

from 2.40 to 2.42 K. However, the increase of the strength of the exchange interaction,
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Figure 6.6.: Temperature dependence of the magnetic specific heat cmag per mole Dy of
the Dy2Ge2O7 and Dy2Ge1.875Si0.125O7 samples in black and red symbols, re-
spectively. The zero-field data is marked by full symbols and the data at 1, 2
and 4 T by empty symbols. Specific heat data for Dy2Ge2O7 from Zhou et al.
[30] (blue) have been included for comparison.

Figure 6.7.: Temperature dependence of the molar entropy of Dy2Ge2O7 (black) and
Dy2Ge1.875Si0.125O7 (red) at zero field (filled) and 1, 2 and 4 T (empty).
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Jnn, is more pronounced. Following the approach firstly described byden Hertog and

Gingras [54] for Dy2Ti2O7 and Ho2Ti2O7 and used in several publications[30, 52] for Dy

and Ho pyrochlores including Dy2Ge2O7 and Ho2Ge2O7, Jnn can be graphically determined

on the Tpeak/Dnn-Jnn/Dnn line in the phase diagram (fig. 6.1) as the intersection of the

phase boundary between spin-ice and paramagnetic phase and the horizontal line with a

specific ratio Tpeak/Dnn. An increase of Jnn by 5 % from −1.70(5) K to −1.79(5) K can

be found. Therefore, the strength of the effective interaction Jeff = Dnn + Jnn is reduced

from 0.69(3) K to 0.63(3) K by about 10 %. The reduction of the effective interaction is

consistent with the reduced energy scale of the monopole excitation as seen in the ac

susceptibility data (fig. 6.5). We find that the activation energy ∆ ≈ −9Jeff agrees well

with previous measurements on Dy2Ti2O7 with ∆Dy2Ti2O7
≈ −8.9Jeff [96, 97].

The value of Jnn can also be obtained from comparison of the value of specific-heat peak

cpeak at the peak temperature with theoretical calculations[54]. The experimental value of

cpeak is around 10 % lower than would be expected from theory for an ideal spin-ice with

Jnn/Dnn = −0.71 or −0.74 obtained above, which might be due to crystal imperfections.

However, it is consistent with the value of previous measurements of the peak height of

Dy2Ge2O7[30].

After careful consideration of Ref. [30], we come to the conclusion that the positioning of

Dy2Ge2O7 in the phase diagram (table 6.1) of that work is at the lower end of the possible

region. While obtaining a similar value of Tpeak they use a slightly higher value of Dnn. The

fact that our Dy2Ge1.875Si0.125O7 sample has a lower Jnn/Dnn than our Dy2Ge2O7 as well

as the sample investigated in Ref. [30] proves that the reduction of the effective interaction

in this compound is significant.

6.4. Discussion

From these data, three conclusions are drawn.

Spin-ice characteristics of Dy2Ge2-xSixO7: The XRD data show the high quality of

the materials and confirm the pyrochlore structure with the Dy3+ ions at the A site and

randomly distributed Ge and Si at the B site. The magnetization data are close to the

expected curve of the powder-averaged paramagnetic Ising spins providing evidence for

the Ising nature of the moments of the Dy3+ ions due to the strong crystal electric field

also observed in other spin-ice pyrochlores[40]. The shape of the temperature-dependent

ac susceptibility of Si-substituted Dy germanate resembles the ac susceptibility of the base

compound and the well-studied spin-ice materials Dy2Ti2O7 [94] and Dy2Sn2O7 [122].
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However, a substantial difference in the frequency dependence could be identified, which

originates in a reduction of τ0. The specific heats of Dy2Ge2O7 and Dy2Ge1.875Si0.125O7

have a similar shape at low temperatures also in accordance with previous measurements

of the specific heat of the classical spin ices Dy2Ti2O7 [123] and Ho2Ti2O7 [70]. An-

other evidence for Dy2Ge1.875Si0.125O7 having spin-ice character is the residual entropy we

observed. However, the residual entropy of Dy2Ge1.875Si0.125O7 is reduced compared to

the Pauling entropy of the ideal spin-ice, possibly a side effect of the random distribu-

tion of Si and Ge on the B site of the pyrochlore lattice. In conclusion, the Dy2Ge2O7

and Dy2Ge1.875Si0.125O7 samples, representing Dy2Ge2-xSixO7, share several characteristic

properties that are common among spin-ice materials.

Reduction of the effective nearest-neighbor interaction by 10 %: Zhou et al. [30] have

found that substituting ions with smaller ionic radius on the B site of the Dy-pyrochlores

Dy2Sn2O7 and Dy2Ti2O7 reduces the peak temperature of the magnetic specific heat.

The authors linked this to a reduction of the effective interaction due to the reduction of

the distance between neighboring Dy3+ ions using the Tpeak/Dnn-Jnn/Dnn phase diagram

of the dipolar-spin-ice model[54]. Our XRD measurements confirm the reduced lattice

constants in Dy2Ge2O7 compared to Dy2Ti2O7[30]. The Si-substituted samples continue

this trend towards a reduction of the lattice constants and the peak temperatures in the

specific heat as well as in the ac susceptibility. Therefore, we argue, that in Dy2Ge2-xSixO7

the competing dipolar and exchange interactions are even further increased compared to

Dy2Ge2O7. Since the increase of the exchange interaction is stronger than the increase of

the dipolar interaction, the total effective interaction is reduced compared to Dy2Ge2O7.

Influence of disorder on the spin-ice character A thorough study of the effects of dis-

order on the B site of the spin-ice pyrochlores is not possible with the samples in this

paper. But still, the currently highly discussed influence of a stoichiometric or crystallo-

graphic disorder can be considered. It is known[124–126] that strong modification of the

regular structure can lead to the elimination of frustration, the formation of magnetically

ordered clusters or the loss of the Ising character in pyrochlore compounds. Quantum fluc-

tuations can then have an increased effect and weaken the spin-ice character. Although

the distribution in the Ge/Si system is random (could be checked by synchrotrons), the

low Si content does not seem to be sufficient to eliminate the magnetic frustration in the

Dy sublattice. Averaging over microscopically different areas mostly recovers the spin-ice

properties of the system.
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The concept of magnetic frustration is fundamental in modern solid-state physics having

direct consequences in magnetically frustrated systems with rich magnetic phases hosting

emergent excitations, such as the magnetic monopoles in the spin-ice systems. One impor-

tant ingredient of frustration is the lattice that constrains the magnetic spins on it to a site

anisotropy and inter-site coupling. Therefore, strong interactions between the magnetic

system and the lattice are to be expected and investigating these interactions promises

deeper insight into the mechanisms governing the physics of frustrated materials.

In this thesis, I have explained the causes of the strong frustration in some pyrochlore

compounds with general formula A2B2O7, and in particular the much investigated rare-

earth titanate pyrochlores R2Ti2O7. It is the interplay of strong axial anisotropy of the

ground state of the rare-earth ions, in particular for A = Dy and Ho, that is subjected to

the strong crystal-electric field on the A site of the compound and the geometric constraints

of the pyrochlore lattice of corner-sharing tetrahedra. Two of the most prominent examples

of frustrated magnets in this class of materials are the spin-ice pyrochlores Dy2Ti2O7 and

Ho2Ti2O7 These two compounds do not order down to lowest temperatures and are, thus,

strongly frustrated. They host a highly degenerate magnetic ground state reminiscent

of the structure of water ice, called spin ice, and the excitations on top of this ground

state can be interpreted as magnetic monopoles. The term magnetic monopole is justified

because between two such monopoles there is a Coulombic interaction repelling monopoles

with the same charge and attracts monopoles with opposite charges.

My main contribution to the current research of the geometrically frustrated magnets

is the study of the spin-lattice interaction in the classical spin-ice materials Dy2Ti2O7 and

Ho2Ti2O7. In the case of the Dy2Ti2O7 and Ho2Ti2O7, I have investigated the dependence

of the lattice on the magnetic order varied by means of an external magnetic field by

dilatometric measurements with single crystals of the two compounds. Moreover, with

fast-field-sweep procedures the out-of-equilibrium dynamics of the spin-ice, kagome-ice

and saturated-ice phase were probed.

In the dilatometric study of the classical spin-ice compounds I have obtained the follow-

ing new insights. In terms of the magnetostriction and thermal expansion Dy2Ti2O7 and

Ho2Ti2O7 show qualitatively similar behavior, that seems to be independent of the Kramer

or non-Kramers character of Dy2Ti2O7 and Ho2Ti2O7, respectively. The magnitude of the

magnetostrictive effect deep in the spin-ice phase at 0.3 K is ∆L/L = 2× 10−5 and 2× 10−4

for Dy2Ti2O7 and Ho2Ti2O7, respectively. Ignoring possible background signals, the shape

of the magnetostriction curves are very similar, showing a peak-valley feature where the

transition from the kagome-ice to the saturated-ice phase is expected. A hysteresis be-

low the transition at lowest temperatures hints at a first order phase transition consistent
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with previous experimental and theoretical findings. In numerical simulations using the

McPhase software package, the experimental results could be qualitatively reproduced for

Ho2Ti2O7 and Dy2Ti2O7. It turned out, that a magnetostrictive effect based solely on

exchange striction cannot reproduce the experimental observation, instead, a combination

of exchange striction and crystal-field striction is needed.

A second highlight of the dilatometric measurements of the spin-ice compounds is the

observation of slow relaxation processes. For this the saturated-ice phase was stabilized in

a high field at low temperatures, then the field was quickly swept down into the frustrated

kagome-ice and spin-ice phases and the relative expansion of the crystal was monitored.

At first, the lattice expanded or contracted quickly on the time scale of the field sweep rate

but after the field was stabilized the lattice continued to expand or contract relaxing slowly

to a metastable state with a stretched exponential law for both Dy2Ti2O7 and Ho2Ti2O7.

The longest relaxation times were observed at lowest temperatures and in the field range

where a hysteresis in the magnetostriction measurements was observed, i.e., below 0.8 T

for Dy2Ti2O7 and below 1.0 T for Ho2Ti2O7. From the known phase diagrams I find that

the region of longest relaxation coincides well with the kagome-ice phase. In that phase

the relaxation time is of the order of hours. With increasing temperatures the time scale

of the relaxation reduces to minutes at around 0.7 K corresponding to the spin-freezing

temperature obtained from ac-susceptibility measurements.

In the second study I investigated the magnetoelastic coupling by varying the lattice con-

stant and checking how the magnetic properties were changing. High-quality polycrystals

of the pyrochlores Dy2Ge2-xSixO7 with lattice constants down to 9.906 Å using the multi-

anvil technique with pressures up to 16 GPa have been synthesized. The Ising nature of

the moments of the Dy ions was confirmed by the field dependence of the static magnetiza-

tion. Specific heat and ac susceptibility show the typical behavior of classical spin-ice com-

pounds, namely a Schottky-like anomaly and residual entropy, and a frequency-dependent

maximum, respectively. The reduction of the lattice reduces the effective interaction by

about 10 %. The most significant difference between the substituted and unsubstituted

compounds was found in the frequency dependence of the ac-susceptibility signal, which

mainly originates in a reduction of the pre-exponential factor τ0. However, a reduction of

the energy scale of monopole excitations of 1.5 % was observed as well, which underlines

the finding of a reduced effective interaction. In conclusion, we showed, that silicon sub-

stitution is a possible way to change the ratio of dipolar and exchange interaction and,

hence, synthesize spin-ice compounds with customized properties.

Giving a brief outlook on possible future research, I propose three ideas. One possibil-

ity to build on the measurements in this work would be to perform pulsed-field magne-
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tostriction measurements of Dy2Ti2O7 and Ho2Ti2O7 with the fiber-Bragg-grating (FBG)

technique. This technique is less sensitive than the capacitance dilatometry, but in this

thesis I showed that the magnetostrictive effects are large enough to be detected with the

FBG technique, especially at high-magnetic fields. In these measurements, the crystal-field

striction could be investigated up to much higher fields and a further comparison to the

McPhase model calculation would be possible.

Further, the magnetoelastic properties of other compounds of the class of rare-earth

pyrochlores should be investigated by dilatometry. For example, in Nd2Hf2O7 interesting

non-equilibrium effects were observed associated to domain boundary dynamics; specifi-

cally, the feature observed in this compound is negative remanence magnetization. The

magnetoelastic properties of these domain boundaries could probably be detected and their

dynamics could be studied. In the pyrochlores with Gd on the A site, systems without

orbital momentum could be studied. In these systems the total angular momentum con-

sists purely of the spin momentum and is isotropic. This would broaden the perspective to

more than the easy-axis systems studied in this thesis. Finally, much is done in the field of

quantum spin ices [11, 107] such as Pr2Hf2O7 and dilatometric measurements would help

in characterizing the magnetoelastic properties of these new compounds.

Going away from the rare-earth pyrochlores, also other materials with a sublattice of

corner-sharing tetrahedra, the spinels, were found. These compounds have the general

chemical formula AB2O4, where A and B are transition-metal ions. These compounds

show rich phase diagrams [4] and investigation of these compounds would broaden the

perspective from the focus on rare-earth ions to magnetic transition-metal ions.
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Appendix A.

Derivation of the formulas for the

simulation of the magnetostriction

In this part of the appendix, the derivations of equations necessary for the formula of the

equilibrium strain is collected.

A.1. The mean-field Hamiltonian

Given a Hamiltonian HTOT that is a sum of a local Hamiltonian H i
SI of a single ion at

lattice site i and a second non-local Hamiltonian H i
EX coupling the ion at lattice site i with

the other ions at lattice site j. In section 2.1, the goal is to diagonalize such a Hamiltonian

eq. (2.5):

HTOT =
∑
i

(
H i
SI +H i

EX

)
This problem is solved in [17] and specified to the case with H i

SI and H i
EX given in eqs. (2.1)

and (2.4), respectively. The Hamiltonian HTOT reads explicitly:

HTOT =
N∑
i=1

H i
SI −

1

2

N∑
i=1

N∑
j∈NN(i)

Jij

(
|~Rj − ~Ri|

)
~Ji ~Jj ,

where ~Ri is the position of the lattice site i and the exchange constant depends on the

distance vector between the two lattice sites i and j. This equation can be rwritten in
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Appendix A. Derivation of the formulas for the simulation of the magnetostriction

terms of an effective magnetic field ~Hi at lattice site i, called the mean field composed by

the fields from all spins at other lattice sites j:

HTOT =
N∑
i=1

(
H i
SI − ~Hi

~Ji

)
,

with ~Hi =
1

2

N∑
j∈NN(i)

Jij(|~Rj − ~Ri|)〈 ~Jj〉 ,

where 〈 ~Jj〉 is the thermal expectation value of ~Jj. Let ion i be situated at position s in

unit cell k. The sum over i in the above equations splits into a sum over all positions s per

unit cell and all unit cells k. Based on the observation, that the single-ion Hamiltonian

H i
SI has the same symmetry as the lattice, I suppose the mean field ~Hi to have the same

periodicity as the lattice, as well. In that case, the derivation can be confined further on

a single unit cell and the mean field Hamiltonian HMF:

HMF =
S∑
s=1

(
Hs
SI − ~Hs

~Js

)
, (A.1)

with ~Hs =
1

2

N∑
j∈NN(s)

Jsj(|~Rj − ~Rs|)〈 ~Jj〉 , (A.2)

which is the mean-field Hamiltonian with the mean field ~Hs given in section 2.1 with

Jsj

(
|~Rj − ~Rs|

)
= J the same for all s and j. This Hamiltonian is solved in section 4.4

using the McPhase software bundle.

A.2. The general linear anisotropic stress-strain relation

Here, I introduce the linear stress-strain relation in its most general form:

σ = Cε ,

where C is a fourth-rank 3× 3× 3× 3 tensor with 81 components linking the two second-

order 3× 3 tensors of the stress σ and the strain ε with each other.

Due to the symmetries of the strain and stress tensors, the components of the stiffness

tensor in Cartesian coordinates are not independent from each other and the number of

maximally 81 independent components is reduced to 21. In order to shorten the notation
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A.3. Perturbation of the magnetoelastic Hamiltonian for small arbitrary and trigonal

strains

of this equation in the component form in Cartesian coordinates, the tensors ε, σ and C

are written as 6-component vectors and 6 × 6 matrix, respectively:

σ11

σ22

σ33

σ23

σ13

σ12


=



C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

C2323 C2313 C2312

C1313 C1312

C1212





ε11

ε22

ε33

2ε23

2ε13

2ε12


(A.3)

with indices 1 to 3 corresponding to the Cartesian axes x, y and z, respectively.

In the shorter engineering or Voigt notation this is written as:

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66





ε1

ε2

ε3

ε4

ε5

ε6


(A.4)

In the case of the cubic symmetry of the pyrochlore lattice, only 3 out of the 21 in-

dependent components remain independent: C11 = C22 = C33, C12 = C13 = C23 and

C44 = C55 = C66, while all other components are zero.

A.3. Perturbation of the magnetoelastic Hamiltonian for

small arbitrary and trigonal strains

In section 2.2, the first-order approximation of the equilibrium strain (eq. (2.13)) of the

magnetoelastic Hamiltonian (eq. (2.11)). In this section, I present the derivation of this

expression in detail.

It will be advantageous to readjust the focus from the single-ion perspective to perspec-

tive of the unit cell of the crystal containing several single ions. In order to obtain the total

Hamiltonian of the crystal we can either sum over all N ions or equivalently over all K

unit cells containing S single ions. The index i of each ion can be represented by the two

indices k and s representing particular unit cells and ions in a unit cell, respectively. The
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formula is given by i(k, s) = kS+ s. Given the elastic energy per unit cell and the number

S of lattice sites in a unit cell with index k, the complete Hamiltonian can be written as:

H(ε) =
K∑
k=1

(
S∑
s=1

(
H0 +H1 +HSO +H

i(k,s)
CEF (ε) +HZe +H

i(k,s)
EX (ε)

)
+ Eel(ε)

)
.

For small strains, the strain-dependent contributions of the crystal-field and the exchange

Hamiltonian can be approximated to first order:

H i
EX(ε) = −1

2

∑
j∈NN(i)

J(ε) ~Ji ~Jj

≈ H i
EX(0)− 1

2

∑
j∈NN(i)

∑
st

[
∂J(ε)

∂εst

]
ε=0

εst ~Ji(k,s) ~Jj ,

H i
CEF(ε) =

∞∑
l=0

l∑
m=−l

Bm
l (ε)Om

l

≈ HCEF(0) +
∞∑
l=0

l∑
m=−l

∑
st

[
∂Bm

l (ε)

∂εst

]
ε=0

εstO
m
l ,

Eel =
V

2

∑
mnkl

Cmnklεmnεkl .

For small strain tensors ε we can approximate the magnetoelastic Hamiltonian by lineariz-

ing it around ε = 0 in the form H(ε) = H(ε = 0) + δH. The perturbation Hamiltonian δH

is given by:

δH =
K∑
k=1

(
S∑
s=1

∑
st

(
∞∑
l=0

l∑
m=−l

[
∂Bm

l (ε)

∂εst

]
ε=0

εstO
m
l −

− 1

2

N∑
j=1,j 6=i

[
∂J(ε)

∂εst

]
ε=0

εst ~Ji ~Jj

)
+
V

2

∑
mn

Cmnstεmnεst

)
. (A.5)

In the trigonal strain mode with −2ε11 = −2ε22 = ε33 = ε, we can vastly simplify

eq. (A.5) using the expression eq. (A.12) for the elastic energy from section A.7:

δH = ε
K∑
k=1

(
S∑
s=1

(
∞∑
l=0

l∑
m=−l

[
∂Bm

l (ε)

∂ε

]
ε=0

Om
l −

− 1

2

N∑
j=1,j 6=i

[
∂J(ε)

∂ε

]
ε=0

~Ji ~Jj

)
+

3

4
V (c11 − c12)ε

)
. (A.6)
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A.4. Free energy of the magnetoelastic system and equilibrium strain

For the equilibrium strain ε′, the operator δH acting on the ground state should give zero.

It is sufficient to use the ground state ψ of the unperturbed Hamiltonian to calculate this,

which is a result of first-order perturbation theory. The ground state is a product of the

wavefunctions ψi at the lattice site i. So, for the trigonal equilibrium strain we obtain:

0 = 〈ψ|δH|ψ〉 = ε′
K∑
k=1

(
S∑
s=1

(
∞∑
l=0

l∑
m=−l

[
∂Bm

l (ε)

∂ε

]
ε=0

〈ψ|Om
l |ψ〉−

− 1

2

N∑
j=1,j 6=i

[
∂J(ε)

∂ε

]
ε=0

〈ψ| ~Ji ~Jj|ψ〉
)

+
3

4
V (c11 − c12)ε′

)
. (A.7)

In a mean-field approach, where every unit cell is equivalent and has the same energy, the

sum is zero if and only if the energy of each unit cell vanishes. Hence, the equilibrium

strain is given by the requirement that the energy variation of the unit cell vanishes. Fromt

that, the equilibrium strain ε′ can be obtained:

ε′ = − 4

3V (c11 − c12)

S∑
s=1

(
∞∑
l=0

l∑
m=−l

[
∂Bm

l (ε)

∂ε

]
ε=0

〈ψ|Om
l |ψ〉−

− 1

2

N∑
j=1,j 6=i(k′,s)

[
∂J(ε)

∂ε

]
ε=0

〈ψ| ~Ji(k′,s) ~Jj|ψ〉
)
. (A.8)

The magnetic field is included in this expression in form of the ground state ψ of the

unperturbed system that contains the Zeeman interaction. Until now, the focus was on the

equilibrium strain at zero temperature. In order to obtain the state at finite temperature

the free energy needs to be calculated.

A.4. Free energy of the magnetoelastic system and

equilibrium strain

Since I am also interested in the influence of the temperature on the striction I calculated

the magnetic free energy Fm:

Fm = −kBT lnZ , Z = Tr(e−H(ε)/kBT ) =
∑
i

〈ψi|e−H(ε)/kBT |ψi〉 ,

where Z is the partition sum, kB the Boltzmann constant, T the temperature, H(ε) the

magnetoelastic Hamiltonian and ψi the eigenstates of the system at zero strain. The free

107



Appendix A. Derivation of the formulas for the simulation of the magnetostriction

energy and the partition sum both can be approximated to first order in the same way as

the Hamiltonian as Fm(ε) ≈ Fm(0) + δFm and Z(ε) ≈ Z(0) + δZ:

δFm = −(kBT/Z
0)δZ

δZ = − 1

kBT
〈δH〉 =

∑
i

〈ψi|e−(H)/kBT (δH/kBT )|ψi〉

where 〈·〉 denote the thermal average. In equilibrium, the variation of the free energy

vanishes 0 = δFm ∝ δZ, which is obviously true if 〈δH〉 = 0; this yields a formula for the

equilibrium strain ε′ at finite temperatures similar to eq. (A.8):

ε′ = − 4

3V (c11 − c12)

S∑
s=1

(
∞∑
l=0

l∑
m=−l

[
∂Bm

l (ε)

∂ε

]
ε=0

〈Om
l 〉−

− 1

2

N∑
j=1,j 6=i

[
∂J(ε)

∂ε

]
ε=0

〈 ~Ji ~Jj〉
)
, (A.9)

which is the equation for the magnetoelastic properties at finite temperatures in the tetrag-

onal strain mode.

A.5. Conversion between sets of elastic constants

The elastic constants c11, cL and cT have linear relations to c11, c12 (all explained in [19]):c11

cL

cT

 =
1

3

3 0 0

1 2 4

1 −1 1


c11

c12

c44

 ⇔

c11

c12

c44

 =
1

2

 2 0 0

1 1 −4

−1 1 2


c11

cL

cT

 (A.10)

where I inverted the matrix, to obtain the needed relations. Thus, for the tetragonal strain

mode I obtain the elastic constant:

c11 − c12 =
1

2
(c11 − cL + 4cT ) , (A.11)

which is used as parameter in the simulation of the magnetostriction of Dy2Ti2O7 and

Ho2Ti2O7.
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A.6. Deformation of a tetrahedron in tetragonal strain
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Figure A.1.: Point 1: (0, 0, h), Point 2: (−b, 0, 0), Point 3: (b cos 120,−b sin 120, 0), Point
4: (b cos 120, b sin 120, 0)

A.6. Deformation of a tetrahedron in tetragonal strain

For the calculation of the exchange-striction mechanism, the effect of strain on the exchange

interaction is modeled via:

∂εJij = ∂rJij∂εr ,

To calculate ∂εr, I take a tetrahedron with vertex coordinates as shown in fig. A.1: (0, 0, h),

(−b, 0, 0), (b cos 120,−b sin 120, 0) and (b cos 120, b sin 120, 0). Again, the tetragonal strain

is given by −2ε11 = −2ε22 = ε33 = ε. The distance between vertices i and j is denoted by

rij where vertex 1 is the top of the tetrahedron and the other three are in its basis:

r23 = r42 = r34 = |(b cos(120)− b cos(120),−b sin(120)− b sin(120), 0)|
=
√

3b

r13 = r14 = r12 =
√
h2 + b2 =

√
h2 +

1

3
l2 = l ⇒ h =

√
2

3
l

Using the notation l =
√

3b, we calculate the distances r′ij between vertices i and j after

application of the tetragonal strain in first order of ε:

r′23 = r′42 = r′34 = |(0, (−b sin(120)− b sin(120))(1 + ε22), 0)| = l(1− 1

2
ε) ,

r′13 = r′14 = r′12 = |(b(1 + ε11), 0, h(1 + ε33))| = l(1 +
1

2
ε) .
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In the description of the simulation of the static magnetostriction of the spin-ice pyrochlores

I use these formulas.

A.7. Elastic energy in cubic symmetry for tetragonal

strain

The simplest possible harmonic elastic energy expression is given by:

Eel =
V

2

∑
mnkl

cmnklεmnεkl

In the rest of this section, I use the index convention from section A.2. In the case of cubic

symmetry, the elastic energy above can be written explicitly:

Eel =
V

2

∑
mn

cmnεmεn =
V

2

(∑
mm

cmmεmεm + 2 ·
∑
n>m

cmnεmεn

)

=
V

2

(
c11(ε21 + ε22 + ε23) + 2c12(ε1ε2 + ε1ε3 + ε2ε3) + 2c44(ε24 + ε25 + ε26)

)
,

which can be split into the different strain modes: one hydrostatic, two trigonal and three

shear strain modes:

Eel =
V

2

(c11 + c12

3
(ε1 + ε2 + ε3)2+

+ (c11 − c12)

(
2

3
(ε3 −

1

2
(ε1 + ε2))2 +

1

2
(ε1 − ε2)2

)
+ 2c44(ε24 + ε25 + ε26)

)
In the tetragonal strain mode with −2ε1 = −2ε2 = ε3 = ε and ε4 = ε5 = ε6 = 0 only the

first part of the tetragonal term survives and the elastic energy simplifies to:

Eel =
3

4
V (c11 − c12)ε2 . (A.12)

This expression is needed in the calculation of the magnetoelastic Hamiltonian.
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A.8. Crystal field in the pyrochlore lattice

A.8. Crystal field in the pyrochlore lattice

The crystal field Hamiltonian reads:

H i
CEF =

∞∑
l=0

l∑
m=−l

Bm
l (i)Om

l (i) . (A.13)

In the symmetry of the pyrochlore lattice, the crystal field has only six independent com-

ponents: B0
2 , B0

4 , B3
4 , B0

6 , B3
6 and B6

6 [16]. The corresponding Stevens operators Om
l can

be formulated in terms of the angular momentum operator ~J , more specifically in terms

of one cartesian component Jz of the vector ~J and the ladder operators J±. The wave

functions |j,m〉 are eigenvectors of these operators and their actions on them are:

~J2|j,m〉 = j(j + 1)|j,m〉 (A.14)

Jz = m|j,m〉 (A.15)

J± = |j,m± 1〉 (A.16)

The Stevens operators are given by:

X = ~J2 = J(J + 1)

O0
2 = 3J2

z +X

O0
4 = 35J4

z − (30X − 25)J2
z + 3X2 − 6X

O0
6 = 231J6

z − (315X − 735)J4
z + (105X2 − 525X + 294)J2

z − 5X3 + 40X2 − 60X

O3
4 =

1

4

[
(J3

+ + J3
−)Jz + Jz(J

3
+ + J3

−)
]

O−3
4 =

−i
4

[
(J3

+ − J3
−)Jz + Jz(J

3
+ − J3

−)
]

O3
6 =

1

4

[
(J3

+ + J3
−)(11J3

z − (3X + 59)Jz) + (11J3
z − (3X + 59)Jz)(J

3
+ + J3

−)
]

O−3
6 =

−i
4

[
(J3

+ − J3
−)(11J3

z − (3X + 59)Jz) + (11J3
z − (3X + 59)Jz)(J

3
+ − J3

−)
]

O6
6 =

1

2
(J6

+ + J6
−)

O−6
6 =

−i
2

(J6
+ − J6

−)

The operators J± couple the state mJ with a state with mJ±1 and J3
± couple the state mJ

with a state with mJ±3.
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Appendix A. Derivation of the formulas for the simulation of the magnetostriction

A.9. Wave functions of the ground state of of the

rare-earth ion in Dy2Ti2O7 and Ho2Ti2O7

In order to obtain the ground state of the mean-field Hamiltonian (eqs. (2.1), (2.6)

and (2.7)) I use McPhase with the crystal field parameters from tables 4.1 and 4.2. For

Dy2Ti2O7, this yields the ground states of the rare-earth ion in the unstrained and strained

crystal; for comparison, estimates of the ground state from literature [40, 42] are also given:

|φ±0 > (ε = 0) = 0.9998| ± 15

2
> ±0.0201| ± 9

2
>

|φ±0 > (ε = 0.02) = 0.9998| ± 15

2
> ±0.0190| ± 9

2
>

|φ±0 > = 0.981| ± 15

2
> ±0.190| ± 9

2
> −0.022| ± 3

2
> ∓0.037| ∓ 3

2
>

+ 0.005| ∓ 9

2
> ∓0.001| ∓ 15

2
>

|φ±0 > = 0.991| ± 15

2
> ∓0.127| ± 9

2
> +0.019| ± 3

2
>

∓ 0.025| ∓ 3

2
> +0.005| ∓ 9

2
>

and for Ho2Ti2O7 we get the corresponding ground states:

|φ±0 > (ε = 0) = 0.9941| ± 8 > ±0.1081| ± 5 > +0.0070| ± 2 >

|φ±0 > (ε = 0.02) = 0.9941| ± 8 > ±0.1079| ± 5 > +0.0067| ± 2 >

|φ±0 > = −0.979| ± 8 > ±0.189| ± 5 > −0.014| ± 2 > ±0.070| ∓ 1 >

− 0.031| ∓ 4 > ±0.005| ∓ 7 >

|φ±0 > = 0.981| ± 8 > ∓0.154| ± 5 > +0.075| ± 2 > ∓0.073| ∓ 1 >

+ 0.054| ∓ 4 > ∓0.007| ∓ 7 >
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Appendix B.

Derivation of the formulas for the

analysis of the magnetostriction and

relative expansion data

In this part of the appendix, I collected the derivations of the equations used for the

analysis of the magnetostriction and thermal-expansion data. Even though these equations

can straightforwardly derived, not all steps are obvious and, hence, I decided to give the

necessary information explicitly for the interested reader. Both dilatometer-cell designs,

TDC and TAC, I used in this work are tilted-plate capacitors. The general formula for the

dependence between capacity and gap width is derived for this case and then specified for

the two designs.

B.1. The general tilted-plate capacitor

.

The formula used to calculate the change of the sample length was derived by Pott and

Schefzyk [20] by solving the integral over a disk Ω with radius R:

C =

∫
Ω

ε0
d+ cx

d xd y ,

where c is the inclination of the upper plate with respect to the lower plate, ε0 denotes the

vacuum permittivity and d is the gap at the coordinate x = 0 in the center of the plate.
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relative expansion data

We transform the coordinate system (x, y) to (x′, y′) such that cx′ = d+ cx. The integral

can then be solved using the tabulated integrals 248, 226 and 246 from Zwillinger [127]:

C =
2πε0d

c2

(
1−

√
1− R2c2

d2

)
. (B.1)

This formula is fundamental to the derivation of the relative-expansion dependences used

for the analysis of the magnetostriction and thermal-expansion measurements using the

TDC and the TAC. These equations are given in section 3.1 and the equation for the TDC

is derived in detail in the next paragraphs.

Equation (B.1) may be rewritten to be more easily usable for data analysis. For this,

the following rearrangements of eq. (B.1) are used:

C =
2πRε0
cγ

(
1−

√
1− γ2

)
with γ =

Rc

d
(B.2)

and equivalently:
Cc

2πRε0
=

(
1−√1− γ

)
γ

(B.3)

The parameter c is the tilting of the upper capacitance plate with respect to the lower

plate. In the case of the TDC, when the upper plate is pushed down by the expanding

sample, it does not change its tilting due to the parallel suspension [128, 129] it is linked

to. The plate can only move vertically and does not rotate [20, 23].

The parameter c is difficult to measure directly. It is easier to substitute it by the value

of the capacitance Cmax for almost touching capacitor plates for γ = 1 and rearrange

eq. (B.2) in terms of this new parameter Cmax. This value Cmax is obtained for c = d
R

:

Cmax =
2πε0R

c
(B.4)

Evaluating 1 + (C/Cmax)
2 using eqs. (B.3) and (B.4) and that c is constant for all d one

obtains the gap distance d:

d =
ε0πR

2

C

[
1 +

(
C

Cmax

)2
]

(B.5)
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B.1. The general tilted-plate capacitor

This is only valid, if the tilting of the upper plate with respect to the lower plate is constant

for all d, which is not true for TAC. I also inverted eq. (B.2) for d using Mathematica giving

:

d =
ε0πR

2

C
+

c2

4πε0
C (B.6)

This equation is equivalent to eq. (B.5). There is a C−1 increase dominant when approach-

ing 0, and asymptotically linear behavior at high C.

Ultimately, I am interested in the difference of two such gaps ∆d normalized by the

sample length LS:

∆d

LS
=
d2 − d1

LS
=
ε0πr

2

LS

(
1

C2

[
1 +

(
C2

Cmax

)2
]
− 1

C1

[
1 +

(
C1

Cmax

)2
])

(B.7)

=
ε0πr

2

LSC1C2

(C1 − C2)

[
1− C1C2

C2
max

]
. (B.8)

115





Appendix C.

Effective spin-ice model

In this chapter, I use a simplified model of the magnetism of the spin-ice pyrochlores to

calculate several physical properties. The most important result is that in the case of a

magnetic field slightly misaligned with respect to the [1 1 1] direction of the crystal strong

magnetic torque is exerted on the sample. This might influence the measurement, but by

performing several test measurements this effect could be excluded to play a role for the

magnetostriction of Dy2Ti2O7 and Ho2Ti2O7 in this work, see subsection 3.3.2.

The complete Hamiltonian eq. (2.1) of the spin-ice pyrochlores can be split for low tem-

peratures and low fields into a single-ion part HGS fixing the ground state and the Zeeman

HZe and exchange Hamiltonian Hex that work on that ground state as perturbations:

H = H0 +H1 +HSO +HCEF +HZe +Hex = HGS +HZe +Hex . (C.1)

For the spin ice compounds, Dy2Ti2O7 and Ho2Ti2O7 the single ion has a quasi-Ising

ground state. In the following, it is assumed that all single-ions are in the ground state

of the Hamiltonian HGS so that the perturbation Hamiltonian may be projected into this

subspace.

C.1. Low-temperature simple effective model of spin ice

In this section the effective model of spin ice is presented and used in the following sections

to calculate torque effects on samples in a magnetic field slightly misaligned from the [1 1 1]

direction.
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Appendix C. Effective spin-ice model

I use the effective Hamiltonian H of one tetrahedron to describe the low-temperature

magnetic properties of spin ice:

H =
4∑

j>i=1

J (~vi · ~vj)(JiJj)− 10µB ~B
4∑
i=1

Ji~vi , (C.2)

where J is the exchange constant, ~vi is the unit vector of the Ising axis of the spin i in

the tetrahedron, Ji the spin state of the Ising spin, being −1 or 1 depending on whether

the spin points out of or into the tetrahedron, respectively; ~B is the magnetic-field vector.

The Ising axes are distinct for the sublattices of the vertices of the tetrahedra:

~v1 =
√

1/3[1 1 1] , ~v2 =
√

1/3[1 1 1] , ~v3 =
√

1/3[1 1 1] , ~v4 =
√

1/3[1 1 1] .

(C.3)

Minimizing eq. (C.2) gives the magnetic ground state. The ground state is a mixture of

the six states with two of the spins pointing in and the other two pointing out of the

tetrahedron. The average magnetic moment of an ion in the tetrahedron in the ground

state is given by:

~m =
1

4

4∑
i=1

10µBJi~vi . (C.4)

At finite temperatures, I need to average over all states ψ (in this case 24 = 16) with a

Boltzmann factor as probability weight, to obtain the values for the magnetic moment of

a tetrahedron:

〈~m〉 =
1

Z

∑
ψ

(
4∑
i=1

10µBJi~vi

)
e〈ψ|H|ψ〉/kBT , with Z =

∑
ψ

e〈ψ|H|ψ〉/kBT , (C.5)

where Z denotes the partition sum of the system. The magnetic moment in direction of

the magnetic field is given by

mH = ~m ·
~B

|B| . (C.6)

From the magnetic moment, I easily calculate the (volume specific) magnetization by

dividing the magnetic moment by the volume it occupies:

~M = Nuc ~m/Vuc . (C.7)
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C.1. Low-temperature simple effective model of spin ice

In the case of pyrochlore, Nuc = 16 ions occupy the volume Vuc of one unit cell. The torque

on a tetrahedron in a magnetic field is calculated via:

~T = ~m× µ0
~H . (C.8)

The global properties of a single crystal are very well approximated by the properties of a

tetrahedron as it’s smallest building block. In the next section this model is explored for

the case of Dy2Ti2O7, analogous results are valid for Ho2Ti2O7.

C.1.1. Properties of a tetrahedron in a field in [1 1 1] direction for

Dy2Ti2O7

For simplicity, the magnetic measurements of [67] are used to fix the only parameter of

this model, J = −0.6 meV for Dy2Ti2O7; this parameter influences the transition from

the kagome-ice to the monopole-saturated state. As mentioned before, each tetrahedron

has four ions with two possible states. Hence, there are 24 = 16 possible configurations

per tetrahedron. At first, I am interested in the probability to find a specific tetrahedron

in one of the 16 states. Figure C.1 shows the probability of the seven states occupied at a

temperature of 0.3 K in dependence of the magnetic field applied along [1 1 1] direction (the

other nine states are almost not occupied). There are six states with spin-ice configuration

(two spins pointing in and two pointing out) and one state with three spins pointing in

and one pointing out. At zero field, each of the 2-in-2-out states is equally probable. At

small fields, the 2-in-2-out configurations with the spin with Ising axis ~v1 pointing out of

the tetrahedron are stabilized, these are the states occupied in the kagome-ice phase. At

high fields, there is only one configuration left; the 3-in-1-out with the ~v1 spin pointing

out and all the others pointing into the tetrahedron. This is in accordance with the usual

interpretation of the transitions of the spin-ice state in a field applied along [1 1 1] direction.

The field dependence of the magnetic moment component in field direction mH following

eq. (C.5) at various temperatures in dependence of the magnetic field applied along [1 1 1]

direction is plotted in fig. C.2. At zero field the magnetization is zero, in accordance with

figs. C.1 and C.7. At small fields, the 2-in-2-out configuration with the spin with Ising axis

~v1 is energetically favored; at high fields, the 3-in-1-out configuration is favored. However,

only if the temperature is too low to excite also other states, the system exhibits the

magnetization of the pure states. Therefore, only at low temperatures the characteristic

two steps in the magnetization from zero over the intermediate plateau to the saturation

magnetization are visible. At high temperatures, the transitions are washed out and the

magnetization looks like a Brillouin function with a dent.
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Figure C.1.: Field dependence of the distribution of tetrahedra on the states possible in
a magnetic field applied along [1 1 1] direction. There are six states in the
2-in-2-out configuration, three of which compose the kagome-ice state, and
one state with a 3-in-1-out configuration.

Figure C.2.: Field dependence of the magnetic moment per Dy atom for the model Hamil-
tonian, using eqs. (C.2) and (C.5) at various temperatures and the magnetic
field applied along [1 1 1].
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C.1. Low-temperature simple effective model of spin ice

For the real crystal, the field inside a magnetic material differs from the external field

due to demagnetizing effects. The formula for the internal field is given by:

Bint = Bext −N ∗ µ0M(Bint) , (C.9)

M(Bint) = Nucmuc(Bint)/Vuc . (C.10)

with muc being the magnetic moment per unit cell, Vuc being the volume per unit cell and

Nuc the number of magnetic atoms per unit cell. By rewriting the former equation, one

obtains:

Bext = Bint +N ∗ µ0M(Bint) . (C.11)

In order to get the internal field in dependence of the external field, i.e., Bint(Bext),

eq. (C.11) is inverted. The magnetic moment m of Dy2Ti2O7 depends on the internal

magnetic field and has two jumps at low temperatures; one at low fields around 0.1 T

and the other at around 0.9 T. So depending on the internal magnetic field the magnetic

moment varies, which I denote with a factor x: m = x · µB/Dy. Using eq. (C.10), the

volume-specific magnetization µ0M in Dy2Ti2O7 is given by:

µ0M = µ0
16x · µB/Dy

1× 103 Å
3 = x · 0.186 T . (C.12)

The factor x in this equation is obtained from fig. C.2. The field-dependence of the

demagnetizing factor is displayed in fig. C.3.

In order to explore the phase diagram of this model, I define an order parameter ξ

counting the spins pointing into a tetrahedron:

ξ = (S1 + S2 + S3 + S4 + 4) /2 . (C.13)

Figure C.4(a) displays the temperature-field phase diagram of ξ of Dy2Ti2O7. The spin-ice

and kagome-ice phase is the phase-space area at low fields where ξ = 2 for the 2-in-2-out

configuration. At high fields, the saturated monopole phase with ξ = 3 is reached.

The fluctuations of ξ have been calculated as 〈(∆ξ)2〉 and are shown in fig. C.4(b).

The spin-ice phase is here clearly seen to be limited to low temperatures and low fields,

where fluctuations of ξ are small. At a field of around 1 T, there is a transition marked

by a small region of increased fluctuation. Above this transition, the saturated monopole

phase is reached where spin fluctuations are small. Increasing the temperature at low

fields, the system leaves the spin-ice region with little dynamics into a quasi-paramagnetic
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Figure C.3.: The demagnetization correction Bdem = Bint−Bext over the external magnetic
field for various temperatures for Dy2Ti2O7 with demagnetizing factor N =
0.7. We used eqs. (C.5) and (C.11) to plot this graph.

Figure C.4.: Plot of (a) the order parameter ξ and (b) the fluctuations of the order param-
eter ξ plotted in the temperature-field diagram.
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C.1. Low-temperature simple effective model of spin ice

region where the fluctuations become larger with increasing temperature. In this model

the spin-ice region ends at around 1.75 K.

In the following, I present how several properties depend on the orientation of the mag-

netic field with respect to the sample. For this I introduce spherical coordinates (H, θ, φ),

with H denoting the amplitude of the magnetic field, θ being the inclination angle and φ

the azimuthal angle. In order to have a good angular resolution in the graphs, I transform

the coordinate system such that the [1 1 1] direction is at the equator of the spherical coor-

dinates at θ = π/2. In accordance with other publications, I transform the z axis into the

[1 1 2] direction and the x axis into the [1 1 0] direction. Hence, the transformation matrix

is:

~H = H

−
√

1/2
√

1/3
√

1/6√
1/2

√
1/3

√
1/6

0
√

1/3 −2
√

1/6


sin(θ) cos(φ)

sin(θ) sin(φ)

cos(θ)

 . (C.14)

The orientation of the coordinate axes and the angles θ and φ are depicted in fig. C.5.

In order to verify, that this simple model captures the basic spin-ice physics I calculate

the dependence of mH (eq. (C.6)) on the inclination angle θ at 0.3 K and compare it to

experiment [130]. The result of my calculation is shown in fig. C.6. In this plot, θ = π/2

points in the [1 1 1] direction, for θ 6= π/2, passes through all directions in the [1 1 0] plane:

most importantly in direction of the [1 1 1], [0 0 1] and the [1 1 0] direction. The [0 0 1]

direction is at θ ≈ 2.5 and the [1 1 0] direction is at around θ ≈ 1 where mH has the global

and a local maximum, respectively. The [1 1 1] direction is around θ ≈ 0.3 and equivalent

to the [1 1 1] direction at θ = π/2 showing the same behaviour. At 1 T the magnetization

starts to approach the saturation value and at θ = π/2 a local maximum appears, whereas

below the transition at around 0.9 T there is a local minimum of mH at θ = π/2. My

calculation agrees well with the experimental data reported in the literature [130].

C.1.2. Properties of a tetrahedron in a field slightly off the [1 1 1]

direction

In this section, I show that a slight deviation of the magnetic field from the [1 1 1] direction

of the crystal can influence the measurements of various physical properties. This can

be seen in fig. C.7 where the probability of the states of a tetrahedron is displayed for a

magnetic field deviating by two degrees from the [1 1 1] direction of the crystal. One of the

three 2-in-2-out kagome-ice states is favored due to the deviation which leads to consid-

erable transverse components of the magnetization vector perpendicular to the magnetic

field. For the exactly aligned field no kagome-ice configuration is favored (fig. C.1) and the
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M

x‖[1̄10]

y‖[111]

z‖[112̄]

~Hxy

~H

~Hz

θ

φ

Figure C.5.: The notation of the coordinate axes and the angles θ and φ with respect to
the tetrahedron.

Figure C.6.: Angular dependence of the magnetization mH along the magnetic field at
0.3 K at various fields. θ = π/2 points along the [1 1 1] direction and θ is the
angle between [1 1 1] and the field in the [1 1 0] plane. This graph is a slice of
the graphs in fig. C.8 at φ = π/2.
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C.1. Low-temperature simple effective model of spin ice

Figure C.7.: Field dependence of the distribution of tetrahedra on the states possible in a
magnetic field deviating two degrees from the [1 1 1] direction. As in fig. C.1
there are seven states occupied: six states in the 2-in-2-out configuration,
three of which compose the kagome-ice state with one being favored due to
the misalignment of the field, and one state with a 3-in-1-out configuration.

transverse field is zero. Components of the magnetization perpendicular to the magnetic

field may result in a strong torque on the crystal. This effect may be important at low

temperature where the magnetization plateau of the kagome-ice phase is well defined.

The plots in fig. C.8, shown for a fixed H, the value of the component of the magnetic

momentmH parallel to the magnetic field (eq. (C.6)) at each point (θ, φ) at the temperature

of 0.3 K. The [1 1 1] direction is located at (π/2, π/2). There are several equivalent points

in this graph, notably the four equivalent [1 1 1] directions and the four reversed [1 1 1]

directions giving eight instable fix points below 0.9 T and stable fix points above 0.9 T;

the second set are the equivalent [1 0 0] directions with their reversed directions giving six

equivalent stable fix points for all fields. At low fields of µ0H = 0.01 T or 0.5 T (fig. C.8(a)

and (b)), mH has a minimum at the [1 1 1] direction. That means, that energy can be

gained at low fields by turning the tetrahedron out of its orientation. With increasing field

strength up to 1 T the gradient of mH around the equivalent [1 1 1] directions becomes

steeper, so that more energy can be gained by reorienting the tetrahedron, fig. C.8(c).

When the field is so high that the saturation magnetization is reached, the local minimum

at [1 1 1] becomes a local maximum; consequently, small deviations from this direction

decrease the Zeeman energy of the tetrahedron, fig. C.8(d)-(f). The easy axes are the

[1 0 0], [0 1 0] and the [0 0 1] directions for all field strengths. Last but not least, in the
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Figure C.8.: Contour plot of the parallel magnetic moment mH at 0.3 K in dependence of
the direction of the magnetic field given by the polar and azimuthal angles
φ and θ, respectively. The [1 1 1] direction is located at θ = φ = π/2; [1 1 2]
and [1 1 0] directions are at the origin θ = φ = 0 and at θ = π/2, φ = 0,
respectively. The magnetic field is different for the six plots being (a) 0.01,
(b) 0.5, (c) 1, (d) 1.5, (e) 2 and (f) 3 T from left to right, top to bottom. The
calculation was done via eqs. (C.2) and (C.5).
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middle between neighboring equivalent [1 1 1] direction there are saddle points of mH , i.e.,

they are maxima on the line connecting the neighboring [1 1 1] directions, but minima

perpendicular to that line. To summarize, at low fields the [1 1 1] direction is unstable to

small deviations and at high fields it is stable.

Consequently, I am interested, how strong a torque would be if the field was not properly

aligned with the [1 1 1] direction. Such a torque could rotate the sample leading to an

apparent sample length change independent of the inherent properties of the sample. The

plots in fig. C.9 show the norm of the torque vector ~T at each field direction (θ, φ) at a

temperature of 0.3 K and fixed field strength H. In this plot, as in fig. C.8 the red dot

is located at (π/2, π/2) corresponding to the [1 1 1] direction. Exactly at that point, the

norm of ~T is zero for all fields; however, the slope of the torque is large around that point

for fields below the transition to the 3-in-1-out configuration, so that for small deviations

there is considerable torque. From the magnetization data visualized in fig. C.8 it follows

that the torque is directed so that it rotates the tetrahedron such that the field points less

in the [1 1 1] direction. The [1 1 1] direction is an unstable fix point at small fields. There

are in total eight points equivalent to the one marked by the red dot, given by the four

equivalent [1 1 1] directions and their opposite directions. Additionally, there are twelve

unstable fix points at the equivalent [1 1 0] directions and their reversed directions; these

are located in the middle between the [1 1 1] directions. At these points, the torque has

a saddle point. The stable fix points, where the torque is zero because the magnetization

is aligned along the magnetic field are the easy axes [1 0 0], [0 1 0] and the [0 0 1] and their

opposite directions. At fields higher than about 1 T the torque around the [1 1 1] direction

changes sign so that the tetrahedron is rotated into the [1 1 1] direction. Therefore, the

unstable fix points at [1 1 1] and equivalent become stable at high fields. The easy axes

[1 0 0], [0 1 0] and [0 0 1] remain stable.

In order to gain a better understanding of what direction the torque will rotate the tetra-

hedron to, I computed the projection of the torque on the vector ~eφ = (
√

1/2,−
√

1/2, 0)

for all directions in the [1 1 0] plane. This projection of the torque in φ direction is the part

that leads to a rotation in the [1 1 0] plane, leading to a rotation changing θ. Depending

on the value of Tθ = ~T · ~eφ the angle θ changes: a positive Tθ decreases θ via a clockwise

rotation of the tetrahedron (around ~eφ), a negative Tθ increases θ via a counterclockwise

rotation. A point where Tθ changes sign from negative to positive is stable with respect to

deviations in θ, a point where it crosses from positive to negative is unstable. Figure C.10

represents a slice from fig. C.9 along the φ = π/2 line showing the dependence of Tθ on θ.

It can be seen, that the fix point for θ ≈ 2.5 ([0 0 1] direction) is stable for all fields, as is

the one at around θ ≈ 0.9 ([1 1 0] direction). The latter, however, is unstable with respect
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Figure C.9.: Contour plot of the norm of the torque |T | (eq. (C.8)) at 0.3 K in dependence
of the direction of the magnetic field given by the polar and the azimuthal
angles φ and θ, respectively. The [1 1 1] direction is located at θ = φ = π/2;
[1 1 2] and [1 1 0] directions are at the origin θ = φ = 0 and at θ = π/2, φ = 0,
respectively. The magnetic field is different for the six plots being 0.01, 0.5,
1, 1.5, 2 and 3 T from left to right, top to bottom.
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C.1. Low-temperature simple effective model of spin ice

to deviations in φ. The two points at θ = 0 and θ ≈ −1.2 belong to equivalent [1 1 1]

directions. These two points are unstable for µ0H = 0.5 T and 1 T and stable for higher

fields as was seen in the results of the calculation of the magnetization mH (fig. C.6).

Finally, I investigated the field dependence of Tθ for a small positive deviation of two

degrees in the inclination angle θ from the point (π/2, π/2) corresponding to the [1 1 1]

direction, that is (π/2 + 2π/180, π/2) (fig. C.11). Positive values of Tθ decrease θ, i.e.,

would reduce the deviation, and negative values increase θ. i.e., enlarge the deviation.

For low temperatures and low fields, there is a strong torque increasing the deviation that

suddenly changes sign after the transition to the 3-in-1-out configuration then decreasing

the deviation, compare with fig. C.7. At higher temperatures the torque becomes much

smaller.

In the experiment, I am interested in the inherent properties of the compounds, I need

to make sure that the torque on the sample does not lead to a rotation of the sample

interfering with my measurements. Therefore, all external forces and torques on the sample

should vanish. An estimation of the typical magnetic torque on a sample and a typical

compensating torque exerted on the sample by the dilatometer cell are needed. A typical

sample had a mass of the order of m = 50 mg and a length in the order of 1 mm; the molar

mass of Dy2Ti2O7 is M = 532.73 g mol−1. Together with a typical torque of 1 T · µB/Dy
(compare with fig. C.11) I obtain the torque:

Tsample =
m

M
NATtetrahedron

=
6.022× 1023 mol−150 mg

532.73 g mol−1 · 2× 1 T · 9.274× 10−24 Nm/T/Dy2Ti2O7

= 1.048× 10−3 N m .

The torque from the dilatometer spring (TDC) with a spring force of 3 N:

T = 3 N · 1 mm = 3× 10−3 N m .

Therefore, the magnetic torque is in the same order of magnitude as the torque from the

spring force and could interfere with our measurements. I glued the sample to the frame of

the dilatometer cell (TDC) in order to compensate for the torque in an additional way, see

subsection 3.3.2. This seemed to be sufficient, since I measured realistic magnetostriction

effects.
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Appendix C. Effective spin-ice model

Figure C.10.: Angular dependence of ~T · (
√

1/2,−
√

1/2, 0) at a temperature of 0.3 K at
various fields. θ = π/2 points along the [1 1 1] direction and θ is the angle
between [1 1 1] and the field in the [1 1 0] plane. θ = 0 corresponding to the
[1 1 1] direction and θ is the angle between [1 1 1] and the field in the [1 1 0]
plane.

Figure C.11.: Field dependence of the torque projected on ~eφ = (
√

1/2,−
√

1/2) using
eqs. (C.2) and (C.4) (for zero temperature) and eq. (C.5) at finite tempera-
tures. The field dependence is computed for θ = π/2 + 2π/180 and φ = π/2.

130



Bibliography

[1] P. W. Anderson, Phys. Rev. 102, 1008 (1956).

[2] J. E. Greedan, J. Mater. Chem. 11, 37 (2001).

[3] A. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994).

[4] J. Wosnitza, S. A. Zvyagin, and S. Zherlitsyn, Rep. Prog. Phys. 79, 074504 (2016).

[5] J. E. Greedan, J. Alloys Compd. 408-412, 444 (2006).

[6] J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82, 53 (2010).

[7] L. Balents, Nature 464, 199 (2010).

[8] A. A. Zvyagin, Low Temp. Phys. 39, 901 (2013).

[9] C. Castelnovo, R. Moessner, and S. Sondhi, Annu. Rev. Condens. Matter Phys. 3,

35 (2012).

[10] F. K. K. Kirschner, F. Flicker, A. Yacoby, N. Y. Yao, and S. J. Blundell, Phys. Rev.

B 97, 140402(R) (2018).

[11] M. J. P. Gingras and P. A. McClarty, Rep. Progr. Phys. 77, 056501 (2014).

[12] S. Zherlitsyn, S. Yasin, J. Wosnitza, A. A. Zvyagin, A. V. Andreev, and V. Tsurkan,

Low Temp. Phys. 40, 123 (2014).

[13] M. Lines, Phys. Rep. 55, 133 (1979).

[14] T. Barron, J. Collins, and G. White, Adv. Phys. 29, 609 (1980).

[15] M. Doerr, M. Rotter, and A. Lindbaum, Adv. Phys. 54, 1 (2005).

[16] E. Bauer and M. Rotter, in Properties and Applications of Complex Intermetallics

(WORLD SCIENTIFIC, 2009) pp. 183–248.

131

https://link.aps.org/doi/10.1103/PhysRev.102.1008
http://xlink.rsc.org/?DOI=b003682j
http://www.annualreviews.org/doi/10.1146/annurev.ms.24.080194.002321
http://stacks.iop.org/0034-4885/79/i=7/a=074504?key=crossref.5a3935e9417bd7b93e2b66bd549ce8a2
http://linkinghub.elsevier.com/retrieve/pii/S0925838805006110
http://link.aps.org/doi/10.1103/RevModPhys.82.53
http://www.nature.com/doifinder/10.1038/nature08917
http://scitation.aip.org/content/aip/journal/ltp/39/11/10.1063/1.4826079
http://www.annualreviews.org/doi/10.1146/annurev-conmatphys-020911-125058
http://www.annualreviews.org/doi/10.1146/annurev-conmatphys-020911-125058
https://link.aps.org/doi/10.1103/PhysRevB.97.140402
https://link.aps.org/doi/10.1103/PhysRevB.97.140402
http://stacks.iop.org/0034-4885/77/i=5/a=056501?key=crossref.89fbadff5a85c47491bf5a0b41f6b17e
http://scitation.aip.org/content/aip/journal/ltp/40/2/10.1063/1.4865559
http://linkinghub.elsevier.com/retrieve/pii/0370157379900395
http://www.tandfonline.com/doi/abs/10.1080/00018738000101426
http://www.tandfonline.com/doi/abs/10.1080/00018730500037264
http://www.worldscientific.com/doi/abs/10.1142/9789814261647_0005


[17] M. Rotter, M. D. Le, A. T. Boothroyd, and J. A. Blanco, J. Phys.: Cond. Mat. 24,

213201 (2012).

[18] M. Rotter, D. M. Le, J. Keller, L. G. Pascut, T. Hoffmann, M. Doerr, R. Schedler,

P. Fabi, S. Rotter, M. Banks, and N. Klüver, McPhase User Manual (2013).
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[23] R. Küchler, T. Bauer, M. Brando, and F. Steglich, Rev. Sci. Instrum. 83, 095102

(2012).

[24] F. R. Kroeger and C. A. Swenson, J. Appl. Phys. 48, 853 (1977).

[25] N. Mehboob, Magnetostriction of GdAg2, PrFe4As12, and GdVO3 measured with a

Capacitance Dilatometer, Ph.D. thesis, Universität Wien, Wien (2009).

[26] C. R. Wiebe and A. M. Hallas, APL Materials 3, 041519 (2015).

[27] M. . Subramanian, G. Aravamudan, and G. Subba Rao, Prog. Solid State Chem. 15,

55 (1983).

[28] R. Mouta, R. X. Silva, and C. W. A. Paschoal, Acta Crystallogr. Sec. B 69, 439

(2013).

[29] H. . Zhou, S. Bramwell, J. Cheng, C. Wiebe, G. Li, L. Balicas, J. Bloxsom, H. Sil-

verstein, J. Zhou, J. Goodenough, and J. Gardner, Nat. Commun. 2, 478 (2011).

[30] H. D. Zhou, J. G. Cheng, A. M. Hallas, C. R. Wiebe, G. Li, L. Balicas, J. S. Zhou,

J. B. Goodenough, J. S. Gardner, and E. S. Choi, Phys. Rev. Lett. 108, 207206

(2012).

132

http://stacks.iop.org/0953-8984/24/i=21/a=213201?key=crossref.17ad9495f90ea5fd7bfd0b76fedfe533
http://stacks.iop.org/0953-8984/24/i=21/a=213201?key=crossref.17ad9495f90ea5fd7bfd0b76fedfe533
http://link.aps.org/doi/10.1103/PhysRevB.90.064409
http://link.aps.org/doi/10.1103/PhysRevB.90.064409
http://stacks.iop.org/0022-3735/16/i=5/a=018?key=crossref.7e342cefe16daf214a63714285ea669e
http://scitation.aip.org/content/aip/journal/rsi/69/7/10.1063/1.1149009
http://scitation.aip.org/content/aip/journal/rsi/69/7/10.1063/1.1149009
http://aip.scitation.org/doi/10.1063/1.4748864
http://aip.scitation.org/doi/10.1063/1.4748864
http://aip.scitation.org/doi/10.1063/1.323746
http://www.mcphase.de/dilatometer_page/mehboob09magnetostriction_miniature_dil.pdf
http://scitation.aip.org/content/aip/journal/aplmater/3/4/10.1063/1.4916020
http://linkinghub.elsevier.com/retrieve/pii/0079678683900018
http://linkinghub.elsevier.com/retrieve/pii/0079678683900018
http://scripts.iucr.org/cgi-bin/paper?S2052519213020514
http://scripts.iucr.org/cgi-bin/paper?S2052519213020514
http://www.nature.com/doifinder/10.1038/ncomms1483
http://link.aps.org/doi/10.1103/PhysRevLett.108.207206
http://link.aps.org/doi/10.1103/PhysRevLett.108.207206


[31] T. Stoeter, M. Antlauf, J. Gronemann, T. Hermannsdörfer, S. Granovsky,

M. Schwarz, M. Doerr, H.-H. Klauss, E. Kroke, and J. Wosnitza, arXive e-prints

, arxive:1809.01480 (2018), 1809.01480 .

[32] J. M. Farmer, L. A. Boatner, B. C. Chakoumakos, M.-H. Du, M. J. Lance, C. J.

Rawn, and J. C. Bryan, J. Alloys Compd. 605, 63 (2014).

[33] P. Santini, S. Carretta, G. Amoretti, R. Caciuffo, N. Magnani, and G. H. Lander,

Rev. Mod. Phys. 81, 807 (2009).

[34] J. Jensen, Rare Earth Magnetism.

[35] C.-G. Ma, M. Brik, D.-X. Liu, B. Feng, Y. Tian, and A. Suchocki, J. Lumin. 170,

369 (2016).

[36] K. W. H. Stevens, Proc. Phys. Soc. Sec. A 65, 209 (1952).

[37] H. Fueß, International tables for crystallography (Springer, Berlin, 2006).

[38] B. R. Judd, Proc. Roy. Soc. Lond. Math. Phys. Sci. 227, 552 (1955).

[39] M. Hutchings, in Solid State Physics , Vol. 16 (Elsevier, 1964) pp. 227–273.

[40] A. Bertin, Y. Chapuis, P. Dalmas de Réotier, and A. Yaouanc, J. Phys.: Cond. Mat.
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[100] G. Ehlers, A. L. Cornelius, M. Orendáč, M. Kajnakov, T. Fennell, S. T. Bramwell,

and J. S. Gardner, J. Phys.: Cond. Mat. 15, L9 (2003).

[101] G. Ehlers, A. L. Cornelius, T. Fennell, M. Koza, S. T. Bramwell, and J. S. Gardner,

J. Phys.: Cond. Mat. 16, S635 (2004).

[102] J. A. Quilliam, L. R. Yaraskavitch, H. A. Dabkowska, B. D. Gaulin, and J. B. Kycia,

Phys. Rev. B 83, 094424 (2011).

[103] C. Paulsen, M. J. Jackson, E. Lhotel, B. Canals, D. Prabhakaran, K. Matsuhira,

S. R. Giblin, and S. T. Bramwell, Nat. Phys. 10, 135 (2014).

[104] D. Pomaranski, L. R. Yaraskavitch, S. Meng, K. A. Ross, H. M. L. Noad, H. A.

Dabkowska, B. D. Gaulin, and J. B. Kycia, Nat. Phys. 9, 353 (2013).

[105] S. R. Giblin, M. Twengström, L. Bovo, M. Ruminy, M. Bartkowiak, P. Manuel,

J. C. Andresen, D. Prabhakaran, G. Balakrishnan, E. Pomjakushina, C. Paulsen,

E. Lhotel, L. Keller, M. Frontzek, S. C. Capelli, O. Zaharko, P. A. McClarty, S. T.

Bramwell, P. Henelius, and T. Fennell, Phys. Rev. Lett. 121, 067202 (2018).

[106] P. Henelius, T. Lin, M. Enjalran, Z. Hao, J. G. Rau, J. Altosaar, F. Flicker, T. Ya-

vors’kii, and M. J. P. Gingras, Phys. Rev. B 93, 024402 (2016).

[107] J. G. Rau and M. J. P. Gingras, Annu. Rev. Condens. Matter Phys. 10, 357 (2019).

[108] G. Sala, M. J. Gutmann, D. Prabhakaran, D. Pomaranski, C. Mitchelitis, J. B.

Kycia, D. G. Porter, C. Castelnovo, and J. P. Goff, Nat. Mater. 13, 488 (2014).

[109] G. D. Blundred, C. A. Bridges, and M. J. Rosseinsky, Angew. Chem. Int. Ed. 43,

3562 (2004).

[110] K. E. Arpino, B. A. Trump, A. O. Scheie, T. M. McQueen, and S. M. Koohpayeh,

Phys. Rev. B 95, 094407 (2017).

137

http://link.aps.org/doi/10.1103/PhysRevB.85.020410
http://journals.jps.jp/doi/abs/10.7566/JPSJ.82.104710
http://www.nature.com/doifinder/10.1038/35092516
http://stacks.iop.org/0953-8984/15/i=2/a=102?key=crossref.0967240c1fee62e5f6a98d94ab9cfaef
http://stacks.iop.org/0953-8984/16/i=11/a=010?key=crossref.9358f6b637ab5b58305de469cdf8f8f4
http://link.aps.org/doi/10.1103/PhysRevB.83.094424
http://www.nature.com/doifinder/10.1038/nphys2847
http://www.nature.com/doifinder/10.1038/nphys2591
https://link.aps.org/doi/10.1103/PhysRevLett.121.067202
http://link.aps.org/doi/10.1103/PhysRevB.93.024402
https://www.annualreviews.org/doi/10.1146/annurev-conmatphys-022317-110520
http://www.nature.com/articles/nmat3924
http://doi.wiley.com/10.1002/anie.200453819
http://doi.wiley.com/10.1002/anie.200453819
https://link.aps.org/doi/10.1103/PhysRevB.95.094407


[111] K. Baroudi, B. D. Gaulin, S. H. Lapidus, J. Gaudet, and R. J. Cava, Phys. Rev. B

92, 024110 (2015).

[112] G. C. Lau, B. D. Muegge, T. M. McQueen, E. L. Duncan, and R. J. Cava, J. Solid

State Chem. 179, 3126 (2006).

[113] R. D. Shannon and C. T. Prewitt, Acta Crystallogr. Sec. B 25, 925 (1969).

[114] S. T. Bramwell, M. N. Field, M. J. Harris, and I. P. Parkin, J. Phys.: Cond. Mat.

12, 483 (2000).

[115] B. Tomasello, C. Castelnovo, R. Moessner, and J. Quintanilla, arXive e-prints ,

arXiv:1810.11469 (2018).

[116] K. Matsuhira, M. Wakeshima, Y. Hinatsu, C. Sekine, C. Paulsen, T. Sakakibara,

and S. Takagi, J. Phys. Conf. Ser. 320, 012050 (2011).

[117] S. Gao, O. Zaharko, V. Tsurkan, L. Prodan, E. Riordan, J. Lago, B. F̊ak, A. R.

Wildes, M. M. Koza, C. Ritter, P. Fouquet, L. Keller, E. Canévet, M. Medarde,
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